Metabolic Drug Interactions with Newer Antipsychotics: A Comparative Review

Edoardo Spina¹ and Jose de Leon²

¹Section of Pharmacology, Department of Clinical and Experimental Medicine and Pharmacology, University of Messina and IRCCS Neurological Center ‘Bonino-Pulejo’, Messina, Italy, and ²University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA

(Received July 26, 2006; Accepted October 24, 2006)

Abstract: Newer antipsychotics introduced in clinical practice in recent years include clozapine, risperidone, olanzapine, quetiapine, sertindole, ziprasidone, aripiprazole and amisulpride. These agents are subject to drug–drug interactions with other psychotropic agents or with medications used in the treatment of concomitant physical illnesses. Most pharmacokinetic interactions with newer antipsychotics occur at the metabolic level and usually involve changes in the activity of the major drug-metabolizing enzymes involved in their biotransformation, i.e. the cytochrome P450 (CYP) monooxygenases and/or uridine diphosphate-glucuronosyltransferases (UGT). Clozapine is metabolized primarily by CYP1A2, with additional contribution by other CYP isomers. Risperidone is metabolized primarily by CYP2D6 and, to a lesser extent, CYP3A4. Olanzapine undergoes both direct conjugation and CYP1A2-mediated oxidation. Quetiapine is metabolized by CYP3A4, while sertindole and aripiprazole are metabolized by CYP2D6 and CYP3A4. Ziprasidone pathways include aldehyde oxidase-mediated reduction and CYP3A4-mediated oxidation. Amisulpride is primarily excreted in the urine and undergoes relatively little metabolism. While novel antipsychotics are unlikely to interfere with the elimination of other drugs, co-administration of inhibitors or inducers of the major enzymes responsible for their metabolism may modify their plasma concentrations, leading to potentially significant effects. Most documented metabolic interactions involve antidepressant and anti-epileptic drugs. Of a particular clinical significance is the interaction between fluvoxamine, a potent CYP1A2 inhibitor, and clozapine. Differences in the interaction potential among the novel antipsychotics currently available may be predicted based on their metabolic pathways. The clinical relevance of these interactions should be interpreted in relation to the relative width of their therapeutic index. Avoidance of unnecessary polypharmacy, knowledge of the interaction profiles of individual agents, and careful individualization of dosage based on close evaluation of clinical response and, possibly, plasma drug concentrations are essential to prevent and minimize potentially adverse drug interactions in patients receiving newer antipsychotics.

Over the past decade, ‘newer’ or ‘atypical’ or ‘second-generation’ antipsychotics have become the treatment of choice for schizophrenia because of their more favourable tolerability profile as compared to traditional compounds. The second-generation antipsychotics currently available in most countries include clozapine, risperidone, olanzapine, quetiapine, sertindole, ziprasidone, aripiprazole and amisulpride. From a clinical perspective, these agents tend to be characterized by a low propensity to produce acute extrapyramidal symptoms and tardive dyskinesia, a weak potential to cause elevation of serum prolactin levels, and a broad spectrum of activity involving not only positive and negative symptoms, but also other symptom dimensions of schizophrenia (i.e. cognitive, aggressive and depressive symptoms) [1]. On the other hand, treatment with some of these medications has been associated with substantial risk of metabolic effects such as weight gain, hyperglycaemia and lipid dysregulation, and cerebrovascular adverse events, in particular stroke [2,3].

All newer antipsychotics are indicated for the treatment of schizophrenia and some are also approved for the treatment of bipolar disorder. In addition, they are increasingly used for the treatment of many other psychiatric conditions, either as monotherapy, or as an augmentation strategy [4]. As a consequence, second-generation antipsychotics are often prescribed in combination with other medications and this may result in clinically relevant drug interactions [5,6]. Combination pharmacotherapy is commonly used in clinical psychiatry to treat patients with comorbid psychiatric or physical illnesses, to control the side effects of a specific drug or to augment a medication effect. Therefore, the use of psychotropic agents with low potential for drug interactions is desirable, especially for elderly patients who are more likely to take many medications.

The aim of the present article is to provide an updated comparative review of metabolic drug interactions of second-generation antipsychotics. The information for this review...
was obtained from a MEDLINE search and hand-searching of a number of recent journals and recent reviews. Searches were performed for each of the newer antipsychotics. Obviously, more data (particularly from independent investigators) are available for those antipsychotics, such as clozapine, risperidone and olanzapine, released earlier for clinical use. Although several studies have been conducted, the design of many investigations has been inadequate to exclude significant drug interactions [7]. The next section describes the most important metabolic enzymes and our knowledge of how their physiology can be used to predict patterns of drug interactions even before they happen.

Metabolic drug interactions

There are two basic types of drug interactions: pharmacokinetic and pharmacodynamic. Pharmacodynamic interactions take place at receptor sites and occur between drugs with similar or opposing therapeutic or adverse effects, resulting in additive, synergistic or antagonistic effects. Pharmacokinetic interactions consist of changes in the absorption, distribution, metabolism or excretion of a drug and/or its metabolites, or the quantity of active drug that reaches its site of action, after the addition of another chemical agent. This article focuses only on metabolic drug interactions that are the main type of pharmacokinetic interactions.

Major drug-metabolizing enzymes

Most pharmacokinetic interactions with newer antipsychotics occur at the metabolic level and usually involve changes in the activity of the major drug-metabolizing enzymes involved in their biotransformation, the cytochrome P450 (CYP) monooxygenases and/or uridine diphosphate-glucuronosyltransferases.

The cytochrome P450 system constitutes a superfamily of isoenzymes, located in the membranes of the smooth endoplasmic reticulum in the liver and in many extrahepatic tissues that mediate oxidative reactions of most drugs and xenobiotics, as well as many endogenous compounds [8]. The multiple CYP enzymes are subdivided into families, subfamilies and isoenzymes according to a nomenclature system based on amino acid sequence homology [9]. The major CYP enzymes involved in drug metabolism include CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Each CYP isozyme is a specific gene product and possesses a characteristic but relatively broad spectrum of substrate specificity. There is a large variability in the expression and activity of these isoenzymes, which may lead to interindividual differences in drug exposure. Such variability results from genetic, pathophysiological and environmental factors, including concomitant administration of other drugs. A number of genes coded for CYP isoenzymes have variant alleles resulting from mutations, and these mutations can result in enzyme variants with higher, lower or no activity, or in the very absence of the enzyme. The existence of mutated alleles in at least 1% of the population is referred to as genetic polymorphism [10].

The CYP polymorphisms that have the greatest clinical implications involve CYP2C9, CYP2C19 and CYP2D6. In recent years, the major CYP isoenzymes have been characterized at the molecular level and their different substrates, inhibitors and inducers have been identified [11].

Uridine diphosphate-glucuronosyltransferases (UGT) are enzymes which catalyse the glucuronidation of a large number of endobiotics and xenobiotics, located in the endoplasmic reticulum, mainly in the liver, but also in the kidney, intestine, skin, lung, prostate and brain [12]. UGT enzymes produce products that are more water-soluble, less toxic and more readily excreted than the parent compounds. While most substrates undergo glucuronide conjugation after phase I reactions, in some cases (i.e. olanzapine), direct conjugation occurs at the same time as other oxidative reactions. In recent years, at least 33 families within the UGT superfamily have been identified and classified by a nomenclature similar to that used for the CYP system [13]. The UGT1 and the UGT2 families seem to be the most important in drug metabolism. UGTs are less well understood than CYPs and this may be explained by several reasons, including (i) the overlapping activity of UGTs and the lack of selective probes; (ii) the complexity of the glucuronidation cycle; and (iii) the difficulty in developing analytic methods to measure glucuronides [14].

Enzyme inhibition and induction

Metabolic drug interactions generally result from one of two processes: enzyme inhibition or enzyme induction.

Enzyme inhibition usually involves competition with another drug for the enzyme-binding site. A large number of compounds may inhibit the activity of drug-metabolizing enzymes. As a consequence, the rate of metabolism of a particular agent is decreased, resulting in increased plasma drug concentrations and potential enhancement of its pharmacological effects. Competitive inhibition is typically a rapid and dose-dependent process [15,16]. The initial effect usually occurs within 24 hr from the addition of the inhibitor, although the time to reach maximal inhibition will depend on the elimination half-lives of the affected drug and of the inhibiting agent. When the inhibitor is withdrawn, restoration of baseline (pre-interaction) conditions is also dependent on the rates of the elimination of the affected drug and of the inhibitor. Usually, potent inhibitors of a given enzyme are substrates of the same enzyme, but this is not always the case. For example, quinidine is a potent inhibitor of CYP2D6 [17], but it is metabolized by CYP3A4 [18]. Inhibition of non-oxidative phase I and conjugating phase II enzymes has also been documented. Most new antipsychotics undergo extensive biotransformation, and their metabolism is therefore vulnerable to inhibition by a large number of competitive substrates and enzyme inhibitors.

The activity of drug-metabolizing enzymes in the liver and/or extrahepatic tissues may be increased by chronic administration of several exogenous agents including medications, abused substances, industrial contaminants, dietary
substances, as well as by endogenous compounds [15,16]. Induction may influence several CYP isoenzymes, but does not affect CYP2D6. Other enzymes, particularly UGTs, may be induced. From a biological point of view, induction is an adaptive response that protects the cells from toxic xenobiotics by increasing the detoxification activity. Therefore, it is to be expected that induction will result in decreased concentration of an active compound. However, for those agents that are inactive (pro-drugs), but are biotransformed to active metabolites, enzyme induction may paradoxically increase pharmacological or toxicological activity. It should be acknowledged that also the elimination of active metabolites may be increased by enzyme inducers. Enzyme induction is a slow regulatory process, which is dose- and time-dependent. In other words, the extent of induction is generally proportional to the dose of the inducing agent and, since the process usually requires synthesis of the new enzyme, it occurs with some delay after the exposure to the inducing agent, generally from a few days to 1–2 weeks. Similarly, the time frame for de-induction is also gradual and depends on the rate of degradation of the enzyme and the time required to eliminate the inducing drug.

Clinical significance of a metabolic drug interaction

Information on the drug-metabolizing enzyme systems and their substrates, inhibitors and inducers may be of great value for clinicians in anticipating and possibly avoiding potential interactions. Co-administration of two substrates of the same enzyme, or co-administration of a substrate with an inhibitor or an inducer, entails the possibility of a drug interaction. As a consequence, plasma concentrations of the co-administered drugs may be increased or decreased, resulting in clinical toxicity or diminished therapeutic effect. Dosage adjustments may then be required to avoid adverse effects or therapeutic failure. A description for clinicians of the different drug interaction patterns with inhibitors and inducers has been provided [19].

Drug–drug interactions may initially be studied in vitro in order to predict the potential importance in vivo. However, it should be emphasized that not all theoretically possible interactions will occur in vivo, and some may not be clinically significant anyway. As suggested by Sproule et al. [20], different aspects, including not only drug-related factors such as potency and concentration of the inhibitor/inducer, therapeutic index of the substrate, extent of metabolism of the substrate through the affected enzyme, presence of active or toxic metabolites, but also patient-related and epidemiological factors, must be taken into account when evaluating the potential occurrence, extent and clinical significance of a metabolic drug interaction.

Metabolism of newer antipsychotics and potential for metabolic interactions

In order to evaluate the potential for metabolic drug interactions of the newer antipsychotics, it is essential to know the effect of these agents on drug-metabolizing enzymes and the metabolic pathways of the various antipsychotics.

Effect of the newer antipsychotics on drug-metabolizing enzymes

With regard to the effect of the newer antipsychotics on the metabolism of other drugs, it is important to note that these agents appear to be neither inhibitors nor inducers of drug-metabolizing enzymes. In this respect, in vitro studies with human liver microsomes have documented that various second-generation antipsychotics do not significantly affect the activity of CYP isoenzymes [21,22]. As a consequence, it is unlikely that in typical circumstances they can interfere with the biotransformation of concomitantly administered medications. This represents an advantage as compared to some first-generation antipsychotics such as phenothiazines, which are potent inhibitors of some CYP enzymes, namely CYP2D6, and may therefore affect the pharmacokinetics of other agents [23].

Metabolism of newer antipsychotics

With the exception of amisulpride, currently available second-generation antipsychotics are extensively metabolized, primarily by oxidative processes, but also by direct glucuronidation [24–27]. The main pharmacokinetic properties of novel antipsychotics are reported in table 1.

Table 1.

Main pharmacokinetic parameters of newer antipsychotics (based on reference nos 24–27).

<table>
<thead>
<tr>
<th></th>
<th>Bioavailability (%)</th>
<th>Protein binding (%)</th>
<th>Half-life (hours)</th>
<th>Time to reach steady-state (days)</th>
<th>Enzymes responsible for biotransformation</th>
<th>Active metabolites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clozapine</td>
<td>12–81</td>
<td>>90</td>
<td>6–33</td>
<td>4–8</td>
<td>CYP1A2, CYP2C19, CYP3A4, CYP2D6</td>
<td>Norclozapine</td>
</tr>
<tr>
<td>Risperidone</td>
<td>68</td>
<td>90</td>
<td>3–24</td>
<td>4–6</td>
<td>CYP2D6, CYP3A4</td>
<td>9-Hydroxy-risperidone</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>60–80</td>
<td>93</td>
<td>20–70</td>
<td>5–7</td>
<td>CYP1A2, CYP2D6, UGT1A4, FMO1</td>
<td></td>
</tr>
<tr>
<td>Quetiapine</td>
<td>Not available</td>
<td>83</td>
<td>5–8</td>
<td>2–3</td>
<td>CYP3A4</td>
<td></td>
</tr>
<tr>
<td>Sertindole</td>
<td>75</td>
<td>99</td>
<td>85–99</td>
<td>15–20</td>
<td>CYP2D6, CYP3A4</td>
<td></td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>60</td>
<td>>99</td>
<td>4–10</td>
<td>2–3</td>
<td>CYP3A4, aldehyde oxidase</td>
<td></td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>Not available</td>
<td>>99</td>
<td>48–68</td>
<td>14</td>
<td>CYP3A4, CYP2D6</td>
<td>Dehydro-aripiprazole</td>
</tr>
<tr>
<td>Amisulpride</td>
<td>43–48</td>
<td>17</td>
<td>12</td>
<td>2–3</td>
<td>Not clinically relevant</td>
<td></td>
</tr>
</tbody>
</table>

1FMO, flavin-containing monoxygenase-3 system. 2In italic and bold the most likely to have clinical relevance.

© 2007 The Authors

Journal compilation © 2007 Nordic Pharmacological Society. Basic & Clinical Pharmacology & Toxicology, 100, 4–22
Clozapine has a complex hepatic metabolism in man with multiple CYP isosforms being involved in its biotransformation. The major metabolic pathways are the N-demethylation and the N-oxidation to form norclozapine, which has limited pharmacological activity, and clozapine N-oxide, respectively [24,26,27]. Currently available in vitro and in vivo evidence clearly indicate that CYP1A2 plays a major role in the metabolism of clozapine, although other CYP isosforms, including CYP2C19, CYP2D6, CYP3A4 and CYP2C9, also contribute to its biotransformation [28–32].

Risperidone is extensively metabolized in the liver, primarily by 9-hydroxylation, yielding an active metabolite 9-hydroxyrisperidone (9-OH-risperidone) [24–27]. According to in vivo and in vitro studies, CYP2D6 and, to a lesser extent, CYP3A4 are responsible for the 9-hydroxylation of risperidone [33–35]. The metabolite 9-OH-risperidone is approximately equipotent with the parent drug in terms of dopamine receptor affinity and the total risperidone active moiety (sum of plasma concentrations of parent drug and metabolite) should contribute to the overall antipsychotic effect and side effects.

The major metabolic pathways of olanzapine include direct N-glucuronidation, mediated by UGT1A4, and by N-demethylation, mediated by CYP1A2 [36,37]. Minor pathways of olanzapine biotransformation include N-oxidation, catalysed by flavin-containing monooxygenase-3 system, and 2-hydroxylation, metabolized by CYP2D6 [36,37].

Quetiapine, a dibenzothiazepine derivative, is extensively metabolized in the liver by sulfoxidation to form its major, but inactive, sulfoxide metabolite, and, as lesser metabolic pathways, by N- and O-dealkylation [24–27]. CYP3A4 appears to be the major isoenzyme involved in these metabolic reactions, whereas CYP2D6 may only play a minor role [38].

Sertindole undergoes extensive hepatic metabolism by CYP2D6 and CYP3A4 to two main metabolites: dehydro-sertindole (through oxidation) and norsertindole (through N-dealkylation) [39].

Ziprasidone has a complex metabolism and the major pathways include the oxidation of sulphur resulting in the formation of ziprasidone-sulfoxide and ziprasidone-sulphone and N-dealkylation [40]. The cytosolic aldehyde oxidase metabolizes approximately two-thirds of ziprasidone. CYP3A4 has a relatively minor metabolic role.

Aripiprazole is extensively metabolized by CYP3A4 and CYP2D6 [41]. The predominant active metabolite, dehydro-aripiprazole, represents 40% of the circulating dose of aripiprazole.

Amisulpride undergoes relatively little metabolism with about 50% of the dose excreted in the urine as unchanged drug. Its biotransformation in humans includes N-dealkylation and oxidation, but the isoenzymes involved in these reactions are yet unidentified [42]. Because of its marginal metabolic elimination, amisulpride is almost devoid of clinically relevant metabolic interactions.

Finally, recent evidence indicates that antipsychotics and their active metabolites are, to a various degree, substrates or inhibitors of the multidrug resistance transporter, P-glycoprotein, which could limit their absorption or brain entry [43,44]. In this respect, the brain entry of 9-OH-risperidone may be limited by the presence in the blood–brain barrier of the P-glycoprotein that has greater affinity for 9-OH-risperidone than for risperidone [45].

Potential for metabolic drug interactions

Concomitant administration of drugs acting as inhibitors or inducers of the enzymes involved in the biotransformation of the newer antipsychotics may decrease or increase their elimination [5,6]. Plasma concentrations of the newer antipsychotics and/or their metabolites may therefore increase or decrease with subsequent clinical effects. For drugs such as olanzapine, whose major metabolic pathway is represented by glucuronidation, administration of CYP inhibitors will presumably result only in marginal changes. The addition of inducers can be problematic for all second-generation antipsychotics, but the decrease in plasma levels may be more dramatic for quetiapine, which is mainly dependent on CYP3A4. Moreover, for compounds forming active metabolites, such as risperidone and aripiprazole, it will be necessary to consider the changes in both parent drug and active metabolite in the evaluation of the consequences of inhibitors or inducers. As previously mentioned, the clinical relevance of changes in plasma concentrations should be considered in view of the therapeutic index of the compound whose elimination is affected. In this respect, the newer antipsychotics have a wider therapeutic index as compared to traditional agents, at least with regard to extrapyramidal side effects. An exception is represented by risperidone that shows a dose- and concentration-dependent risk for parkinsonian symptoms at dosages above 6 mg/day [46,47]. Moreover, compared to olanzapine, clozapine has a much narrower therapeutic index, and it is documented that central nervous system toxicity (e.g. generalized seizures, severe sedation, confusion and delirium) occurs more frequently at plasma concentrations above 1000 ng/ml [48].

Metabolic drug interactions of newer antipsychotics

Central nervous system drugs

Other antipsychotics

Concomitant administration of two or more antipsychotics is not a rational therapeutic strategy, but it can be used in the treatment refractory cases. In addition to a pharmacodynamic potentiation with subsequent risk of adverse effects [49], pharmacokinetic interactions are theoretically possible. With regard to new antipsychotics, some cases have documented an increase in plasma concentrations of clozapine following co-administration with risperidone [50,51]. However, in an open 4-week trial involving 12 patients with chronic schizophrenia, the addition of risperidone was well tolerated and did not significantly affect serum clozapine concentrations [52]. A further study reported no significant modifications in serum clozapine concentrations in 18 patients after the addition of risperidone to clozapine treatment [53].

© 2007 The Authors
A pharmacokinetic investigation in 36 patients with various psychiatric disorders has investigated the pharmacokinetic parameters of quetiapine at steady-state (600 mg/day) during co-administration with haloperidol (15 mg/day), risperidone (6 mg/day) or thioridazine (400 mg/day) [54]. While haloperidol and risperidone did not alter significantly quetiapine pharmacokinetics, thioridazine caused a 40% decrease in the area under the concentration–time curve (AUC) of quetiapine and a 68% increase in its clearance. The mechanism of this interaction is unknown. Thioridazine, a potent inhibitor of CYP2D6, might induce an unknown metabolic pathway of quetiapine, modify its binding to plasma protein or reduce its absorption. It is likely, although not documented, that thioridazine as well as other phenothiazines, potent inhibitors of CYP2D6, may impair the elimination of newer antipsychotics mainly dependent on CYP2D6 such as risperidone and, to a lesser extent, sertrindole and aripiprazole.

Antidepressants

Antidepressants, in particular those of more recent commercialization, may be used in combination with novel antipsychotics in patients with concomitant psychotic and depressive symptoms, as an adjunctive strategy for the treatment of negative symptoms of schizophrenia or in patients with refractory obsessive–compulsive disorder.

Tricyclic antidepressants. The possibility of metabolic interactions between tricyclic antidepressants and the newer antipsychotics has not been investigated formally. However, Smith and Risken [55] reported a doubling of the plasma concentrations of nortriptyline (a CYP2D6 substrate) after a patient was started on a clozapine therapy. This suspected pharmacokinetic interaction may have occurred through competitive inhibition of CYP2D6, although there is no in vitro evidence of inhibition of CYP2D6 by clozapine.

Selective serotonin reuptake inhibitors. Selective serotonin reuptake inhibitors (SSRIs) are the most widely used antidepressants because of their favourable tolerability and safety profile. On the other hand, SSRIs may cause a clinically relevant inhibition of CYP enzymes. The six marketed SSRIs differ considerably in their potency to inhibit individual CYP enzymes [56]. In particular, fluoxetine and paroxetine are potent inhibitors of CYP2D6, fluvoxamine is a potent inhibitor of CYP1A2 and CYP2C19, fluoxetine and fluvoxamine are moderate inhibitors of CYP2C9 and CYP3A4, sertraline is a moderate inhibitor of CYP2D6, whereas citalopram and escitalopram do not appear to significantly inhibit any CYP [57–61]. As the inhibitory effect on these enzymes is concentration-dependent, the potential for drug interactions is higher in the elderly, particularly for agents whose elimination is affected by age, such as citalopram and paroxetine, and for those which exhibit non-linear kinetics, such as fluoxetine and paroxetine.

(a) **Fluoxetine.** Different studies have reported an increase by approximately 40–70% in plasma concentrations of clozapine in patients concomitantly treated with fluoxetine 20 mg/day [62–64]. This interaction was attributed to the potent inhibitory effect of fluoxetine on the activity of CYP2D6, an isoform that contributes, at least in part, to the biotransformation of clozapine. However, recent evidence suggests that fluoxetine may also inhibit CYP2C19 and CYP3A4, which also play a role in clozapine metabolism [65]. In addition, norfluoxetine, the major metabolite of norfluoxetine, is a moderate inhibitor of CYP3A4.

A clinically relevant pharmacokinetic interaction may occur between fluoxetine and risperidone [66,67]. Two patients with depression had dramatic increases in total risperidone moiety and major side effects [66]. In 10 schizophrenic patients stabilized on risperidone (4–6 mg/day), co-administration of fluoxetine (20 mg/day) caused a mean of 75% elevation of plasma concentration of the active fraction of risperidone [67]. One patient dropped out after 1 week of combination treatment because of occurrence of akathisia, whereas two patients developed parkinsonian symptoms, thus requiring anticholinergic medication. This interaction is presumably due to inhibition of CYP2D6, the major isoenzyme responsible for the 9-hydroxylation of risperidone, although it is possible that norfluoxetine may also inhibit CYP3A4, blocking both metabolic pathways for risperidone [66]. This interaction provides a rational explanation for previous clinical observations concerning patients who developed gynaecomastia [68], or urinary retention and extrapyramidal symptoms [69] when fluoxetine was added to risperidone treatment. Similar results were reported in another pharmacokinetic study where the increase in plasma risperidone concentrations was generally well tolerated [70]. A reduction in risperidone dosage is advisable in case of concomitant administration of fluoxetine.

The effect of fluoxetine on the pharmacokinetics of olanzapine was evaluated in healthy persons [36]. Fluoxetine caused statistically significant but ‘clinically insignificant’ modifications in plasma concentrations and rates of clearance of olanzapine. According to a published study from the pharmaceutical company of 15 non-smoking volunteers, after up to 8 days on fluoxetine, 60 mg/day, the increase in olanzapine concentration was only about 15% [71]. It cannot be ruled out that longer fluoxetine treatments may have greater effects because of the long time that fluoxetine needs to reach steady-state and stable inhibitory properties.

In a study of 13 patients with various psychiatric disorders stabilized on quetiapine, 300 mg twice daily, the addition of fluoxetine, 60 mg/day for only 8 days, did not substantially alter the quetiapine area under the plasma concentration time curve during a 12-hr interval nor the minimum plasma concentration at the end of the dosing interval [72].

(b) **Paroxetine.** Data concerning the possibility of a metabolic interaction between paroxetine and clozapine are contradictory. Some studies have documented a moderate elevation of plasma clozapine concentrations (by approximately 20–40%), presumably not associated with clinically relevant effects, following administration of therapeutic doses of paroxetine, 20 mg/day [63,73]. This effect has been attributed
to the inhibition of CYP2D6, an isoform that is partially responsible for clozapine biotransformation. Conversely, another investigation has documented only minor, insignificant changes in serum concentrations of clozapine and its metabolites during concomitant treatment with paroxetine [74].

In a pharmacokinetic study involving 10 schizophrenic patients stabilized on risperidone therapy (4–8 mg/day), co-administration of paroxetine (20 mg/day) resulted in a mean 45% increase in plasma concentrations of the active fraction of risperidone [75]. The drug combination was well tolerated with the exception of one patient who developed extrapyramidal symptoms in the second week of adjunctive therapy. In a patient with side effects on risperidone and paroxetine, it was possible to observe that the patient had an inverted ratio (risperidone > 9-OH-risperidone) and a very long half-life of risperidone both compatible with high inhibition of CYP2D6 in spite of the fact that he was not a CYP2D6 poor metabolizer, but had only one active copy of the gene [76]. Therefore, the interaction is presumably mediated through inhibition of CYP2D6. A subsequent investigation in schizophrenic patients has indicated that paroxetine increases plasma concentrations of risperidone in a dose-dependent manner [77].

There is no documentation of pharmacokinetic interactions between paroxetine and other new antipsychotics.

c) Fluvoxamine. The pharmacokinetic interaction between fluvoxamine and clozapine is one of the most extensively investigated in clinical psychopharmacology. Formal kinetic studies and case reports have demonstrated that concomitant administration of fluvoxamine may cause a 5 to 10 times increase in plasma concentrations of clozapine [74,78–84]. In some patients the fluvoxamine-induced elevation of plasma clozapine levels was associated with the occurrence of extrapyramidal symptoms [85]. This interaction has been attributed not only to inhibition of CYP1A2, the major enzyme responsible for clozapine metabolism, but also to additional inhibitory effects of fluvoxamine on CYP2C19 and CYP3A4 that also contribute to its biotransformation [86,87]. Clinicians should be aware of a potential interaction between clozapine and fluvoxamine. If clozapine and fluvoxamine are given concurrently, it is advisable to monitor patients for increased serum clozapine concentrations, worsening of psychosis and development of adverse symptoms. Downward dosage adjustments of clozapine may be necessary. However, because of the magnitude of this interaction, a pharmacokinetic augmentation strategy has been proposed for the co-administration of fluvoxamine with low doses of clozapine [83,88,89]. Clinicians using that strategy should use careful plasma level monitoring and have a high level of pharmacokinetic expertise.

Several studies have documented that fluvoxamine may also elevate plasma levels of olanzapine by approximately two times, presumably through inhibition of CYP1A2, with possible occurrence of unwanted effects [90–92]. In particular, in eight patients stabilized on olanzapine therapy (10–20 mg/day), the addition of fluvoxamine (100 mg/day) for 8 weeks increased plasma olanzapine levels by about 80% [92]. The magnitude of the effect of fluvoxamine on plasma levels of olanzapine is lower than observed with clozapine, as olanzapine is metabolized by multiple enzyme systems, namely UGT, whose activity is not affected by fluvoxamine. Combined olanzapine and fluvoxamine should be used cautiously and controlled clinically and by therapeutic drug monitoring to avoid olanzapine-induced adverse effects (sedation, orthostatic hypotension, tachycardia, transaminase elevations or seizures).

A recent investigation in schizophrenic patients on a chronic treatment with risperidone has evaluated the possibility of a metabolic interaction between fluvoxamine and risperidone [93]. Whereas in the six patients receiving adjunctive treatment with fluvoxamine at the dose of 100 mg/day no significant modifications in plasma levels of risperidone and its active metabolite were observed, concentrations increased slightly but significantly (by a mean of 26% over pretreatment; P < 0.05) in the subgroup of five patients treated with a final fluvoxamine dose of 200 mg/day. A dose-dependent inhibitory effect of fluvoxamine on CYP2D6- and/or CYP3A4-mediated 9-hydroxylation of risperidone provides a rational explanation for this interaction. It is unclear if this pharmacokinetic mechanism may account for the development of a severe neurotoxic syndrome occurring in a patient soon after the addition of fluvoxamine to a stable treatment with risperidone [94].

d) Sertraline. Formal kinetic studies have indicated that sertraline does not significantly affect plasma concentrations of clozapine and its major metabolite noreclozapine [63,73]. On the other hand, two case reports have documented a moderate increase in plasma concentrations of clozapine after co-administration with sertraline at doses of 50 and 300 mg/day, respectively [95,96]. Sertraline does not interfere with the elimination of olanzapine, as demonstrated by measurement of this antipsychotic in 21 patients treated with this combination [90]. A recent study in 11 patients with schizophrenia or schizoaffective disorder stabilized on risperidone therapy (4–6 mg/day) has demonstrated that an 8-week co-medication with sertraline, 50–100 mg/day, did not change significantly steady-state plasma concentrations of risperidone active fraction [97]. However, in the two patients receiving the highest dose of sertraline, 150 mg/day, at week 8 total plasma risperidone concentrations were increased by 36% and 52%, respectively, as compared to baseline values, presumably because of a dose-dependent inhibition of CYP2D6-mediated 9-hydroxylation of risperidone.

e) Citalopram/escitalopram. Concomitant administration of citalopram (20–40 mg/day) was found not to modify steady-state plasma concentrations of clozapine and nortclozapine, as reported in two studies in patients with schizophrenia [98,99]. However, a case report has documented an increase in plasma levels of clozapine after co-medication of citalopram, attributed to a presumed inhibitory effect of citalopram on CYP1A2 or CYP3A4 [100]. No changes in steady-state plasma concentrations of nortclozapine were observed.
concentrations of risperidone and 9-OH-risperidone were observed in seven patients after administration of citalopram, 40 mg/day [99].

The effect of SSRIs on plasma concentrations on novel antipsychotics is summarized in table 2.

Other new antidepressants. Unlike SSRIs, other new antidepressants, with the exception of nefazodone, do not interfere significantly with CYP enzymes [56].

Venlafaxine, a serotonin and noradrenaline reuptake inhibitor, is a weak inhibitor of CYP2D6. In a study of 30 healthy volunteers, treatment with venlafaxine, 150 mg/day, caused no significant changes in the pharmacokinetics of a single 1 mg oral dose of risperidone [101].

Nefazodone, a serotonin 5-HT₂ receptor antagonist that also inhibits both serotonin and noradrenaline reuptake, is a potent inhibitor of CYP3A4 [102]. Consistent with this, an increase in plasma levels of clozapine and norclozapine, associated with development of anxiety, dizziness and mild hypotension, was described after administration of nefazodone [103]. However, a previous investigation has documented that nefazodone has only minimal effects on clozapine and norclozapine concentrations [104]. A case of high total risperidone levels and side effects on nefazodone has been described [66].

Reboxetine is a selective noradrenaline reuptake inhibitor, with a weak inhibitory effect on the activity of CYP enzymes. The possibility of a pharmacokinetic interaction between reboxetine and the newer antipsychotics clozapine and risperidone was investigated in 14 patients with schizophrenia or schizoaffective disorder on chronic treatment with clozapine (250–500 mg/day) or risperidone (4–6 mg/day) [105]. Co-administration of reboxetine, 8 mg/day, for 4 weeks did not affect plasma concentrations of clozapine (seven patients), risperidone (seven patients) and their active metabolites.

Mirtazapine is a noradrenergic and specific serotoninergic antidepressant. The effect of mirtazapine on steady-state plasma concentrations of the atypical antipsychotics clozapine, risperidone and olanzapine was evaluated in 24 patients with chronic schizophrenia [106]. In order to treat residual negative symptoms, mirtazapine, 30 mg/day, was added for 6 weeks to patients stabilized on clozapine (n = 9; 200–650 mg/day), risperidone (n = 8; 3–8 mg/day) or olanzapine (n = 7; 10–20 mg/day). There were only minimal and statistically insignificant changes in the mean plasma concentrations of clozapine, risperidone, olanzapine and their major metabolites during the study period, indicating lack of pharmacokinetic interaction between mirtazapine and these antipsychotics.

Benzodiazepines

Atypical antipsychotics are often used in combination with benzodiazepines. Apart from a specific potentiation of sedative effects, this combination is usually well tolerated. An exception may be clozapine. Within 24 or 48 hr after the first clozapine dose some patients taking benzodiazepines develop lethargy, ataxia, loss of consciousness and, rarely, respiratory arrest [107]. The respiratory arrest associated with the co-administration of benzosapine and clozapine appears to be an idiosyncratic reaction because many individuals can tolerate this combination, even in the first days of clozapine treatment, without any obvious side effects. However, it is safer to avoid benzodiazepines the week before starting clozapine and during the first week of dose titration.

There is no evidence of pharmacokinetic interactions between benzosapine and newer antipsychotics.

Antiepileptics and/or mood stabilizers

Antiepileptic drugs, particularly those with mood-stabilizing properties, are often used in combination with antipsychotics and may affect their biotransformation [108].

Carbamazepine. Carbamazepine is a first-generation anti-convulsant widely used for the treatment of bipolar disorder. This agent is a potent inducer of several drug-metabolizing enzymes including CYPs, namely CYP3A4, CYP2C9, CYP2C19 and, possibly CYP1A2, as well as UGTs [108,109]. In this respect, carbamazepine has been reported to decrease plasma concentrations of various novel antipsychotics. As a consequence, increased doses of the newer antipsychotics may be required to achieve or maintain a desired antipsychotic effect in patients receiving carbamazepine, whereas a dosage reduction should be considered in case of carbamazepine discontinuation.

The combined use of carbamazepine and clozapine should probably be avoided because of concerns about potential additive adverse haematological effects [110]. In addition, two studies have documented that carbamazepine may cause a decrease of approximately 50% in plasma clozapine concentrations, presumably explained by the induction of CYP1A2 and CYP3A4 [79,111].

A clinically significant metabolic interaction may also occur between carbamazepine and risperidone. The first documentation of this interaction came from a case report describing a patient who had risperidone levels that were less than expected during carbamazepine therapy, along with decreased risperidone efficacy [112]. The risperidone level dramatically increased when carbamazepine was discontinued. A subsequent study in psychiatric patients indicated that steady-state plasma concentrations of risperidone and its pharmacologically active metabolite were approximately 70% lower in patients co-medicated with carbamazepine (n = 11) than in patients treated with risperidone alone (n = 23) or receiving valproate (n = 10) [113]. Moreover, in five patients assessed on and off carbamazepine co-medication, dose-normalized plasma risperidone and 9-OH-risperidone concentrations were significantly lower during combination therapy than on risperidone alone. Further evidence came from a pharmacokinetic investigation of 11 schizophrenic inpatients indicating that plasma concentrations of risperidone and 9-OH-risperidone were decreased by about 50% when carbamazepine was given concomitantly [114].
Table 2.
Effect of various selective serotonin reuptake inhibitors (SSRI) on plasma concentrations of novel antipsychotics (only controlled studies are described).

<table>
<thead>
<tr>
<th>SSRIs</th>
<th>Antipsychotic</th>
<th>Effect on plasma concentrations</th>
<th>Proposed mechanism</th>
<th>References</th>
<th>Number of participants, design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoxetine</td>
<td>Clozapine</td>
<td>Increase (40–70%)</td>
<td>Inhibition of various CYP isoforms (CYP2D6, CYP2C19 and CYP3A4)</td>
<td>Centorrino et al., 1994 [62]</td>
<td>6, parallel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Centorrino et al., 1996 [63]</td>
<td>14, parallel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spina et al., 1998 [64]</td>
<td>10, sequential</td>
</tr>
<tr>
<td></td>
<td>Risperidone</td>
<td>Increase (75%)</td>
<td>Inhibition of CYP2D6 and, to a lesser extent, CYP3A4</td>
<td>Spina et al., 2002 [67]</td>
<td>9, sequential</td>
</tr>
<tr>
<td></td>
<td>Olanzapine</td>
<td>No change or minimal increase</td>
<td>Inhibition of CYP2D6</td>
<td>Gossen et al., 2002 [71]</td>
<td>15, sequential</td>
</tr>
<tr>
<td></td>
<td>Quetiapine</td>
<td>No change</td>
<td></td>
<td>Potkin et al., 2002 [72]</td>
<td>13, sequential</td>
</tr>
<tr>
<td>Paroxetine</td>
<td>Clozapine</td>
<td>Increase (20–40%)</td>
<td>Inhibition of CYP2D6</td>
<td>Centorrino et al., 1996 [63]</td>
<td>16, parallel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wetzel et al., 1998 [73]</td>
<td>14, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spina et al., 2000 [74]</td>
<td>9, sequential</td>
</tr>
<tr>
<td></td>
<td>Risperidone</td>
<td>Increase (40–50%)</td>
<td>Inhibition of CYP2D6</td>
<td>Spina et al., 2001 [75]</td>
<td>10, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Saito et al., 2005 [77]</td>
<td>12, sequential</td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>Clozapine</td>
<td>Increase (up to 5–10 times)</td>
<td>Inhibition of CYP1A2 and, to a lesser extent, CYP2C19 and CYP3A4</td>
<td>Hiemke et al., 1994 [78]</td>
<td>3, case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jerling et al., 1994 [79]</td>
<td>4, case report</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wetzel et al., 1998 [73]</td>
<td>16, sequential</td>
</tr>
<tr>
<td></td>
<td>Risperidone</td>
<td>Minimal increase (10–20%)</td>
<td>Inhibition of CYP2D6 and CYP3A4</td>
<td>D’Arrigo et al., 2005 [93]</td>
<td>11, sequential</td>
</tr>
<tr>
<td></td>
<td>Olanzapine</td>
<td>Increase (up to 100%)</td>
<td>Inhibition of CYP1A2</td>
<td>Weigmann et al., 2001 [90]</td>
<td>10, parallel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hiemke et al., 2002 [92]</td>
<td>8, sequential</td>
</tr>
<tr>
<td>Sertraline</td>
<td>Clozapine</td>
<td>No change</td>
<td></td>
<td>Centorrino et al., 1996 [63]</td>
<td>10, parallel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spina et al., 2000 [74]</td>
<td>8, sequential</td>
</tr>
<tr>
<td></td>
<td>Risperidone</td>
<td>Minimal increase</td>
<td>Inhibition of CYP2D6</td>
<td>Spina et al., 2004 [97]</td>
<td>11, sequential</td>
</tr>
<tr>
<td></td>
<td>Olanzapine</td>
<td>No change</td>
<td></td>
<td>Weigmann et al., 2001 [90]</td>
<td>21, parallel</td>
</tr>
<tr>
<td>Citalopram/escitalopram</td>
<td>Clozapine</td>
<td>No change</td>
<td></td>
<td>Taylor et al., 1998 [98]</td>
<td>5, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Avenoso et al., 1998 [99]</td>
<td>8, sequential</td>
</tr>
<tr>
<td></td>
<td>Risperidone</td>
<td>No change</td>
<td></td>
<td>Avenoso et al., 1998 [99]</td>
<td>7, sequential</td>
</tr>
</tbody>
</table>
relevance of this interaction was documented in a case study, concerning a patient with chronic schizophrenia in whom addition of carbamazepine to pre-existing risperidone therapy resulted in a marked decrease in the plasma concentrations of both risperidone and its 9-hydroxy-metabolite and in an acute exacerbation of psychotic symptoms [115]. This interaction may be attributed to the inducing effect of carbamazepine on CYP3A4-mediated metabolism of risperidone. An increase in risperidone dose may need to be considered if carbamazepine is co-administered. If carbamazepine is discontinued, the dosage of risperidone should be re-evaluated and, if necessary, decreased.

Evidence from case reports, pharmacokinetic studies in healthy volunteers and therapeutic drug monitoring data from patients clearly indicates that carbamazepine, most likely through induction of CYP1A2 and UGT, may stimulate the biotransformation of olanzapine, thus decreasing its plasma concentrations [116–120]. In a study of 11 healthy volunteers, concurrent administration of olanzapine and carbamazepine resulted in a 46% increase in olanzapine clearance and in a 34% decrease in its AUC [116]. In patients co-medicated with carbamazepine, the median dose-normalized concentrations of olanzapine were 36–71% lower than in patients treated with olanzapine monotherapy [117,119,120]. Doses of olanzapine may need to be adjusted when given concomitantly with carbamazepine.

Carbamazepine may also accelerate the metabolism of quetiapine and ziprasidone, probably as a result of CYP3A4 induction. In a pharmacokinetic study in psychiatric patients, carbamazepine, 200 mg three times daily, decreased quetiapine plasma \(C_{\text{max}} \) by 80%, AUC by 87% and increased its apparent oral clearance 7.5 times [121]. A case of toxicity in the combination of carbamazepine and quetiapine has been described; it was interpreted as due to interference in carbamazepine metabolism at the CYP3A pathway [122]. Miceli et al. [123] reported a 27% mean decrease in the \(C_{\text{max}} \) of ziprasidone and a 36% decrease in its AUC in healthy volunteers when carbamazepine was added. It is possible that this study was not long enough to establish full induction by carbamazepine.

Valproic acid. Like carbamazepine, valproic acid is a traditional anticonvulsant largely used for the treatment of bipolar disorder. Valproic acid is not an inducer, but it may inhibit various UGTs and CYPs, particularly CYP2C9, which plays no major role in the metabolism of the newer antipsychotics [108,109]. As a consequence, valproic acid appears to be free of clinically relevant interactions with atypical antipsychotics.

There are conflicting findings concerning the effect of valproic acid on clozapine metabolism. In fact, plasma concentrations of clozapine and its metabolites have been reported to be either decreased or increased slightly after the addition of valproic acid [62,124–127]. These changes are unlikely to be clinically significant.

Differently from carbamazepine, valproic acid does not affect the elimination of risperidone. In a study of patients stabilized on risperidone treatment, steady-state plasma concentrations of risperidone and 9-OH risperidone did not differ between patients treated with risperidone alone and patients co-medicated with valproic acid at doses up to 1200–1500 mg/day [113]. Moreover, no major changes in the levels of risperidone and its metabolite were observed in three patients assessed with and without valproate.

Both valproate and olanzapine are metabolized, at least partly, by glucuronidation. However, by the use of therapeutic drug monitoring data, Gex-Fabry et al. [128] found that co-medication of valproic acid did not affect plasma concentrations of olanzapine.

In a recent study in psychiatric patients stabilized on quetiapine, dose-normalized plasma concentrations of quetiapine were 77% higher in patients on valproate co-medication than in those receiving quetiapine alone [129]. This suggests the possibility that valproate may inhibit quetiapine metabolism.

In an open investigation involving 10 patients with schizophrenia, addition of valproate caused a decrease of 26% in the \(C_{\text{max}} \) and of 24% in the AUC of aripiprazole [130].

Phenobarbital and Phenytoin. Phenobarbital and phenytoin are recognized as the prototypical inducers of several drug-metabolizing enzymes including CYPs, namely CYP1A2, CYP2C and CYP3A4, as well as UGTs, and may therefore stimulate the biotransformation of the newer antipsychotics [108,109].

Facciolà et al. [131] have reported that plasma concentrations of clozapine were 35% lower in patients co-medicated with phenobarbital, compared with patients receiving clozapine monotherapy. This effect was attributed to induction of CYP1A2 and CYP3A4. Conversely, discontinuation of phenobarbital treatment was associated with a marked elevation of plasma clozapine concentrations [132]. In two patients described by Miller [133], concomitant administration of phenytoin caused a decrease by 65–85% of plasma clozapine concentrations associated with worsening of psychiatric conditions. Co-administration of quetiapine 250 mg three times daily and phenytoin 100 mg three times daily increased the mean oral clearance of quetiapine by five times [134]. Quetiapine is metabolized by CYP3A4, which is induced by the administration of phenytoin.

Other newer antiepileptics. Differently from traditional anticonvulsants, the newer antiepileptics, namely lamotrigine, gabapentin, topiramate and oxcarbazepine, have a low potential for metabolic interactions. Although these agents are commonly used as mood stabilizers, limited information is available concerning their potential pharmacokinetic interactions with atypical antipsychotics [108].

Two studies have investigated the effect of antipsychotics on serum lamotrigine concentrations. In the first study, which was based on a systematic evaluation of lamotrigine concentrations in a routine clinical setting, concomitant administration of clozapine, risperidone or olanzapine were found not to significantly affect dose-normalized serum concentrations of lamotrigine.
lamotrigine levels [135]. In contrast, in a recent formal pharmacokinetic investigation in healthy volunteers, co-treatment with olanzapine (15 mg/day) was associated with a mean 24% reduction in the area under the concentration–time curve of lamotrigine [136]. With regard to the effect of lamotrigine on the elimination of novel antipsychotics, the possibility of a metabolic interaction between lamotrigine and clozapine or risperidone has been suggested by two case reports describing an approximately three and five times elevation in plasma concentrations of clozapine and risperidone, respectively, along with toxic effects, when lamotrigine was added to a stable regimen with these medications [137,138], whereas another report has shown no evidence of a drug interaction between risperidone and lamotrigine [139]. However, a randomized controlled trial in patients with treatment-resistant schizophrenia has documented no changes in plasma clozapine levels during lamotrigine treatment [140]. Moreover, adjunctive lamotrigine, at dosages up to 200 mg/day, did not affect the plasma levels of clozapine, risperidone and their active metabolites, whereas it caused a modest elevation in plasma olanzapine concentration, possibly as a result of inhibition of UGT1A4-mediated olanzapine glucuronidation, unlikely to be of clinical significance [141]. In this respect, other investigations have reported no modifications in the pharmacokinetics of olanzapine during co-administration of lamotrigine in healthy volunteers [136,142].

Differently from its congener carbamazepine, the new anticonvulsant oxcarbazepine seems to have only a modest inducing effect on CYPs. Consistent with this, in a study involving 25 outpatients with bipolar or schizoaffective disorder on a chronic treatment with risperidone (2–6 mg/day) or olanzapine (5–20 mg/day), a 5-week treatment with therapeutic doses of oxcarbazepine, 900–1200 mg/day, caused only minimal and no significant changes in the mean plasma levels of risperidone, 9-OH-risperidone and olanzapine [143].

Topiramate is a new antiepileptic with a favourable drug interaction profile. A randomized, double-blind, placebo-controlled trial in patients with treatment-resistant schizophrenia has shown that the addition of topiramate, 300 mg/day, to an ongoing treatment with newer antipsychotics did not significantly alter plasma concentrations of clozapine and olanzapine in 12 and 5 patients, respectively [144]. A recent study in 38 patients with psychotic disorders has documented that topiramate, at the dosages up to 200 mg/day, does not affect steady-state plasma levels of the new antipsychotics clozapine, olanzapine, risperidone and quetiapine [145].

The effect of antiepileptics on plasma concentrations of novel antipsychotics is summarized in table 3.

Cholinesterase inhibitors

Antipsychotic medications are often used to treat behavioural and psychological symptoms in patients with dementia and may therefore be co-administered with cholinesterase inhibitors, such as tacrine, donepezil, rivastigmine or galantamine. In this respect, isolated case reports have documented the occurrence or the worsening of extrapyramidal adverse effects in patients receiving a combination of donepezil and risperidone [146,147]. This interaction probably has a pharmacodynamic basis and may be attributable to a relative imbalance of cholinergic and dopaminergic activity in the striatum, which may occur following concomitant administration of a dopaminolytic and a cholinesterase inhibitor. Consistent with this, recent studies have documented the lack of a pharmacokinetic interaction between risperidone and donepezil [148,149], rivastigmine [150] or galantamine [151] in patients with dementia or healthy volunteers, elderly or not.

Drugs of abuse

Two studies have investigated the possibility of a pharmacometabolic interaction between second-generation antipsychotics and cocaine and methadone. In an experimental pharmacokinetic investigation involving eight cocaine addicts, clozapine, administered at increasing doses (12.5, 25 and 50 mg), was found to cause a dose-dependent elevation in cocaine levels associated with a syncopal episode in one patient [152]. In a study aimed at evaluating the efficacy of olanzapine in methadone patients abusing cocaine, olanzapine, 5–10 mg/day, did not affect plasma methadone levels [153].

Other drugs

Ciprofloxacin, a broad-spectrum fluoroquinolone antimicrobial, is a potent inhibitor of CYP1A2 and might therefore interfere with the elimination of those antipsychotics predominantly metabolized by this enzyme [154]. Consistent with this, in a pharmacokinetic study of seven schizophrenic inpatients, concomitant administration of ciprofloxacin, 250 mg twice daily for 7 days, increased mean serum concentrations of clozapine and norclozapine by 29% and 31%, respectively [155].

The possibility of a pharmacokinetic interaction between ciprofloxacin and olanzapine has been suggested by two case reports. The first report describes the case of a patient on stable treatment with olanzapine whose plasma antipsychotic concentration was almost doubled after the initiation of ciprofloxacin, 250 mg twice daily, suggesting the possibility of a metabolic interaction between these two drugs [156]. In the second case, an elderly patient receiving a long-term treatment with olanzapine developed a marked QT interval prolongation after intravenous administration of ciprofloxacin [157].

Macrolides

Macrolide antibiotics, in particular erythromycin and troleandomycin, are potent inhibitors of CYP3A4 and can interact adversely with substrates for this enzyme [158]. Controversial findings have been reported concerning the interaction between erythromycin and clozapine. Two case reports have indicated that concomitant treatment with erythromycin resulted in an elevation of plasma clozapine levels, along with toxic effects such as somnolence, disorientation,
Table 3.
Effect of various anti-epileptics on plasma concentrations of novel antipsychotics (only controlled studies are described).

<table>
<thead>
<tr>
<th>Antiepileptic</th>
<th>Antipsychotic</th>
<th>Effect on plasma concentrations</th>
<th>Proposed mechanism</th>
<th>References</th>
<th>Number of participants, design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>Clozapine</td>
<td>Decrease (50%)</td>
<td>Induction of CYP1A2, CYP3A4 and UGT</td>
<td>Jerling et al., 1994 [79]</td>
<td>17, parallel, and 8, sequential</td>
</tr>
<tr>
<td>Risperidone</td>
<td>Clozapine</td>
<td>Decrease (50–70%)</td>
<td>Induction of CYP3A4</td>
<td>Tiihonen et al., 1995 [111]</td>
<td>12, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spina et al., 2000 [113]</td>
<td>11, parallel, and 5, sequential</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>Clozapine</td>
<td>Decrease (30–70%)</td>
<td>Induction of CYP1A2 and UGT</td>
<td>Ono et al., 2002 [114]</td>
<td>11, sequential</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>Clozapine</td>
<td>Decrease (80%)</td>
<td>Induction of CYP3A4</td>
<td>Olesen & Linnet 1999 [117]</td>
<td>5, parallel</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>Clozapine</td>
<td>Decrease (20–40%)</td>
<td>Induction of CYP3A4</td>
<td>Linnet & Olesen 2002 [119]</td>
<td>16, parallel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skogh et al., 2002 [120]</td>
<td>10, parallel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grimm et al., 2005 [121]</td>
<td>18, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Miceli et al., 2000 [123]</td>
<td>9, sequential</td>
</tr>
<tr>
<td>Valproic acid</td>
<td>Clozapine</td>
<td>No change or minimal increase</td>
<td>Enzyme inhibition?</td>
<td>Centorrino et al., 1994 [62]</td>
<td>11, parallel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Finley & Warner 1994 [124]</td>
<td>4, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Longo & Sulzman 1995 [126]</td>
<td>7, sequential</td>
</tr>
<tr>
<td>Risperidone</td>
<td>Clozapine</td>
<td>No change</td>
<td></td>
<td>Facciolà et al., 1999 [127]</td>
<td>15, parallel, and 6, sequential</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>Clozapine</td>
<td>No change</td>
<td>Enzyme inhibition?</td>
<td>Spina et al., 2000 [113]</td>
<td>10, parallel</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>Clozapine</td>
<td>Increase (70–80%)</td>
<td>Protein displacement?</td>
<td>Gex-Fabry et al., 2003 [128]</td>
<td>32, parallel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aichorn et al., 2006 [129]</td>
<td>9, parallel</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>Clozapine</td>
<td>Decrease (20–30%)</td>
<td></td>
<td>Citrome et al., 2005 [130]</td>
<td>10, sequential</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>Clozapine</td>
<td>Decrease (30–40%)</td>
<td>Induction of CYP1A2, CYP3A4 and UGT</td>
<td>Facciolà et al., 1998 [131]</td>
<td>7, parallel</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Quetiapine</td>
<td>Decrease (80%)</td>
<td>Induction of CYP3A4</td>
<td>Wong et al., 2001 [134]</td>
<td>10, sequential</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>Clozapine</td>
<td>No change</td>
<td></td>
<td>Tiihonen et al., 2003 [140]</td>
<td>34, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spina et al., 2006 [141]</td>
<td>11, sequential</td>
</tr>
<tr>
<td>Risperidone</td>
<td>Clozapine</td>
<td>No change</td>
<td></td>
<td>Spina et al., 2006 [141]</td>
<td>10, sequential</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>Clozapine</td>
<td>No change or minimal increase</td>
<td>Competitive inhibition of UGT1A4</td>
<td>Sidhu et al., 2006 [136]</td>
<td>16, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jann et al., 2006 [142]</td>
<td>14, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spina et al., 2006 [141]</td>
<td>14, sequential</td>
</tr>
<tr>
<td>Oxcarbazepine</td>
<td>Risperidone</td>
<td>No change</td>
<td></td>
<td>Muscatello et al., 2005 [143]</td>
<td>12, sequential</td>
</tr>
<tr>
<td></td>
<td>Olanzapine</td>
<td>No change</td>
<td></td>
<td>Muscatello et al., 2005 [143]</td>
<td>13, sequential</td>
</tr>
<tr>
<td>Topiramate</td>
<td>Clozapine</td>
<td>No change</td>
<td></td>
<td>Tiihonen et al., 2005 [144]</td>
<td>12, sequential</td>
</tr>
<tr>
<td></td>
<td>Olanzapine</td>
<td>No change</td>
<td></td>
<td>Migliardi et al., (in press) [145]</td>
<td>10, sequential</td>
</tr>
<tr>
<td></td>
<td>Risperidone</td>
<td>No change</td>
<td></td>
<td>Tiihonen et al., 2005 [144]</td>
<td>5, sequential</td>
</tr>
<tr>
<td></td>
<td>Quetiapine</td>
<td>No change</td>
<td></td>
<td>Migliardi et al., (in press) [145]</td>
<td>12, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Migliardi et al., (in press) [145]</td>
<td>9, sequential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Migliardi et al., (in press) [145]</td>
<td>7, sequential</td>
</tr>
</tbody>
</table>
dizziness, nausea and seizures [159,160]. Conversely, in a study in 12 healthy volunteers, the pharmacokinetics of clozapine, administered as a single dose of 12.5 mg, were not significantly modified during co-administration with erythromycin, 1500 mg/day, suggesting a limited involvement of CYP3A4 in the metabolism of clozapine in humans [161]. However, erythromycin steady-state was not reached in this study, and the doses of clozapine used were lower than those typically used in clinical practice. In 19 patients receiving quetiapine (200 mg, twice daily), co-administration with erythromycin (1500 mg/day) increased the half-life of quetiapine by 92% and decreased its clearance by 55% [162]. In a study in 10 healthy volunteers who received a single 4-mg dose of sertindole, a novel antipsychotic partly metabolized by CYP3A4, concomitant administration of erythromycin, 250 mg taken orally four times daily, caused a small (15%), but significant increase in the Cmax of sertindole [163].

Antimycobacterial agents

The antimycobacterial agent rifampicin is a potent inducer of CYP1A2, CYP3A4 and possibly UGTs [164]. In a case report by Joos et al. [165], a schizophrenic patient stabilized on clozapine therapy experienced a significant decrease in his clozapine plasma concentration when rifampicin was added to therapy, resulting in an exacerbation of psychotic symptoms. Quetiapine, a CYP3A4 substrate, is likely to be susceptible to induction by rifampicin.

Azole antimycotics

The azole antifungals itraconazole, ketoconazole and, to a lesser extent, fluconazole are potent inhibitors of CYP3A4, an isoform playing a major role in the biotransformation of quetiapine, ziprasidone and aripiprazole and contributing to that of clozapine and risperidone [166].

A formal kinetic study in schizophrenic patients has documented no significant changes in pharmacokinetic parameters of clozapine during co-administration with itraconazole, clearly indicating that CYP3A4 does not significantly contribute to clozapine metabolism [167].

Jung et al. [168] investigated the effect of a treatment with itraconazole, 200 mg/day for a week, on plasma concentrations of risperidone and its active metabolite in 19 schizophrenic patients stabilized on risperidone therapy (2–8 mg/day), in relation to CYP2D6 genotype. Itraconazole increased the mean steady-state plasma concentrations of risperidone active fraction by 71% and 73% in CYP2D6 extensive and poor metabolizers, respectively. As the ratio of risperidone/9-OH-risperidone, an index of CYP2D6 activity, was not affected by itraconazole administration, this interaction was attributed to inhibition of CYP3A4, an isoform playing a secondary role in the 9-hydroxylation of risperidone.

In 27 patients treated with quetiapine, concomitant administration of ketoconazole, 400 mg/day, resulted in a four times increase in mean quetiapine peak plasma concentration [38]. In 12 healthy volunteers receiving 25 mg quetiapine before and after 4 days of treatment with ketoconazole 200 mg daily, concomitant use of ketoconazole increased the mean Cmax and AUC of quetiapine by 235% and 522%, respectively, and decreased its clearance by 84% [121]. A placebo-controlled crossover study in healthy volunteers has documented an increase of 21% in the Cmax and of 33% in the AUC of ziprasidone, administered as a single dose of 40 mg, after co-administration of ketoconazole, 400 mg/day for 2 weeks [169]. Co-administration of itraconazole, 100 mg/day for 7 days, to healthy volunteers increased the Cmax the AUC and the half-life of aripiprazole and its main metabolite by 19.4%, 48.0% and 18.6% and by 18.6%, 38.8% and 53.4%, respectively [170].

Antivirals

Psychotic symptoms are relatively common in patients with human immunodeficiency virus (or AIDS), so that antipsychotics and antiretroviral agents may be prescribed in combination. Some protease inhibitors, namely ritonavir and indinavir, are inhibitors of CYP3A4 and inducers of CYP1A2 and UGT [171]. Two case reports have documented the occurrence of reversible coma and extrapyramidal symptoms in patients receiving risperidone associated with ritonavir and/or indinavir, presumably as a result of inhibition of risperidone metabolism [172,173]. A pharmacokinetic study in healthy volunteers has demonstrated that a 2-week treatment with ritonavir, at a final dose of 1000 mg/day, caused a two times increase in the clearance of olanzapine and an approximate 50% decrease in its AUC, consistent with induction of olanzapine presumably through CYP1A2 and/or UGT by ritonavir [174].

Warfarin

A substantial increase in the international normalized ratio was described in a patient after the addition of quetiapine to warfarin therapy [175]. After switching to olanzapine, the international normalized ratio returned to baseline. The mechanism of this interaction was attributed to competitive inhibition of warfarin metabolism by quetiapine and/or its metabolites. However, the interpretation of this case is complicated by concomitant treatment with phenytoin that is a substrate and an inhibitor of CYP2C9 (the main warfarin metabolic pathway) and an inducer of various CYPs.

Statins

Anecdotal case reports have suggested the possibility of a pharmacokinetic interaction between the new antipsychotics and statins. The first case described a patient with schizophrenia also treated for dyslipidaemia who developed a prolonged QTc interval while taking quetiapine and lovastatin [176]. QTc returned to baseline when the lovastatin dose was reduced. Two other cases have documented the occurrence of rhabdomyolysis following co-administration of risperidone with cerivastatin or simvastatin [177,178].

H2-Antagonists

Cimetidine is a wide spectrum inhibitor of several CYP isoenzymes and may therefore decrease the elimination of
various drugs including atypical antipsychotics. An elevation in the serum level of clozapine and subsequent side effects developed after the administration of cimetidine, 1200 mg/day, in a patient receiving clozapine 900 mg/day [179]. A slight but not significant elevation of plasma concentrations of quetiapine not associated with adverse effects has been documented in seven patients after co-administration with cimetidine, 1200 mg/day [180]. Similarly, in a study of healthy volunteers, pharmacokinetic parameters of ziprasidone were almost unchanged during concomitant treatment with cimetidine [181]. Other H$_2$-antagonists, such as ranitidine and famotidine, do not interfere with the activity of the major drug-metabolizing enzymes and may therefore be co-administered safely with second-generation antipsychotics.

Proton pump inhibitors

Omeprazole is a proton pump inhibitor with an inducing effect on CYP1A2. Consistent with this, in two patients with schizoaffective disorder treated with clozapine at a daily dose of 325 mg, co-medication with omeprazole was associated with a more than 40% reduction in the plasma levels of clozapine [182]. A subsequent retrospective study has documented that the inducing effect of omeprazole on clozapine metabolism was evident only in non-smoking patients [183].

Oral contraceptives

The possibility of a drug interaction between clozapine and oral contraceptives has been recently suggested based on the case of a 47-year-old woman on a long-term oral contraceptive treatment with norethindrone (0.5 mg)/ethinyl-oestradiol (0.035 mg) also treated with clozapine 550 mg/day [184]. After discontinuation of oral contraceptives, a decrease by about 50% in plasma concentrations of clozapine was observed and attributed to the inhibition of CYP1A2, CYP2C19 and CYP3A4 by oral contraceptives.

Smoking

Tobacco smoking is associated with induction of drug-metabolizing enzymes, namely CYP1A2 and, possibly, UGTs, due to its by-products, in particular the polycyclic aromatic hydrocarbons [185]. As a consequence, smoking may influence the elimination of those antipsychotics, such as clozapine and olanzapine, whose metabolism is mainly dependent on CYP1A2 and UGTs. In this respect, different studies have shown that plasma concentrations of clozapine (and its metabolite norclozapine) and olanzapine are lower, at the same dose, in smokers as compared to non-smokers [36,120,186–189]. Concerning clozapine, the inducing effect of smoking was more evident in men than in women [187]. Smoking cessation, if not accompanied by a dosage decrease, may be associated with increased plasma concentrations of these antipsychotics, possibly resulting in dose-related toxic effects. With regard to this, McCarty [190] described the case of a patient on a stable clozapine dose who developed a myoclonic seizure and a generalized crisis a few weeks following sudden smoking cessation. Meyer [191] has documented a mean increase of 72% in clozapine concentration in 11 patients following smoking withdrawal, with occurrence of unwanted effects in the patient showing the highest increase.

Caffeine

Caffeine may significantly inhibit clozapine metabolism, when taken in amounts between 400 and 1000 mg/day [192]. Caffeine is metabolized by the same isoform, CYP1A2, primarily responsible for clozapine biotransformation [189]. It is therefore likely that caffeine and clozapine compete for the same enzyme. As caffeine exhibits dose-dependent kinetics, clozapine elimination is generally decreased when caffeine is taken in moderate to elevated amounts [192]. This interaction was first documented by Vainer and Chouinard [193], who described a patient with side effects on clozapine after the addition of caffeine. A controlled study in patients with schizophrenia has documented an approximate 50% reduction in plasma clozapine concentrations after the removal of caffeine from the diet [194]. In a recent investigation in 10 psychiatric patients, interestingly, instant coffee drinking elevated the mean serum clozapine concentrations by about 20% to 26%, compared to the decaffeinated phase [195]. This increase was most probably a result of the inhibition of CYP1A2 by caffeine.

Grapefruit juice

Grapefruit juice can inhibit the activity of CYP3A4 in the intestine and in the liver and may elevate plasma concentrations of substrates for this isoform. With regard to this, plasma concentrations of clozapine and norclozapine were not affected by repeated ingestion of grapefruit juice [196,197]. This confirms that enzymes other than CYP3A4, namely CYP1A2, play a major role in clozapine disposition. An increase in plasma levels of quetiapine, a CYP3A4 substrate, is likely to occur following grapefruit juice ingestion, but it has not been documented.

Conclusions

The newer antipsychotics are involved in metabolic drug–drug interactions with other psychotropic agents or with compounds used in the treatment of concomitant somatic illnesses. Some of these interactions are well documented and may be clinically important, whereas others have been reported only anecdotally or reflect pharmacokinetic observations of doubtful practical relevance. In general, currently available novel antipsychotics do not affect the activity of major drug-metabolizing enzymes and consequently have minimal effects on the elimination of concomitantly given medications. On the other hand, drugs that inhibit or induce the CYP or UGT isoenzymes involved in metabolism of the various antipsychotic compounds may alter their plasma concentrations with subsequent risk of adverse effects or decreased efficacy. The therapeutic index of each atypical antipsychotic probably has major influence on the clinical significance of the interactions.
There are differences in the interaction potential of the marketed newer antipsychotics that may be anticipated, based on the knowledge of CYP or UGT isoenzymes involved in their metabolism. Clozapine, which is predominantly metabolized by CYP1A2, is subject to clinically relevant interactions with potent CYP1A2 inhibitors, such as fluvoxamine, whereas risperidone, a substrate of CYP2D6, is susceptible to the effect of strong CYP2D6 inhibitors, such as fluoxetine and paroxetine. The effect of CYP inhibitors appears to be relatively modest for olanzapine, which is primarily metabolized by direct N-glucuronidation. As CYP3A4 plays a major role in the biotransformation of quetiapine, this antipsychotic is susceptible to the effect of potent inhibitors of this isofrom, such as ketoconazole. The risk of clinically relevant metabolic drug interactions with CYP inhibitors appears to be lower for sertrindole, ziprasidone and aripiprazole, which are also the compounds less extensively investigated. The addition of inducers of drug metabolism (i.e. carbamazepine or phenytoin) can affect the elimination of all second-generation antipsychotics, but the decrease in plasma levels appears to be more relevant for quetiapine, which is mainly dependent on CYP3A4. Because of its negligible metabolic elimination, amisulpride is almost devoid of clinically relevant metabolic interactions. In certain situations, knowledge of the interaction profiles of individual antipsychotics might be useful in selecting an appropriately effective agent that is less likely to interfere with medication(s) concomitantly administered. Finally, it should be emphasized that potentially adverse drug interactions in patients treated with the newer antipsychotics may be prevented and minimized by careful dosage adjustments based on close evaluation of clinical response and, possibly, plasma antipsychotic concentration monitoring.

Acknowledgements
This work is supported by grants from the University of Messina (PRA 2003).

References

© 2007 The Authors
Journal compilation © 2007 Nordic Pharmacological Society. Basic & Clinical Pharmacology & Toxicology, 100, 4–22

MiniReview

METABOLIC DRUG INTERACTIONS WITH NEWER ANTIPSYCHOTICS

86 Shader RI, Greenblatt DJ. Clozapine and fluvoxamine, a curi-
85 Kuo FJ, Lane HY, Chang WH. Extrapyramidal symptoms
82 Koponen HJ, Leinonen E, Lepola U. Fluvoxamine increases
81 Dumortier G, Lochu A, Colen de Melo P et al. Elevated cloz-
80 Olesen OV, Linnet K. Fluvoxamine-clozapine drug inter-
77 Saito M, Yasui-Furukori N, Nakagami T, Furukori H,
75 Spina E, Avenoso A, Salemi M et al. Plasma concentrations
73 Spina E, Avenoso A, Facciòl G, Scordo MG, Ancione M,
72 Potkin SG, Thyrum PT, Alva G et al. Effect of fluoxetine and
70 Bozikas V, Petrikis P, Karavatos A. Urinary retention caused
68 Benazzi F, Gyneecomastia with risperidone-fluoxetine combi-
67 Wetzel H, Angehelescu I, Szegedi A et al. Pharmacokinetic
65 Spina E, Avenoso A, Facciolà G, Scordo MG, Ancione M,
64 Weigmann H, Gerek S, Zeisig A, Muller M, Harter S,
63 Hiemke C. Fluvoxamine but not sertraline inhibits the metabo-
lism of olanzapine: evidence from a therapeutic drug monitoring
service. Ther Drug Monit 2001;23:410–3.
62 de Jong J, Hoogenboom B, van Troostwijk LD, de Haan L.
Interaction of olanzapine with fluvoxamine. Psychopharma-
61 Hiemke C, Avi P, Jabarin M et al. Fluvoxamine augmentation
of olanzapine in chronic schizophrenia: pharmacokinetic
interactions and clinical effects. J Clin Psychopharmacol
60 D’Arrigo C, Migliardi G, Santoro V et al. Effect of fluoxama-
ine on plasma risperidone concentrations in patients with
59 Reeves RR, Mack JE, Beddingfield JJ. Neurotoxic syndrome
associated with risperidone and fluvoxamine. Ann Pharma-
58 Chong SA, Tan CH, Lee HS. Worsening of psychosis with
clozapine and selective serotonin reuptake inhibitor combina-
57 Pinninti NR, de Leon J. Interaction of sertraline with clozapine.
56 Spina E, D’Arrigo C, Migliardi G et al. Plasma risperidone
concentrations during combined treatment with sertraline.
Ther Drug Monit 2004;26:386–90.
55 Taylor D, Ellison Z, Ementon Shaw L, Wickham H, Murray R.
Co-administration of citalopram and clozapine: effect on
21.
54 Avenoso A, Facciolià G, Scordo MG et al. No effect of citalo-
pram on plasma concentrations of clozapine, risperidone and
their active metabolites in patients with chronic schizophrenia.
53 Borba C, Henderson D. Citalopram and clozapine: potential
52 Amchin J, Zaryczanski W, Taylor KP, Albano D, Klockowski
PM. Effect of venlafaxine on the pharmacokinetics of risperi-
51 Schneider J, Greenblatt DJ, von Moltke LL, Harmatz JS,
Shader RI. Inhibition of cytochrome P450 by nefazodone
in vitro: studies of dextromethorphan O- and N-demethylation.
50 Khan A, Preskorn S. Increase in plasma levels of clozapine
and norclozapine after administration of nefazodone. J Clin
49 Taylor D, Bodani M, Hubbeling A, Murray R. The effect of
nefazodone on clozapine plasma concentrations. Int Clin Psycho-
48 Spina E, Avenoso A, Scordo MG, Ancione M, Madia A,
Levita A. No effect of robenoxine on plasma concentrations
of clozapine, risperidone and their active metabolites. Ther Drug
47 Zoccali R, Muscatello MR, La Torre D et al. Lack of pharma-
cokinetic interaction between mirtazapine and the newer anti-
psychotics clozapine, risperidone and olanzapine in patients
46 Klimek A, Kleser E. Sudden death after intravenous applica-
tion of lorazepam in a patient treated with clozapine. Am J
Psychiatry 1994;151:780.
45 Besag FMC, Berry D. Interactions between antiepileptic and

© 2007 The Authors
Journal compilation © 2007 Nordic Pharmacological Society. Basic & Clinical Pharmacology & Toxicology, 100, 4–22

© 2007 The Authors
Journal compilation © 2007 Nordic Pharmacological Society. Basic & Clinical Pharmacology & Toxicology, 100, 4–22.

