Appendix E

Traffic Study
MEMORANDUM

Date: April 28, 2017
To: Mike Parker, Ascent Environmental, Inc.
From: Sebastian Arias and Jane Bierstedt, Fehr & Peers
Subject: Transportation Analysis for Cordoba Center in San Martin

INTRODUCTION

This memorandum summarizes the results of the transportation analysis for the proposed Cordoba Center (the Project) in San Martin, California. The Cordoba Center is a mosque located on the west side of Monterey Highway, between LLagas creek to the north and California Avenue to the south. The results presented below include a trip generation analysis, a California Environmental Quality Act (CEQA) assessment, site access and circulation analysis including peak-hour signal warrant analysis for the site driveway, and a vehicle miles traveled (VMT) estimate.

TRIP GENERATION ANALYSIS

When looking at traffic volumes, analysts study the time periods when traffic volumes are highest, known as the “peak hours”. Two kinds of peak hours were used in this analysis: (1) peak hours of adjacent streets and (2) peak hours of the generator (land use). The weekday peak hours of the adjacent streets generally correspond with the morning and evening commute periods, also called the AM Peak Hour and PM Peak Hour. These peak hours usually fall between 7:00 am to 9:00 am in the morning and 4:00 pm to 6:00 pm in the evening. The second type of peak hour used in the analysis is the Peak Hour of Generator. This corresponds to the hour when the proposed project reaches its highest traffic generation. For a mosque, this time would correspond to right before and after the midday Jummah Prayers on Fridays.

Trip generation estimates were prepared for the weekday daily, AM Peak Hour, PM Peak Hour, and Peak Hour of Generator periods as shown in Table 1. The estimates are based on rates from the Institute of Transportation Engineers (ITE) Trip Generation Manual (9th Edition) and projected...
attendance levels for the various services and events at the mosque presented in Table 3-2 of the project description provided by Ascent Environmental. Since the Cordoba Center includes a variety of land uses, separate estimates were produced for each use. Some of the uses were assumed to generate no additional trips, including the Community Building and the Playfield and Playground. For example, the Community Building will be used to serve food and hold receptions before and after events at the mosque. Because Muslim tradition restricts food from the worship area, a separate building is needed. Reception attendees will walk from the mosque to the Community Building. Therefore, trips for the Community Building (and Playfield and Playground) are considered internal trips (trips that would occur on site) and would not create additional vehicular trips to the surrounding roadways.

The AM peak hour for a mosque is from 6:00 am to 7:00 am during the dawn Fajr Prayers. This corresponds with the existing AM peak hour on Monterey Highway as determined from the collected traffic counts. The evening peak hour for a mosque is generally from 7:30 pm to 8:30 pm, within the sunset Maghrib Prayer and night Isha Prayer time periods. Although this is later than the PM peak hour for Monterey Highway, trip estimates for this time period were used to reflect the PM peak hour. (Mosque-generated traffic during the Monterey Highway PM peak hour would be lower, and therefore Table 1 represents conservative PM peak hour trip estimates.)
<table>
<thead>
<tr>
<th>Proposed Land Use</th>
<th>ITE Land Use</th>
<th>ITE Land Use Code</th>
<th>Size</th>
<th>Unit</th>
<th>Daily Trips</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>Peak Hour of Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In</td>
<td>Out</td>
<td>Total</td>
</tr>
<tr>
<td>Mosque</td>
<td>Mosque</td>
<td>562</td>
<td>8,938</td>
<td>Square Feet</td>
<td>$1,120^3$</td>
<td>8</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Cemetery</td>
<td>Cemetery</td>
<td>566</td>
<td>3.5</td>
<td>Acres</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maintenance Building</td>
<td>Utilities^4</td>
<td>170</td>
<td>2,500</td>
<td>Square Feet</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Caretaker’s Dwelling</td>
<td>Single-Family Detached Housing</td>
<td>210</td>
<td>1</td>
<td>Dwelling Units</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Trips | 1,151 | 10 | 9 | 19 | 69 | 35 | 104 | 163 | 8 | 171 |

Notes:
1. Based on average Institute of Transportation Engineers (ITE) Trip Generation Manual (9th Edition) rates.
2. Trips for the Community Building and playfield and playground are considered as internal trips (trips that would occur on site) and would not create additional vehicular trips to the surrounding roadways. Youth Camp considered a special event and not included in this table.
3. Daily trip rate for mosque land use is not included in the ITE Trip Generation Manual, and published research is not readily available. 70 percent of the 800 maximum total daily attendees (presented in Table 3-2 of the project description) are assumed to attend the mosque, creating two daily trips per attendee (one inbound one outbound).
4. ITE 9th Edition lacks directional split information for the ‘Utilities’ land use for the AM peak hour, as well as ‘peak hour of generator’ and ‘daily’ trip rates. A 50/50 inbound/outbound split was assumed. Daily trips equals the sum of AM peak hour trips, PM peak hours trips, and Peak Hour of Generator Trips (which occurs in the morning).
CEQA ASSESSMENT

An assessment was conducted to determine whether the proposed Cordoba Center would have a significant adverse impact on the surrounding transportation system. In Santa Clara County, the applicable criteria are:

1. Would the project cause a signalized intersection to operate at LOS E or F during the AM or PM peak hour?
2. Would the project substantially increase hazards due to a design feature?
3. Would the project conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities?

ROADWAY AND INTERSECTION ANALYSIS

Monterey Highway is a four-lane highway with left-turn channelization at multiple locations (such as just north of the proposed project site). It can accommodate up to 3,600 vehicles per hour\(^1\) with operations at level of service (LOS) B, a good operating level. (Table A-1 on Attachment A of the appendices displays the LOS criteria for a multi-lane highway for different speed limits. Using this table, the per lane flow rate for a multi-lane highway with speed limit 50 (which is Monterey Road’s speed limit at the project site) at LOS B is 900 passenger cars per hour per lane, or 3,600 vehicles per hour for a four lane facility.)

During the weekday peak hour, the volume on Monterey Highway is 1,595 vehicles. The proposed project would add 104 vehicles for a total volume of 1,699 vehicles, much lower than the LOS B capacity. In addition, the added vehicles would be dispersed with some traveling to the north and some to the south. Since the roadway segment operates at LOS B or better and project traffic is dispersed, it can be concluded that the nearby intersections would also operate at acceptable levels.

A more detailed analysis was conducted for the intersection of Project driveway and Monterey Highway. Table 2 shows the LOS and delay under existing, existing plus project, cumulative and cumulative plus project conditions. To estimate the cumulative volumes on Monterey Highway, a 1.2 percent per year vehicular growth rate was applied to the north and southbound volume on Monterey Highway for a span of 18 years (projecting out to year 2035). This growth rate was obtained from the *Morgan Hill 2035 Draft EIR*, Table 4.14-10 which includes average daily traffic

\(^1\) Based on the *2010 Highway Capacity Manual* published by the Transportation Research Board of The National Academies in December 2010. Exhibit 14-17.
projections for Monterey Highway between Starswept Lane and East Middle Avenue. This roadway segment is less than a mile north of the Cordoba Center project site.

Using Synchro software and Highway Capacity Manual 2010 method for delay, the Monterey Highway / Project Driveway intersection’s LOS and delay was estimated and is presented in Table 2. Synchro result reports are included on Attachment B of the appendices.

TABLE 2: DRIVEWAY INTERSECTION LOS RESULTS SUMMARY²

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Scenario</th>
<th>Existing³</th>
<th>Existing Plus Project</th>
<th>Cumulative³</th>
<th>Cumulative Plus Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Intersection Delay¹</td>
<td>LOS</td>
<td>Average Intersection Delay¹</td>
<td>LOS</td>
</tr>
<tr>
<td>Monterey Highway / Project Driveway</td>
<td>AM</td>
<td>0 (0)</td>
<td>A (A)</td>
<td>0.1 (18.4)</td>
<td>A (C)</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0 (0)</td>
<td>A (A)</td>
<td>0.7 (26.1)</td>
<td>A (D)</td>
</tr>
</tbody>
</table>

Notes:
1. Average intersection delay represents the intersection average delay in units of seconds per vehicle.
2. LOS = Level of Service. Total intersection LOS and delay provided without parenthesis. Values in parenthesis represent worst movement LOS and delay.
3. There is no delay under no project scenarios since there is no control. All vehicles operate at free flow conditions with no delay due to having to stop at intersection traffic controllers such as a signal or stop sign.

With the addition of project traffic, the Monterey Highway / Project Driveway intersection operates at acceptable conditions (LOS D or better) for all scenarios and peak hours. During the PM peak hour, the existing traffic would operate at LOS of D for the existing plus project scenario and LOS E for cumulative plus project scenario. This means that on average, a vehicle under the existing plus project PM peak hour scenario would wait on 26.1 seconds until it can safely exit the project site. Similarly, they would have to wait 36.3 seconds in the cumulative plus project scenario.

Although the traffic exiting the project site would experience delays, queues (lines of stopped vehicles) would not form for vehicles waiting to exit the project site, nor for vehicles waiting to enter the project site going northbound on Monterey Highway (left into the project site). Table 3 shows the queue estimates for the eastbound exiting traffic as well as for the northbound left-turn entering traffic (in parenthesis), for each scenario.
TABLE 3: DRIVEWAY INTERSECTION QUEUING RESULTS SUMMARY¹²³

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Traffic Control Device</th>
<th>Peak Hour</th>
<th>Queue Lengths for eastbound exiting traffic and northbound left turning entering traffic (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monterey Highway / Project Driveway</td>
<td>Side Street Stop Control</td>
<td>AM</td>
<td>Existing¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Notes:
1. Queue lengths represent 95% queue length as reported using Synchro software, 2010 Highway Capacity Manual methodology. For comparison purposes, one vehicle can be assumed to equal 25 feet in length. This includes the length of the vehicle as well as the distance between stopped vehicles.
2. Values not in parenthesis represent queue lengths for east bound left turning exiting traffic. Values in parenthesis represent queue lengths for north bound left turning inbound traffic.
3. No project scenarios have zero queues since there is no traffic control device and traffic flows freely with no reason to stop or slow down.

Table 3 shows all queues are less than 25 feet (or one vehicle) for either the eastbound exiting traffic of the northbound traffic turning left to enter the project site.

HAZARD ANALYSIS AND POTENTIAL CONFLICT WITH PLANS AND POLICIES

The project’s access roadway will be designed to County standards so it would not increase hazards. A more detailed site plan review is presented in the next section. The project design does not affect the project frontage on Monterey Highway and therefore does not conflict with transit, bicycle, or pedestrian plans, policies, or facilities.

SITE ACCESS AND CIRCULATION ANALYSIS

Fehr & Peers conducted a site access and circulation assessment using the site plan received from Ascent Environmental on February 28th, 2017. The site would have access to Monterey Highway via one driveway that accommodates right-turn and left-turn movements into and out of the site. The two-way left-turn lane in the median on Monterey Highway accommodates vehicles waiting to turn left into the site. It also allows vehicles turning left out of the site to make a two-stage left turn movement.
Recommendations to improve site access and on-site circulation are presented in Attachment C and are summarized below. With the following recommendations, the proposed project would not result in a traffic safety hazard associated with site access and circulation.

1. Stop signs should be considered where side street traffic enters the travel way of the main street/driveway. These locations include the southbound approach for the exiting traffic at legend items 38 and 13 of the attached site plan. By installing stop signs, there would be a clear right of way to the vehicles traveling on the main entrance street that connects to Monterey Road. This avoids confusion between drivers on this main entrance driveway and drivers at the proposed stop sign locations concerning who has the right of way, which could lead to potential collisions. By including stop signs, drivers exiting the driveways at the proposed stop sign locations should be aware of who was the right of way and should wait until their path has cleared.

2. According to the California Department of Transportation *Highway Design Manual*, Table 201.1 *Sight Distance Standards*, the minimum sight distance for a roadway with a design speed of 50 miles per hour is 430 feet. This means that someone traveling at 50 miles per hour should be able to see an object at least 430 feet away in order to stop. Approximating the location of the project driveway to be just north of the southern parcel boundary, a person can see approximately 500 feet upstream of the road, therefore the stopping sight distance criteria is satisfied. The project applicant should ensure that the proposed orchard does not encroach into the sight distance triangle. As shown on Figure 1, the sight distance triangle is a triangle formed between the location where the driver makes the decision to exit the driveway (decision point), the location of the approaching vehicle on Monterey Highway, and the location where the two vehicles would intersect. The orchard should not obstruct the sight line between the decision point and the oncoming vehicle on Monterey highway.
Figure 1: Sight Distance Triangle

Source: National Association of City Transportation Officials, Site Distance Studies

3. Project traffic entering the project site from the north on Monterey Highway will need to decelerate in order to turn into the project driveway. Although the current southbound traffic (153 vph in the AM and 1132 vph in the PM) on Monterey Highway is much less than the south bound roadway capacity (1800 vph), there may be operational and safety benefits from adding a south bound right turn deceleration lane. This deceleration lane would allow vehicles to exit the southbound through traffic travel lanes and decelerate in preparation to make the southbound right turn into the project driveway. This reduces the chance of southbound through moving vehicles queueing behind it since they would otherwise need to slow down to match the speed of the southbound right turning vehicle.

4. According to Chapter 4.30 (Off-Street Parking and Loading) of the Santa Clara County Zoning Ordinance, Nonprofit Institutions should have at least one parking space per 250 square feet of building area. Using the project building size of 29,386 square feet as presented in Table 1, a minimum of 118 parking spaces are required. The proposed site plan includes 125 total parking spaces; therefore, the parking requirement is met.

Peak Hour Signal Warrant Analysis

To determine whether a signal is warranted at the Project driveway, a peak hour signal warrant analysis was conducted. This analysis uses the project trips as well as the existing and cumulative volumes on Monterey Highway during the weekday AM and PM peak hours. The results are shown
in Table 4. The peak hour signal warrant is not met for either the existing plus project nor cumulative plus project scenarios, for either peak hour. Therefore, traffic signal installation would not be recommended based on these traffic projections.

TABLE 4: PEAK HOUR SIGNAL WARRANT RESULTS¹

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Current Traffic Control Device</th>
<th>Peak Hour</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monterey Highway / Project Driveway</td>
<td>Side Street Stop Control</td>
<td>AM</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Notes:

1. Peak Hour Signal Warrant Analysis uses the Manual of Uniform Traffic Control Devices (MUTCD) Peak Hour Signal Warrant for rural areas, 2012 edition based on Section 4C.04 Warrant 3B

VEHICLE MILES TRAVELED ESTIMATES

The project’s vehicle miles of travel (VMT) is comprised of the trip distance and number of trips generated by attendees, employees and residents, to and from the project on a daily basis.

As noted in the project description, the religious and cultural needs of the South Santa Clara Valley’s multi-ethnic community are not being served by existing dedicated facilities. The nearest formal place of worship is the South Bay Islamic Association’s mosque in downtown San Jose. Therefore, the attendees of Cordoba Center will primarily come from the South Santa Clara Valley area including Morgan Hill, Gilroy, San Martin, and possibly some areas outside of Santa Clara County such as Watsonville.

The distribution estimates were made considering the population and distance of each city relative to the project site. It is estimated that most of the attendees would come from Gilroy. The next largest origin of trips would be Morgan Hill, followed by San Martin, South San Jose and lastly Watsonville. Figure 2 provides a geographic distribution showing the estimated percentage from each area.
Figure 1

Project Site

- 2 Miles Radius from Project Site
- Portion of Total Users Traveling to/from Neighboring Cities
- X%

San Jose
Gilroy
Morgan Hill
Watsonville

Geographic Distribution of Users and Employees
The trip length for each of these locations was estimated based on the distance from the centroid of each city/area to the Project site. Table 5 displays each City’s population, distance to the project site and the estimated portion of totals users of the project facilities.

TABLE 5: TRIP LENGTH AND DISTRIBUTION

<table>
<thead>
<tr>
<th>City</th>
<th>Population</th>
<th>Distance to Project (miles)</th>
<th>Portion of Total Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilroy</td>
<td>48,821</td>
<td>7.6</td>
<td>50%</td>
</tr>
<tr>
<td>Morgan Hill</td>
<td>37,882</td>
<td>3.9</td>
<td>30%</td>
</tr>
<tr>
<td>San Martin</td>
<td>7,027</td>
<td>1</td>
<td>10%</td>
</tr>
<tr>
<td>San Jose</td>
<td>945,952</td>
<td>17.8</td>
<td>5%</td>
</tr>
<tr>
<td>Watsonville</td>
<td>51,199</td>
<td>22</td>
<td>5%</td>
</tr>
</tbody>
</table>

Source: 2010 US Census Bureau

VMT of the Proposed Cordoba Center

As shown on Table 1, Cordoba Center is estimated to generate 1,151 daily trips. Using these vehicle trip estimates, the trip lengths and proportions from each city in Table 5, the VMT is estimated to be 8,150 as shown in Table 6.

TABLE 6: CORDOBA CENTER VEHICLE MILES TRAVELED ESTIMATE

<table>
<thead>
<tr>
<th>City of Origin</th>
<th>Distance to Project¹ (miles)</th>
<th>Portion of Attendees</th>
<th>Number Daily Trips</th>
<th>Daily VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilroy</td>
<td>7.6</td>
<td>50%</td>
<td>575</td>
<td>4,370</td>
</tr>
<tr>
<td>Morgan Hill</td>
<td>3.9</td>
<td>30%</td>
<td>345</td>
<td>1,350</td>
</tr>
<tr>
<td>San Martin</td>
<td>1.0</td>
<td>10%</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td>San Jose²</td>
<td>17.8</td>
<td>5%</td>
<td>58</td>
<td>1,030</td>
</tr>
<tr>
<td>Watsonville</td>
<td>22</td>
<td>5%</td>
<td>58</td>
<td>1,280</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1,151</td>
<td>8,150</td>
</tr>
</tbody>
</table>

Notes:
1. Distance to project is measured from the centroid of each city to the proposed project’s address.
2. Distance to San Jose is measured from South San Jose, specifically the Monterey Road / Blossom Hill Road intersection.
CONCLUSIONS

The Cordoba Center would generate approximately 1,151 daily vehicle trips with 19 occurring during the AM peak hour and 104 during the PM peak hour on a typical weekday.

It would have a less-than-significant impact to the surrounding roadway system because it would not cause nearby signalized intersections to operate at LOS E or F during weekday peak hours. It would not cause a substantial increase in hazards, and it would not conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities.

The site plan was reviewed and recommendations are provided to improve site access and on-site circulation. The parking supply complies with county standards.

Cordoba Center is projected to generate approximately 8,150 VMT per day.
ATTACHMENT A

TABLE A-1

Table A-1: Maximum Service Flow Rates for Multi-lane Highway Segments (passenger cars per hour per lane)

<table>
<thead>
<tr>
<th>FFS (mi/h)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>660</td>
<td>1,080</td>
<td>1,550</td>
<td>1,980</td>
<td>2,200</td>
</tr>
<tr>
<td>55</td>
<td>600</td>
<td>990</td>
<td>1,430</td>
<td>1,850</td>
<td>2,100</td>
</tr>
<tr>
<td>50</td>
<td>550</td>
<td>900</td>
<td>1,300</td>
<td>1,710</td>
<td>2,000</td>
</tr>
<tr>
<td>45</td>
<td>290</td>
<td>810</td>
<td>1,170</td>
<td>1,550</td>
<td>1,900</td>
</tr>
</tbody>
</table>

Source: 2010 Highway Capacity Manual, Exhibit 14-17
ATTACHMENT B

SYNCHRO RESULT REPORTS
<table>
<thead>
<tr>
<th>Intersection</th>
<th>Int Delay, s/veh</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement</td>
<td>EBL</td>
<td>EBR</td>
</tr>
<tr>
<td>Lane Configurations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Vol, veh/h</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Stop</td>
<td>Stop</td>
</tr>
<tr>
<td>Traffic Vol, veh/h</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Storage Length</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Veh in Median Storage, #</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Grade, %</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Major/Minor</td>
<td>Minor2</td>
<td>Major1</td>
</tr>
<tr>
<td>Conflicting Flow All</td>
<td>1137</td>
<td>83</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>6.84</td>
<td>6.94</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>5.84</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>5.84</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.52</td>
<td>3.32</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>195</td>
<td>960</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>6.84</td>
<td>6.94</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>5.84</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>5.84</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.52</td>
<td>3.32</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>195</td>
<td>960</td>
</tr>
<tr>
<td>Stage 1</td>
<td>166</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>971</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay, s</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Minor Lane/Major Mvmt</td>
<td>NBL</td>
<td>NBT</td>
</tr>
<tr>
<td>Capacity (veh/h)</td>
<td>1410</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Intersection

<table>
<thead>
<tr>
<th>Int Delay, s/veh</th>
<th>0</th>
</tr>
</thead>
</table>

Movement

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>EBL</th>
<th>EBR</th>
<th>NBL</th>
<th>NBT</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>463</td>
<td>1132</td>
<td>0</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>463</td>
<td>1132</td>
<td>0</td>
</tr>
<tr>
<td>Conflicting Peds,#/hr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sign Control

<table>
<thead>
<tr>
<th>RT Channelized</th>
<th>Stop</th>
<th>Stop</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Length</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Veh in Median Storage, #</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Grade, %</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Mvmt Flow

| Mvmt Flow | 0 | 0 | 0 | 503 | 1230 | 0 |

Major/Minor

<table>
<thead>
<tr>
<th>Conflicting Flow All</th>
<th>Minor2</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>1482</td>
<td>615</td>
<td>1230</td>
</tr>
<tr>
<td>Stage 2</td>
<td>1230</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>6.84</td>
<td>6.94</td>
<td>4.14</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.52</td>
<td>3.32</td>
<td>2.22</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>116</td>
<td>434</td>
<td>562</td>
</tr>
<tr>
<td>Stage 1</td>
<td>239</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>767</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Approach

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>Capacity (veh/h)</th>
<th>NBL</th>
<th>NBT</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Intersection

| Int Delay, s/veh | 0.1 |

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBR</th>
<th>NBL</th>
<th>NBT</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>Traffic Vol, veh/h</th>
<th>Future Vol, veh/h</th>
<th>Conflicting Peds, #/hr</th>
<th>Sign Control</th>
<th>RT Channelized</th>
<th>Storage Length</th>
<th>Veh in Median Storage, #</th>
<th>Grade, %</th>
<th>Peak Hour Factor</th>
<th>Heavy Vehicles, %</th>
<th>Mvmt Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1787</td>
<td>153</td>
<td>4</td>
<td></td>
<td>0</td>
<td>92</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1787</td>
<td>153</td>
<td>4</td>
<td></td>
<td>0</td>
<td>92</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>92</td>
<td></td>
<td>2</td>
<td>92</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1152</td>
<td>85</td>
<td>171</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>984</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.84</td>
<td>6.94</td>
<td>4.14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.52</td>
<td>3.32</td>
<td>2.22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>191</td>
<td>957</td>
<td>1404</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>844</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>323</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>957</td>
<td>1404</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>273</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>844</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>321</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major/Minor</th>
<th>Minor2</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Flow All</td>
<td>1152</td>
<td>85</td>
<td>171</td>
</tr>
<tr>
<td>Stage 1</td>
<td>168</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>984</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>6.84</td>
<td>6.94</td>
<td>4.14</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.52</td>
<td>3.32</td>
<td>2.22</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>191</td>
<td>957</td>
<td>1404</td>
</tr>
<tr>
<td>Stage 1</td>
<td>844</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>323</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>190</td>
<td>957</td>
<td>1404</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>273</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 1</td>
<td>844</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>321</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>13.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor Lane/Major Mvmt</th>
<th>NBL</th>
<th>NBT</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (veh/h)</td>
<td>1404</td>
<td>-</td>
<td>273</td>
<td>957</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.005</td>
<td>-</td>
<td>0.016</td>
<td>0.006</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>7.6</td>
<td>-</td>
<td>18.4</td>
<td>8.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Intersection

| Int Delay, s/veh | 0.7 |

Movement

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>EBL</th>
<th>EBR</th>
<th>NBL</th>
<th>NBT</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>14</td>
<td>21</td>
<td>41</td>
<td>463</td>
<td>1132</td>
<td>28</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>14</td>
<td>21</td>
<td>41</td>
<td>463</td>
<td>1132</td>
<td>28</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sign Control

<table>
<thead>
<tr>
<th>RT Channelized</th>
<th>Stop</th>
<th>Stop</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
</tr>
</thead>
</table>

Traffic Vol, veh/h

<table>
<thead>
<tr>
<th>Traffic Vol, veh/h</th>
<th>Future Vol, veh/h</th>
<th>Conflicting Peds, #/hr</th>
<th>Sign Control</th>
<th>RT Channelized</th>
<th>Storage Length</th>
<th>Veh in Median Storage, #</th>
<th>Grade, %</th>
<th>Peak Hour Factor</th>
<th>Heavy Vehicles, %</th>
<th>Mvmt Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>21</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

Major/Minor

<table>
<thead>
<tr>
<th>Conflicting Flow All</th>
<th>Minor2</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>1587</td>
<td>630</td>
<td>1261</td>
</tr>
<tr>
<td>Stage 2</td>
<td>1246</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hwdy</td>
<td>6.84</td>
<td>6.94</td>
<td>4.14</td>
</tr>
<tr>
<td>Critical Hwdy Stg 1</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hwdy Stg 2</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hwdy</td>
<td>3.52</td>
<td>3.32</td>
<td>2.22</td>
</tr>
</tbody>
</table>

Pot Cap-1 Maneuver

<table>
<thead>
<tr>
<th>Pot Cap-1 Maneuver</th>
<th>99</th>
<th>424</th>
<th>547</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>234</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>692</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Platoon blocked, %

| Platoon blocked, % | - | - | - | - | - |

Mov Cap-1 Maneuver

<table>
<thead>
<tr>
<th>Mov Cap-1 Maneuver</th>
<th>91</th>
<th>424</th>
<th>547</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>234</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>635</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Approach

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>18.8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>Capacity (veh/h)</th>
<th>Minor Lane</th>
<th>Major Mvmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBL</td>
<td>547</td>
<td>-</td>
</tr>
<tr>
<td>NBT</td>
<td>-</td>
<td>186</td>
</tr>
<tr>
<td>EBLn1</td>
<td>424</td>
<td>-</td>
</tr>
<tr>
<td>EBLn2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SBT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SBR</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCM Lane V/C Ratio</th>
<th>Minor Lane</th>
<th>Major Mvmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBL</td>
<td>0.081</td>
<td>-</td>
</tr>
<tr>
<td>NBT</td>
<td>- 0.082</td>
<td>0.054</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCM Control Delay (s)</th>
<th>Minor Lane</th>
<th>Major Mvmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBL</td>
<td>12.2</td>
<td>- 26.1</td>
</tr>
<tr>
<td>NBT</td>
<td>-</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCM Lane LOS</th>
<th>Minor Lane</th>
<th>Major Mvmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBL</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>NBT</td>
<td>- D</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCM 95th %tile Q(veh)</th>
<th>Minor Lane</th>
<th>Major Mvmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBL</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>NBT</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Intersection

| Int Delay, s/veh | 0 |

Movement

Lane Configurations

Traffic Vol, veh/h	0 0 0 2218 190 0
Future Vol, veh/h	0 0 0 2218 190 0
Conflicting Peds, #/hr	0 0 0 0 0 0

Traffic Vol, veh/h

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBR</th>
<th>NBL</th>
<th>NBT</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int Delay, s/veh</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traffic Vol, veh/h

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBR</th>
<th>NBL</th>
<th>NBT</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign Control</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>RT Channelized</td>
<td>-</td>
<td>None</td>
<td>-</td>
<td>None</td>
<td>-</td>
<td>None</td>
</tr>
<tr>
<td>Storage Length</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Veh in Median Storage, #</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grade, %</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2411</td>
<td>207</td>
<td>0</td>
</tr>
</tbody>
</table>

HCM Control Delay, s

<table>
<thead>
<tr>
<th>Major/Minor</th>
<th>Minor2</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int Delay, s/veh</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HCM Control Delay (s)

<table>
<thead>
<tr>
<th>Major/Minor</th>
<th>Minor2</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int Delay, s/veh</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HCM LOS A

<table>
<thead>
<tr>
<th>Major/Minor</th>
<th>Minor2</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int Delay, s/veh</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HCM 95th %tile Q veh

<table>
<thead>
<tr>
<th>Major/Minor</th>
<th>Minor2</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int Delay, s/veh</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approach

Approach

<table>
<thead>
<tr>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
</table>

HCM Control Delay, s

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
</table>

HCM LOS

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
</table>

Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>Capacity (veh/h)</th>
<th>NBL</th>
<th>NBT EBLn1 EBLn2 SBT</th>
</tr>
</thead>
</table>

Capacity (veh/h)

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
</table>

HCM Lane V/C Ratio

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
</table>

HCM Control Delay (s)

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
</table>

HCM Lane LOS

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
</table>

HCM 95th %tile Q veh

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
</table>
Intersection

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBR</th>
<th>NBL</th>
<th>NBT</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int Delay, s/veh</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lane Configurations

<table>
<thead>
<tr>
<th>Traffic Vol, veh/h</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>575</th>
<th>1405</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Vol, veh/h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>575</td>
<td>1405</td>
<td>0</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign Control</th>
<th>Stop</th>
<th>Stop</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT Channelized</td>
<td>-</td>
<td>None</td>
<td>-</td>
<td>None</td>
<td>-</td>
<td>None</td>
</tr>
<tr>
<td>Storage Length</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Veh in Median Storage, #</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grade, %</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>625</td>
<td>1527</td>
<td>0</td>
</tr>
</tbody>
</table>

Major/Minor

<table>
<thead>
<tr>
<th>Minor/Minor</th>
<th>Minor2</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Flow All</td>
<td>1840</td>
<td>764</td>
<td>1527</td>
</tr>
<tr>
<td>Stage 1</td>
<td>1527</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>313</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>6.84</td>
<td>6.94</td>
<td>4.14</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.52</td>
<td>3.32</td>
<td>2.22</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>67</td>
<td>346</td>
<td>432</td>
</tr>
<tr>
<td>Stage 1</td>
<td>165</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>715</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>67</td>
<td>346</td>
<td>432</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>139</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 1</td>
<td>165</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>715</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Approach

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Delay, s</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LOS</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>Minor Lane/Major Mvmt</th>
<th>NBL</th>
<th>NBT</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (veh/h)</td>
<td>432</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Intersection

Int Delay, s/veh 0.1

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBR</th>
<th>NBL</th>
<th>NBT</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Vol, veh/h</td>
<td>4 5 6 2218</td>
<td></td>
<td></td>
<td></td>
<td>190 4</td>
<td></td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>4 5 6 2218</td>
<td></td>
<td></td>
<td></td>
<td>190 4</td>
<td></td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>0 0 0 0</td>
<td>0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sign Control</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>RT Channelized</td>
<td>-</td>
<td>None</td>
<td>-</td>
<td>None</td>
<td>-</td>
<td>None</td>
</tr>
<tr>
<td>Storage Length</td>
<td>0 0 75</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veh in Median Storage, #</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade, %</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>4 5</td>
<td>7 2411</td>
<td>207 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major/Minor</th>
<th>Minor2</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Flow All</td>
<td>1427</td>
<td>105</td>
<td>211 0</td>
</tr>
<tr>
<td>Stage 1</td>
<td>209</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>1218</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>6.84</td>
<td>6.94</td>
<td>4.14</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.52</td>
<td>3.32</td>
<td>2.22</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>126</td>
<td>929</td>
<td>1357</td>
</tr>
<tr>
<td>Stage 1</td>
<td>806</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>243</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>125</td>
<td>929</td>
<td>1357</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>205</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 1</td>
<td>806</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>242</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>15.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor Lane/Major Mvmt</th>
<th>NBL</th>
<th>NBT EBLn1 EBLn2</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (veh/h)</td>
<td>1357</td>
<td>-</td>
<td>205 929</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.005</td>
<td>-</td>
<td>0.021 0.006</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>7.7</td>
<td>-</td>
<td>22.9 8.9</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>-</td>
<td>C A</td>
<td>-</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0</td>
<td>-</td>
<td>0.1 0</td>
<td>-</td>
</tr>
</tbody>
</table>
Intersection

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBR</th>
<th>NBL</th>
<th>NBT</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int Delay, s/veh</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>Traffic Vol, veh/h</th>
<th>Future Vol, veh/h</th>
<th>Conflicting Peds, #/hr</th>
<th>Sign Control</th>
<th>RT Channelized</th>
<th>Storage Length</th>
<th>Veh in Median Storage, #</th>
<th>Grade, %</th>
<th>Peak Hour Factor</th>
<th>Heavy Vehicles, %</th>
<th>Mvmt Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14</td>
<td>21</td>
<td>41</td>
<td>Stop</td>
<td>Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>21</td>
<td>41</td>
<td>Stop</td>
<td>Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>21</td>
<td>41</td>
<td>Stop</td>
<td>Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>21</td>
<td>41</td>
<td>Stop</td>
<td>Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>21</td>
<td>41</td>
<td>Stop</td>
<td>Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>1405</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>21</td>
<td>41</td>
<td>Stop</td>
<td>Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major/Minor</th>
<th>Minor2</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Flow All</td>
<td>1944</td>
<td>779</td>
<td>0</td>
</tr>
<tr>
<td>Stage 1</td>
<td>1542</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>402</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>6.84</td>
<td>6.94</td>
<td>4.14</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>5.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.52</td>
<td>3.32</td>
<td>2.22</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>57</td>
<td>339</td>
<td>421</td>
</tr>
<tr>
<td>Stage 1</td>
<td>162</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>644</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>51</td>
<td>339</td>
<td>421</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>130</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 1</td>
<td>162</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>575</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>24.4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor Lane/Major Mvmt</th>
<th>NBL</th>
<th>NBT EBLn1</th>
<th>EBLn2</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (veh/h)</td>
<td>421</td>
<td>-</td>
<td>130</td>
<td>339</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.106</td>
<td>-</td>
<td>0.117</td>
<td>0.067</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>14.6</td>
<td>-</td>
<td>38.3</td>
<td>16.4</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>B</td>
<td>-</td>
<td>E</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0.4</td>
<td>-</td>
<td>0.4</td>
<td>0.2</td>
<td>-</td>
</tr>
</tbody>
</table>
ATTACHMENT C

SITE PLAN MARK-UP
1. Consider side-street stop control for east-bound exiting traffic.

2. Ensure the proposed Orchard does not encroach into the sight distance triangle.

3. Consider installation of a southbound right turn deceleration lane.

1A. Consider side-street stop control for south bound exiting traffic for both intersections at legend items 38 and 13.
Hi Mike,

The cumulative plus project volumes shown on the Synchro output sheets of our memorandum dated April 28, 2017 (page 21 for the morning peak hour and page 22 for the evening peak hour) show that we have a total roadway volume of 2,427 vehicles in the morning peak hour and 2,084 vehicles in the evening peak hour.

Following the same approach as for the roadway level of service on page 4 of 23 in the Memorandum, the Roadway LOS for a multi-lane highway segment with a speed of 50 mph and 2,427 vehicles per hour is LOS B or better (less than 3,600 vehicles per hour for a four lane facility) during the morning peak hour under cumulative plus project conditions. Similarly, the LOS for the same roadway with 2,084 vehicles per hour during the evening peak hour under cumulative plus project conditions is also LOS B or better (less than 3,600 vehicles per hour for a four lane facility).

Please let me know if you have any questions.

Regards,

Sebastian

Sebastian Arias | Transportation Engineer
160 W Santa Clara St, Suite 675 | San Jose, CA 95113 | T 408.550.7340 | F 925.933.8007

Please consider the environment before printing this email.
MEMORANDUM

DATE: March 14, 2018

TO: David Rader, Senior Planner, Department of Planning & Development

FROM: Rocelia Kmak, Senior Civil Engineer, Land Development Division, Department of Roads & Airports

SUBJECT: Cordoba Center

FILE NO.: 2145

On May 4, 2017, the Department of Roads & Airports (RDA) provided initial comments on the Cordoba Center project and the Fehr & Peers Transportation Analysis Memo (April 12, 2017). Following additional review of the proposed project and discussions between RDA Land Development Engineering, RDA Traffic Engineering, the Department of Planning & Development and Fehr & Peers, we offer the following additional comments:

Driveway Operation

RDA reiterates that left turns in and out of the proposed project driveway would not be allowed, unless the project applicant were to provide signalization at the driveway. Left turns out of the project driveway onto Monterey Road cannot be safely made due to existing traffic volumes and roadway speed. For the same reasons and because the median is too narrow at the project driveway to create a left turn pocket, left turns into the project driveway are not feasible.

The driveway can operate safely with right-in-right out only with some improvements to Monterey Road. A deceleration lane is needed to allow vehicles turning right to slow down without impeding traffic in the travel lanes. In addition, an acceleration lane is needed to allow vehicles turning right out of the project driveway to safely accelerate before merging with traffic on Monterey Road.

Right turns from project driveway could potentially make a U-turn at California Avenue as there is adequate median to create a left-turn pocket. However, a queuing analysis would be needed to determine the length of the left turn pocket based on project trips during the peak hours.
Level of Service Analysis
Although in its original comments RDA asked that LOS analysis should be done with TRAFFIX software consistent with VTA’s TIA guidelines, we have since determined that Synchro software is acceptable for analyzing un-signalized intersections, which is the case with the project driveway intersection with Monterey Road. With project access being right-in and right out only configuration (as discussed above), there is no need for signal warrant study at the project site.

RDA also notes that Fehr and Peers did in fact analyze the peak hour of the generator, which is the Friday “Jummah Prayers” from 12:30 p.m. – 2:30 p.m. In addition, although there could be peak hours for occasional weekend events and other special events, RDA understands that these would not coincide with the peak hour for Monterey Road and therefore such analysis is not needed to evaluate level of service. Based on project traffic circulation, turn pocket length must be evaluated and should be addressed with this project.