01 General Requirements

01 22 16 00 No Specification Required
01 51 13 00 Electrical Renovation
01 51 13 00a Panelboards
01 52 19 00 Temporary Facilities and Controls

02 Existing Conditions

02 32 13 00 Subsurface Drilling, Sampling, And Testing
02 41 13 13 Selective Demolition
02 41 13 13a Portland Cement Concrete Removal
02 61 00 00 Excavation And Handling Of Contaminated Material
02 61 13 00 Underground Storage Tank Removal

03 Concrete

03 01 30 71 Concrete Rehabilitation
03 11 13 00 Cast-In-Place Concrete
03 62 13 00 Plant-Precast Structural Concrete
03 62 13 00a Tilt-Up Precast Concrete

05 Metals

05 50 10 00 Metal Fabrications

09 Finishes

09 91 13 00 Exterior Painting

10 Specialties

10 14 53 00 Traffic Signs

26 Electrical

26 05 19 16 Conductors And Cables
26 05 19 16a Undercarpet Cables
26 05 19 16b Medium-Voltage Cables
26 05 26 00 Lightning Protection
26 05 26 00a Grounding And Bonding
26 05 26 00b Overhead Electrical Distribution
26 05 33 13 Common Work Results for Electrical
26 05 33 13a Common Work Results for Communications
26 05 33 13b Common Work Results for Electronic Safety and Security
26 05 33 13c Communications Equipment Room Fittings
26 05 33 13d Communications Backbone Cabling
26 05 33 13e Communications Horizontal Cabling
26 05 33 13f Conductors and Cables for Electronic Safety and Security

July 2012
County of Santa Clara Roads and Airports Department,
RAD-2012-01
Table of Contents

26 05 53 00 Electrical Identification
26 27 16 00 Raceways And Boxes
26 56 13 00 Exterior Lighting

31 Earthwork

31 05 13 00 Earthwork
31 05 13 00a Subdrainage
31 11 00 00 Site Clearing
31 23 16 13 Excavation Support And Protection
31 23 19 00 Piped Utilities Basic Materials And Methods
31 23 19 00a Dewatering
31 24 13 00 Embankment
31 24 13 00a Levee Closure
31 25 14 13 Sediment Removal
31 25 14 13a Geosynthetic Fabric
31 25 14 13b Erosion Control
31 25 14 26 Silt Fences
31 32 13 16 Soil Stabilization-Lime
31 32 19 16 Sewage Treatment Lagoons
31 32 19 16a Pond Reservoir Liners
31 36 00 00 Wire Mesh Gabions
31 41 00 00 Riprap
31 41 13 00 Drilled Piers
31 62 23 13 Concrete-Filled Steel Piles

32 Exterior Improvements

32 01 11 53 Asphalt Paving
32 01 11 53a Cement Concrete Pavement
32 01 11 53b Traffic Coatings
32 01 16 71 Cold Mix Recycling
32 01 17 61 Crack Sealing Of Bituminous Pavements
32 01 17 61a Spray Applications, Seal Coats, And Surface Treatments
32 01 26 71 Grindig/Grooving Pavement
32 11 16 00 Crushed Stone Paving
32 11 16 00a Crushed Stone
32 11 16 00b Select Gravel
32 11 16 00c Bituminous Paving-Repair And Resurfacing
32 11 16 00d Pavement Joint Sealants
32 12 13 13 Asphalitic Concrete Overlays
32 13 13 00 Roller Compacted Concrete Pavement
32 13 13 00a Decorative Cement Concrete Pavement
32 13 13 00b Portland Cement Concrete Overlays
32 13 13 00c Steel Reinforced Portland cement Concrete Overlays
32 13 13 00d Fiber Reinforced Portland Cement Concrete Overlays
32 16 13 13 Steel Curbs
32 16 13 43 Porous Unit Paving
32 16 23 00 Asphalt Concrete Sidewalks
32 17 13 19 Parking Control Equipment
32 17 13 19a Prefabricated Control Booths
32 17 26 00 Tactile/Detectable Warning Tile
32 31 11 00 Chain-Link Fences And Gates
32 31 13 00 High-Security Chain-Link Fences And Gates
32 31 29 00 Permanent Wood Fencing
32 32 13 00 Segmental Retaining Walls
32 32 13 00a Modular Retaining Wall
32 35 16 00 Sound Barrier Walls
32 39 16 00 Miscellaneous Site and Street Furnishings
32 84 13 00 Irrigation Systems
32 92 19 13 Lawns And Grasses
33 Utilities

33 01 30 51 Sewer Line Cleaning
33 01 30 72 Pipe Lining
33 01 30 73 Sanitary Sewerage
33 01 30 73a Repair And Maintenance Of Imhoff Tanks
33 01 30 73b Repair And Maintenance Of Siphon Tank And Siphons
33 01 30 73c Underground Ducts And Utility Structures
33 01 30 73d Storm Drainage
33 05 23 13 Trenchless Excavation Using Microtunneling
33 11 13 23 Sand Drains
33 11 13 23a Water Distribution
33 11 13 23b Monitoring Wells
33 11 13 23c Water Supply Wells
33 11 13 23d Septic Tank Systems
33 11 13 23e Hydronic Distribution
33 41 13 00 Ground-Loop Heat-Pump Piping
33 42 16 13 Culverts

34 Transportation

34 11 93 00 Ballasted Track
34 11 93 00a Track Appurtenances
34 11 93 00b Railroad Track And Accessories
34 41 13 00 Electrical Traffic Control Signals
34 71 13 13 Beam-Type Guardrail
34 71 13 16 Active Vehicle Barriers
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 01 22 16 00 - NO SPECIFICATION REQUIRED

1.1 GENERAL
 A. A separate specification is not required for this item. The description given in the line item of the Construction Task Catalog completely defines the item.

1.2 PRODUCTS - (Not Used)

1.3 EXECUTION - (Not Used)

END OF SECTION 01 22 16 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 22 20 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>01 22 23 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
</tbody>
</table>
SECTION 01 51 13 00 - ELECTRICAL RENOVATION

DESCRIPTION OF WORK

This specification covers the furnishing and installation of materials for electrical renovation. Products shall be as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

GENERAL

Quality Assurance

1. Regulatory Requirements: Comply with following:
 b. Accessibility:
 a) Uniform Federal Accessibility Standards (UFAS).
 2) Section 504 of the Rehabilitation Act of 1973 as amended (29 USC 794) and HUD implementing regulations 24 CFR Part 8.
 3) Fair Housing Accessibility Guidelines (24 CFR Chapter 1).

Project Conditions

2. Existing Conditions: Buildings will be occupied during construction. See Division 1 Section “Summary of Work.” Do not interfere with use of occupied portions of building. Maintain free and safe passage to and from occupied areas.

Scheduling and Sequencing

3. Scheduling and Completion: Comply with requirements of Detailed Scope of Work.

Alterations, Cutting And Protection

4. Protection: Protect existing finishes, equipment, utilities and adjacent work, which is scheduled to remain, from damage.
5. Existing Operating Facilities: Confine operations to immediate vicinity of new work and do not interfere with or obstruct ingress or egress to and from adjacent facilities.

PRODUCTS

Materials

6. Electrical Materials and Devices: Comply with NFPA 70 (NEC):
 a. Boxes: Galvanized steel, not less than 1.6 mm (0.0625 inch) thickness (NEC 370-20) grounded in accordance with NEC, Article 250, suitable for recess mounting.
 1) Provide boxes of appropriate shape and size for intended purpose.
 b. Devices:
 1) Duplex Receptacles: 15 A or 20 A 115 V, UL Listed with screw side connections and corrugated bearing pads.
 a) GFI Outlets: 115 V, 60 Hz, 15/20 A rating, UL Listed.
 2) Switches: 15 A, 115 V, single pole, single throw switch, UL Listed, with side screw connections and corrugated bearing pads.
01 - General Requirements

a) Garbage Disposal: Heavy duty, 120/277 VAC, 60 Hz, single pole, single throw, 20 A rate, UL listed and CSA certified.
3) Cover Plates: Smooth plastic in color to match existing.
c) Wiring: Insulated wire, Type NM 600 V with ground wire, sized as appropriate for intended purpose and in accordance with NEC.
1) Aluminum Wire: Not allowed unless existing wiring is aluminum.
2) Provide necessary fittings in accordance with NEC.

EXECUTION

Examination
7. Units, Spaces and Areas to be Renovated: Inspect to become familiar with existing conditions and to take measurements which are necessary for renovation work to be completed in accordance with contract requirements.
a. Carefully inspect condition of existing spaces including, but not limited to walls, floors, plumbing, electrical, etc. as essential to successful completion of renovation work.
b. Survey each space and verify dimensions for work.

Preparation
8. Building Occupation: Carry out renovation work to cause as little inconvenience to occupants as possible. See Division 1 Section “Summary of Work.”
9. Protection: Protect and be responsible for existing buildings, facilities, utilities, and improvements within areas of construction operations.
a. Tenant's Property: Be responsible for any damage or loss to residents' property and to other work. Replace any material, which, in opinion of the Owner, has become damaged to extent that it could not be restored to its original condition.
b. Take precautions to protect residents and public from injury from construction operations.

Laying Out Work
10. Discrepancies: Verify dimensions and elevations indicated in layout of existing work.
a. Prior to commencing work, carefully compare and check Drawings (if any), for discrepancies in locations or elevations of work to be executed.
b. Refer discrepancies among Drawings (if any), Specifications and existing conditions to the Owner for adjustment before work affected is performed.
1) Failure to make such notification shall place responsibility on Contractor to carry out work in satisfactory, workmanlike manner.
11. Contractor: Responsible for location and elevation of construction contemplated by Construction Documents.

Location Of Equipment And Piping
12. Drawings (if any) indicating location of equipment, piping, ductwork, etc. are diagrammatic and job conditions shall not always permit their installation in location shown. When this situation occurs, bring condition to the Owner's attention immediately. Relocation will be determined in joint conference.
13. Contractor: Do not relocate any items without first obtaining the Owner's acceptance. Remove and relocate such relocated items at own expense if so directed.

Electrical Work
14. General: Install boxes, wiring, and devices as indicated and required to connect and control electrical devices in accordance with NFPA 70 (NEC).
a. Boxes: Solidly anchor to framing or blocking.
15. Removing Electrical Switch or Duplex Outlet (Non-Hazardous Locations):
a. Box to Remain:
1) Remove electrical device; cap hot and neutral with set-screw wire connectors.
2) Attach ground wire to remaining box with solid screw attachment.
3) Provide and install natural finish aluminum blank cover plate with screw fasteners integral to match size of box remaining.

b. Box to be removed:
 1) Remove electrical device and box and pull wire out of wall back to first circuit panel, disconnecting from circuit panel.
 2) Patch and repair hole in partition to match existing.

16. Garbage Disposal Electrical Hook-up: See Division 15 Section “Plumbing.” Comply with NFPA 70 (NEC):
a. Wiring: Install from disposal through concealed spaces to house panel, anchoring wire, and providing necessary fittings.

b. Switch: Install above counter top backsplash.

17. Range Hood Electrical Hook-up: See Division 11 Section “Residential Appliances.” Comply with NFPA 70 (NEC):
a. Electric service: Install insulated wire from range hood through concealed spaces to house panel, anchoring wire, and providing necessary fittings.

19. Furnace Electrical Hook-up: See Division 15 Section “Furnaces.” Comply with NFPA 70 (NEC).

20. Smoke Detector Electrical Hook-up: See Division 13 Section “Fire Alarm.” Comply with NFPA 70 (NEC).

Integrating Existing Work
21. Protection: Protect existing improvements from damage.
a. Where new work is to be connected to existing work, exercise special care not to disturb or damage existing work more than necessary.

b. Damaged Work: Replace, repair and restored to its original condition at no cost to Owner.

END OF SECTION 01 51 13 00
SECTION 01 51 13 00a - PANELBOARDS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for panelboards. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Distribution panelboards.
 b. Lighting and appliance branch-circuit panelboards.
 c. Load centers.
 d. Electronic-grade panelboards.

C. Definitions
1. SVR: Suppressed voltage rating.
2. TVSS: Transient voltage surge suppressor.

D. Performance Requirements
1. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

E. Submittals
1. Product Data: For each type of product indicated.
2. Shop Drawings: For each panelboard and related equipment.
 a. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 b. Detail enclosure types and details for types other than NEMA 250, Type 1.
 c. Detail bus configuration, current, and voltage ratings.
 d. Short-circuit current rating of panelboards and overcurrent protective devices.
 e. Include evidence of NRTL listing for series rating of installed devices.
 f. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 g. Include wiring diagrams for power, signal, and control wiring.
 h. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
 3. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section “Vibration And Seismic Controls For Electrical Systems”.
5. Operation and maintenance data

F. Quality Assurance
1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with NEMA PB 1.
3. Comply with NFPA 70.

G. Delivery, Storage, And Handling
1. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
2. Handle and prepare panelboards for installation according to NECA 407 OR NEMA PB 1.

H. Project Conditions
1. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 a. Notify Owner no fewer than two days in advance of proposed interruption of electric service.
 b. Do not proceed with interruption of electric service without Owner's written permission.
 c. Comply with NFPA 70E.

I. Warranty
1. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within five years from date of Substantial Completion.

1.2 PRODUCTS

A. General Requirements For Panelboards
1. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration And Seismic Controls For Electrical Systems".
2. Enclosures: Flush OR Surface OR Flush- and surface, as directed, mounted cabinets.
 a. Rated for environmental conditions at installed location.
 1) Indoor Dry and Clean Locations: NEMA 250, Type 1.
 2) Outdoor Locations: NEMA 250, Type 3R.
 3) Kitchen or Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 4) Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 5) Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5 OR Type 12, as directed.
 b. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
 c. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 d. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 e. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 f. Finishes:
 1) Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 2) Back Boxes: Galvanized steel OR Same finish as panels and trim, as directed.
 3) Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
 g. Directory Card: Inside panelboard door, mounted in transparent card holder OR metal frame with transparent protective cover, as directed.

3. Incoming Mains Location: Top OR Bottom OR Top and bottom, as directed.
4. Phase, Neutral, and Ground Buses:
01 - General Requirements

July 2012

Panelboards

County of Santa Clara Roads and Airports Department, 01 51 13 00a - 3
RAD-2012-01

a. Material: Tin-plated aluminum OR Hard-drawn copper, 98 percent conductivity, as directed.
b. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
c. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
d. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.
e. Split Bus: Vertical buses divided into individual vertical sections.

5. Conductor Connectors: Suitable for use with conductor material and sizes.
a. Material: Tin-plated aluminum OR Hard-drawn copper, 98 percent conductivity, as directed.
b. Main and Neutral Lugs: Compression OR Mechanical, as directed, type.
c. Ground Lugs and Bus-Configured Terminators: Compression OR Mechanical, as directed, type.
d. Feed-Through Lugs: Compression OR Mechanical, as directed, type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
e. Subfeed (Double) Lugs: Compression OR Mechanical, as directed, type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
f. Gutter-Tap Lugs: Compression OR Mechanical, as directed, type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
g. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.

6. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices.

8. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, listed and labeled for series-connected short-circuit rating by an NRTL.

B. Distribution Panelboards

1. Panelboards: NEMA PB 1, power and feeder distribution type.
2. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
a. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.
3. Mains: Circuit breaker OR Fused switch OR Lugs only, as directed.
7. Contactors in Main Bus: NEMA ICS 2, Class A, electrically OR mechanically, as directed, held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
a. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
b. External Control-Power Source: 120-V branch circuit OR 24-V control circuit, as directed.

C. Lighting And Appliance Branch-Circuit Panelboards

1. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
2. Mains: Circuit breaker OR Lugs only, as directed.
3. Branch Overcurrent Protective Devices: Plug-in OR Bolt-on, as directed, circuit breakers, replaceable without disturbing adjacent units.

4. Contactors in Main Bus: NEMA ICS 2, Class A, electrically OR mechanically, as directed, held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 a. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 b. External Control-Power Source: 120-V branch circuit OR 24-V control circuit, as directed.

5. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

6. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.

D. Load Centers
 1. Load Centers: Comply with UL 67.
 2. Mains: Circuit breaker OR Lugs only, as directed.
 4. Conductor Connectors: Mechanical type for main, neutral, and ground lugs and buses.

E. Electronic-Grade Panelboards
 1. Panelboards: NEMA PB 1; with factory-installed, integral TVSS; labeled by an NRTL for compliance with UL 67 after installing TVSS.
 2. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 5. Buses:
 a. Copper phase and neutral buses; 200 percent capacity neutral bus and lugs.
 b. Copper equipment and isolated ground buses.
 6. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, plug-in OR wired-in OR bolt-on, as directed, solid-state, parallel-connected, modular (with field-replaceable modules) OR non-modular, as directed, type, with sine-wave tracking suppression and filtering modules, short-circuit current rating complying with UL 1449, second edition, and matching or exceeding the panelboard short-circuit rating, redundant suppression circuits, with individually fused metal-oxide varistors.
 a. Accessories:
 1) Fuses rated at 200-kA interrupting capacity.
 2) Fabrication using bolted compression lugs for internal wiring.
 3) Integral disconnect switch.
 4) Redundant suppression circuits.
 5) Redundant replaceable modules.
 6) Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 7) LED indicator lights for power and protection status.
 8) Audible alarm, with silencing switch, to indicate when protection has failed.
 9) Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
 10) Four OR Six, as directed, -digit, transient-event counter set to totalize transient surges.
 b. Peak Single-Impulse Surge Current Rating: 160 kA per mode/320 kA per phase OR 120 kA per mode/240 kA per phase OR 80 kA per mode/160 kA per phase, as directed.
 1) Line to Neutral: 70,000 A.
 2) Line to Ground: 70,000 A.
3) Neutral to Ground: 50,000 A.

d. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec.
surges with less than 5 percent change in clamping voltage.

e. Protection modes and UL 1449 SVR for grounded wye circuits with 480Y/277 OR
208Y/120 OR 600Y/347, as directed. -V, three-phase, four-wire circuits shall be as follows:
1) Line to Neutral: 800 V for 480Y/277 OR 400 V for 208Y/120 OR 1200 V for
600Y/347, as directed.
2) Line to Ground: 800 V for 480Y/277 OR 400 V for 208Y/120 OR 1200 V for
600Y/347, as directed.
3) Neutral to Ground: 800 V for 480Y/277 OR 400 V for 208Y/120 OR 1200 V for
600Y/347, as directed.

f. Protection modes and UL 1449 SVR for 240/120-V, single-phase, three-wire circuits shall
be as follows:
1) Line to Neutral: 400 V.
2) Line to Ground: 400 V.
3) Neutral to Ground: 400 V.

g. Protection modes and UL 1449 SVR for 240/120-V, three-phase, four-wire circuits with
high leg shall be as follows:
1) Line to Neutral: 400 V, 800 V from high leg.
2) Line to Ground: 400 V.
3) Neutral to Ground: 400 V.

h. Protection modes and UL 1449 SVR for 240-, 480-, or 600-V, three-phase, three-wire,
delta circuits shall be as follows:
1) Line to Line: 2000 V for 480 V OR 1000 V for 240 V OR 2500 V for 600 V, as
directed.
2) Line to Ground: 1500 V for 480 V OR 800 V for 240 V OR 2500 V for 600 V, as
directed.

F. Disconnecting And Overcurrent Protective Devices

1. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with series-connected rating OR
interrupting capacity, as directed, to meet available fault currents.

a. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads,
and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting
for circuit-breaker frame sizes 250 A and larger.

b. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted,
field-adjustable trip setting.

c. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-
replaceable electronic trip; and the following field-adjustable settings:
1) Instantaneous trip.
2) Long- and short-time pickup levels.
3) Long- and short-time time adjustments.
4) Ground-fault pickup level, time delay, and I²t response.

d. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less
than NEMA FU 1, RK-5.

e. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault
protection (6-mA trip).

f. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault
protection (30-mA trip).

g. Arc-Fault Circuit Interrupter (AFCI) Circuit Breakers: Comply with UL 1699; 120/240-V,
single-pole configuration.

h. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
1) Standard frame sizes, trip ratings, and number of poles.
2) Lugs: Compression OR Mechanical, as directed, style, suitable for number, size,
trip ratings, and conductor materials.
3) Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.

4) Ground-Fault Protection: Integritly mounted OR Remote-mounted, as directed, relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.

5) Communication Capability: Circuit-breaker-mounted OR Universal-mounted OR Integral OR Din-rail-mounted, as directed, communication module with functions and features compatible with power monitoring and control system specified in Division 26 Section "Electrical Power Monitoring And Control".

6) Shunt Trip: 120 OR 24, as directed,-V trip coil energized from separate circuit, set to trip at 55 OR 75, as directed, percent of rated voltage.

7) Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional OR with field-adjustable 0.1- to 0.6-second, as directed, time delay.

8) Auxiliary Contacts: One SPDT switch OR Two SPDT switches, as directed, with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.

9) Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.

10) Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

11) Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.

12) Multipole units enclosed in a single housing or factory assembled to operate as a single unit.

13) Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on OR off, as directed, position.

14) Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 a. Fuses, and Spare-Fuse Cabinet: Comply with requirements specified in Division 26 Section "Fuses".
 b. Fused Switch Features and Accessories: Standard ampere ratings and number of poles.
 c. Auxiliary Contacts: One OR Two, as directed, normally open and normally closed contact(s) that operate with switch handle operation.

G. Panelboard Suppressors

1. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, solid-state, parallel-connected, non-modular type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories:
 a. Accessories:
 1) LED indicator lights for power and protection status.
 2) Audible alarm, with silencing switch, to indicate when protection has failed.
 3) One set of dry contacts rated at 5 A and 250-V ac, for remote monitoring of protection status.

2. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, plug-in OR wired-in OR bolt-on, as directed, solid-state, parallel-connected, modular (with field-replaceable modules) OR non-modular, as directed, type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories:
 a. Accessories:
 1) Fuses rated at 200-kA interrupting capacity.
 2) Fabrication using bolted compression lugs for internal wiring.
 3) Integral disconnect switch.
4) Redundant suppression circuits.
5) Redundant replaceable modules.
6) Arrangement with wire connections to phase buses, neutral bus, and ground bus.
7) LED indicator lights for power and protection status.
8) Audible alarm, with silencing switch, to indicate when protection has failed.
9) Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
10) Four OR Six, as directed, -digit, transient-event counter set to totalize transient surges.

b. Peak Single-Impulse Surge Current Rating: 160 kA per mode/320 kA per phase OR 120 kA per mode/240 kA per phase OR 80 kA per mode/160 kA per phase, as directed.

c. Minimum single-impulse current ratings, using 8-by-20-mic.sec. waveform described in IEEE C62.41.2:
1) Line to Neutral: 70,000 A.
2) Line to Ground: 70,000 A.
3) Neutral to Ground: 50,000 A.

d. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.

e. Protection modes and UL 1449 SVR for grounded wye circuits with 480Y/277 OR 208Y/120 OR 600Y/347, as directed, -V, three-phase, four-wire circuits shall be as follows:
1) Line to Neutral: 800 V for 480Y/277 OR 400 V for 208Y/120 OR 1200 V for 600Y/347, as directed.
2) Line to Ground: 800 V for 480Y/277 OR 400 V for 208Y/120 OR 1200 V for 600Y/347, as directed.
3) Neutral to Ground: 800 V for 480Y/277 OR 400 V for 208Y/120 OR 1200 V for 600Y/347, as directed.

f. Protection modes and UL 1449 SVR for 240/120-V, single-phase, three-wire circuits shall be as follows:
1) Line to Neutral: 400 V.
2) Line to Ground: 400 V.
3) Neutral to Ground: 400 V.

g. Protection modes and UL 1449 SVR for 240/120-V, three-phase, four-wire circuits with high leg shall be as follows:
1) Line to Neutral: 400 V, 800 V from high leg.
2) Line to Ground: 400 V.
3) Neutral to Ground: 400 V.

h. Protection modes and UL 1449 SVR for 240-, 480-, or 600-V, three-phase, three-wire, delta circuits shall be as follows:
1) Line to Line: 2000 V for 480 V OR 1000 V for 240 V OR 2500 V for 600 V, as directed.
2) Line to Ground: 1500 V for 480 V OR 800 V for 240 V OR 2500 V for 600 V, as directed.

H. Accessory Components And Features
1. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
2. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.
1.3 EXECUTION

A. Installation

1. Install panelboards and accessories according to NECA 407 OR NEMA PB 1.1, as directed.
2. Equipment Mounting: Install panelboards on concrete bases, 4-inch (100-mm) nominal thickness. Comply with requirements for concrete base specified in Division 03 Section "Cast-in-place Concrete".
 a. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around full perimeter of base.
 b. For panelboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 c. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 d. Install anchor bolts to elevations required for proper attachment to panelboards.
 e. Attach panelboard to the vertical finished or structural surface behind the panelboard.
4. Comply with mounting and anchoring requirements specified in Division 26 Section "Hangers And Supports For Electrical Systems".
5. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
6. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
7. Install overcurrent protective devices and controllers not already factory installed.
 a. Set field-adjustable, circuit-breaker trip ranges.
8. Install filler plates in unused spaces.
9. Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade.
10. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing, as directed.
11. Comply with NECA 1.

B. Identification

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification For Electrical Systems".
2. Create a directory to indicate installed circuit loads after balancing panelboard loads, as directed; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
3. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification For Electrical Systems".
4. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification For Electrical Systems".

C. Field Quality Control

1. Perform tests and inspections.
2. Acceptance Testing Preparation:
 a. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 b. Test continuity of each circuit.
3. Tests and Inspections:
b. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

c. Perform the following infrared scan tests and inspections and prepare reports:
 1) Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 2) Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 3) Instruments and Equipment:
 a) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

4. Panelboards will be considered defective if they do not pass tests and inspections.

5. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

D. Adjusting
 1. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.
 2. Set field-adjustable circuit-breaker trip ranges as indicated OR as specified in Division 26 Section "Overcurrent Protective Device Coordination Study", as directed.
 3. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 a. Measure as directed during period of normal system loading.
 b. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 c. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 d. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

E. Protection
 1. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 01 51 13 00a
SECTION 01 52 19 00 - TEMPORARY FACILITIES AND CONTROLS

1.1 GENERAL

A. Summary
1. This Section includes requirements for temporary utilities, support facilities, and security and protection facilities.

B. Definitions
1. Permanent Enclosure: As determined by the Owner, permanent or temporary roofing is complete, insulated, and weathertight; exterior walls are insulated and weathertight; and all openings are closed with permanent construction or substantial temporary closures.

C. Use Charges
1. General: Cost or use charges for temporary facilities shall be included in the Contract Sum. Allow other entities to use temporary services and facilities without cost, including, but not limited to, Owner's construction forces, the Owner, occupants of Project, testing agencies, and authorities having jurisdiction.
2. Water Service: Water from Owner's existing water system is available for use without metering and without payment of use charges. Provide connections and extensions of services as required for construction operations.
3. Electric Power Service: Electric power from Owner's existing system is available for use without metering and without payment of use charges. Provide connections and extensions of services as required for construction operations.

D. Submittals
1. Site Plan: Show temporary facilities, utility hookups, staging areas, and parking areas for construction personnel.

E. Quality Assurance
1. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.
2. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.

F. Project Conditions
1. Temporary Use of Permanent Facilities: Installer of each permanent service shall assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before Owner's acceptance, regardless of previously assigned responsibilities.

1.2 PRODUCTS

A. Materials
1. Pavement: Comply with Division 32 Section(s) "Asphalt Paving" OR "Concrete Paving", as directed.
2. Chain-Link Fencing: Minimum 2-inch (50-mm), 0.148-inch- (3.76-mm-) thick, galvanized steel, chain-link fabric fencing; minimum 6 feet (1.8 m) high with galvanized steel pipe posts; minimum 2-3/8-inch- (60-mm-) OD line posts and 2-7/8-inch- (73-mm-) OD corner and pull posts, with 1-5/8-inch- (42-mm-) OD top rails OR with galvanized barbed-wire top strand, as directed.
3. Portable Chain-Link Fencing: Minimum 2-inch (50-mm), 9-gage, galvanized steel, chain-link fabric fencing; minimum 6 feet (1.8 m) high with galvanized steel pipe posts; minimum 2-3/8-inch-
(60-mm-) OD line posts and 2-7/8-inch- (73-mm-) OD corner and pull posts, with 1-5/8-inch- (42-mm-) OD top and bottom rails. Provide concrete OR galvanized steel, as directed, bases for supporting posts.

4. Wood Enclosure Fence: Plywood, 6 feet (1.8 m) OR 8 feet (2.4 m), as directed, high, framed with four 2-by-4-inch (50-by-100-mm) rails, with preservative-treated wood posts spaced not more than 8 feet (2.4 m) apart.

5. Lumber and Plywood: Comply with requirements in Division 06 Section(s) “Rough Carpentry” OR “Miscellaneous Rough Carpentry”, as directed.

6. Gypsum Board: Minimum 1/2 inch (12.7 mm) thick by 48 inches (1219 mm) wide by maximum available lengths; regular-type panels with tapered edges. Comply with ASTM C 36/C 36M.

7. Insulation: Unfaced mineral-fiber blanket, manufactured from glass, slag wool, or rock wool; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively.

8. Paint: Comply with requirements in Division 09.

B. Temporary Facilities
1. Field Offices, General: Prefabricated or mobile units with serviceable finishes, temperature controls, and foundations adequate for normal loading.

2. Common-Use Field Office: Of sufficient size to accommodate needs of construction personnel. Keep office clean and orderly. Furnish and equip offices as follows:
 a. Furniture required for Project-site documents including file cabinets, plan tables, plan racks, and bookcases.
 b. Conference room of sufficient size to accommodate meetings of 10 individuals. Provide electrical power service and 120-V ac duplex receptacles, with not less than 1 receptacle on each wall. Furnish room with conference table, chairs, and 4-foot- (1.2-m-) square tack board.
 c. Drinking water and private toilet.
 d. Coffee machine and supplies.
 e. Heating and cooling equipment necessary to maintain a uniform indoor temperature of 68 to 72 deg F (20 to 22 deg C).
 f. Lighting fixtures capable of maintaining average illumination of 20 fc (215 lx) at desk height.

3. Storage and Fabrication Sheds: Provide sheds sized, furnished, and equipped to accommodate materials and equipment for construction operations.
 a. Store combustible materials apart from building.

C. Equipment
1. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.

2. HVAC Equipment: Unless Owner authorizes use of permanent HVAC system, provide vented, self-contained, liquid-propane-gas or fuel-oil heaters with individual space thermostatic control.
 a. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited.
 b. Heating Units: Listed and labeled for type of fuel being consumed, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 c. Permanent HVAC System: If Owner authorizes use of permanent HVAC system for temporary use during construction, provide filter with MERV of 8 at each return air grille in system and remove at end of construction.

1.3 EXECUTION

A. Installation, General
1. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.
01 - General Requirements

a. For greenfield sites if reduced site disturbance is required for LEED-NC Credit SS 5.1: Locate facilities to limit site disturbance as specified in General Requirements.

2. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

B. Temporary Utility Installation

1. General: Install temporary service or connect to existing service.
 a. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.

2. Sewers and Drainage: Provide temporary utilities to remove effluent lawfully.
 a. Connect temporary sewers to municipal system OR private system indicated, as directed, as directed by authorities having jurisdiction.

3. Water Service: Install water service and distribution piping in sizes and pressures adequate for construction.

 OR

 Water Service: Use of Owner’s existing water service facilities will be permitted, as long as facilities are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore these facilities to condition existing before initial use.
 a. Where installations below an outlet might be damaged by spillage or leakage, provide a drip pan of suitable size to minimize water damage. Drain accumulated water promptly from pans.

4. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use of construction personnel. Comply with authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities.
 a. Toilets: Use of Owner's existing toilet facilities will be permitted, as long as facilities are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore these facilities to condition existing before initial use.

5. Heating OR Heating and Cooling, as directed: Provide temporary heating OR heating and cooling, as directed, required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed.

6. Ventilation and Humidity Control: Provide temporary ventilation required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed. Coordinate ventilation requirements to produce ambient condition required and minimize energy consumption.

7. Electric Power Service: Use of Owner’s existing electric power service will be permitted, as long as equipment is maintained in a condition acceptable to Owner.

 OR

 Electric Power Service: Provide electric power service and distribution system of sufficient size, capacity, and power characteristics required for construction operations.
 a. Install electric power service overhead OR underground, as directed, unless otherwise indicated.
 b. Connect temporary service to Owner's existing power source, as directed by Owner.

8. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions.
 a. Install and operate temporary lighting that fulfills security and protection requirements without operating entire system.
 b. Install lighting for Project identification sign.

9. Telephone Service: Provide temporary telephone service in common-use facilities for use by all construction personnel. Install one telephone line for each field office.
 a. Provide additional telephone lines for the following:
 1) Provide a dedicated telephone line for each facsimile machine and computer in each field office.
b. At each telephone, post a list of important telephone numbers.
 1) Police and fire departments.
 2) Ambulance service.
 3) Contractor's home office.
 4) the Owner's office.
 5) Owner's office.
 6) Principal subcontractors' field and home offices.

c. Provide superintendent with cellular telephone or portable two-way radio for use when away from field office.

10. Electronic Communication Service: Provide temporary electronic communication service, including electronic mail, in common-use facilities.
 a. Provide DSL OR T-1 line, as directed, in primary field office.

C. Support Facilities Installation
 1. General: Comply with the following:
 a. Provide incombustible construction for offices, shops, and sheds located within construction area or within 30 feet (9 m) of building lines. Comply with NFPA 241.
 b. Maintain support facilities until near Substantial Completion. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.

 2. Temporary Roads and Paved Areas: Construct and maintain temporary roads and paved areas adequate for construction operations. Locate temporary roads and paved areas as indicated OR within construction limits indicated, as directed, on Drawings.
 a. Provide dust-control treatment that is nonpolluting and nontracking. Reapply treatment as required to minimize dust.

 OR

 3. Temporary Roads and Paved Areas: Construct and maintain temporary roads and paved areas adequate for construction operations. Locate temporary roads and paved areas in same location as permanent roads and paved areas. Extend temporary roads and paved areas, within construction limits indicated, as necessary for construction operations.
 a. Coordinate elevations of temporary roads and paved areas with permanent roads and paved areas.
 b. Prepare subgrade and install subbase and base for temporary roads and paved areas according to Division 31 Section "Earth Moving".
 c. Recondition base after temporary use, including removing contaminated material, regrading, proofrolling, compacting, and testing.
 d. Delay installation of final course of permanent hot-mix asphalt pavement until immediately before Substantial Completion. Repair hot-mix asphalt base-course pavement before installation of final course according to Division 32 Section "Asphalt Paving".

 4. Traffic Controls: Comply with requirements of authorities having jurisdiction.
 a. Protect existing site improvements to remain including curbs, pavement, and utilities.
 b. Maintain access for fire-fighting equipment and access to fire hydrants.

 5. Parking: Provide temporary OR Use designated areas of Owner's existing, as directed, parking areas for construction personnel.

 6. Dewatering Facilities and Drains: Comply with requirements of authorities having jurisdiction. Maintain Project site, excavations, and construction free of water.
 a. Dispose of rainwater in a lawful manner that will not result in flooding Project or adjoining properties nor endanger permanent Work or temporary facilities.
 b. Remove snow and ice as required to minimize accumulations.

 7. Project Identification and Temporary Signs: Provide Project identification and other signs as indicated on Drawings, OR as directed. Install signs where indicated to inform public and individuals seeking entrance to Project. Unauthorized signs are not permitted.
 a. Provide temporary, directional signs for construction personnel and visitors.
 b. Maintain and touchup signs so they are legible at all times.

 a. Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities.

10. Temporary Elevator Use: Refer to Division 14 for temporary use of new elevators.

11. Existing Elevator Use: Use of Owner's existing elevators will be permitted, as long as elevators are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore elevators to condition existing before initial use, including replacing worn cables, guide shoes, and similar items of limited life.
 a. Do not load elevators beyond their rated weight capacity.
 b. Provide protective coverings, barriers, devices, signs, or other procedures to protect elevator car and entrance doors and frame. If, despite such protection, elevators become damaged, engage elevator Installer to restore damaged work so no evidence remains of correction work. Return items that cannot be refinished in field to the shop, make required repairs and refinish entire unit, or provide new units as required.

12. Temporary Stairs: Until permanent stairs are available, provide temporary stairs where ladders are not adequate.

13. Existing Stair Usage: Use of Owner's existing stairs will be permitted, as long as stairs are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore stairs to condition existing before initial use.
 a. Provide protective coverings, barriers, devices, signs, or other procedures to protect stairs and to maintain means of egress. If, despite such protection, stairs become damaged, restore damaged areas so no evidence remains of correction work.

14. Temporary Use of Permanent Stairs: Cover finished, permanent stairs with protective covering of plywood or similar material so finishes will be undamaged at time of acceptance.

D. Security And Protection Facilities Installation
1. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction in ways and by methods that comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.

2. Temporary Erosion and Sedimentation Control: Provide measures to prevent soil erosion and discharge of soil-bearing water runoff and airborne dust to adjacent properties and walkways, according to requirements of authorities having jurisdiction.
 a. Inspect, repair, and maintain erosion- and sedimentation-control measures during construction until permanent vegetation has been established.

3. Stormwater Control: Comply with authorities having jurisdiction. Provide barriers in and around excavations and subgrade construction to prevent flooding by runoff of stormwater from heavy rains.

4. Tree and Plant Protection: Install temporary fencing located as indicated or outside the drip line of trees to protect vegetation from damage from construction operations. Protect tree root systems from damage, flooding, and erosion.

5. Pest Control: Engage pest-control service to recommend practices to minimize attraction and harboring of rodents, roaches, and other pests and to perform extermination and control procedures at regular intervals so Project will be free of pests and their residues at Substantial Completion. Obtain extended warranty for Owner. Perform control operations lawfully, using environmentally safe materials.

6. Site Enclosure Fence: Before construction operations begin OR When excavation begins, as directed, furnish and install site enclosure fence in a manner that will prevent people and animals from easily entering site except by entrance gates.
 a. Extent of Fence: As required to enclose entire Project site or portion determined sufficient to accommodate construction operations OR As indicated on Drawings, as directed.
b. Maintain security by limiting number of keys and restricting distribution to authorized personnel. Provide Owner with one set of keys, as directed.

7. Security Enclosure and Lockup: Install substantial temporary enclosure around partially completed areas of construction. Provide lockable entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security.

8. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.

9. Covered Walkway: Erect structurally adequate, protective, covered walkway for passage of individuals along adjacent public street(s). Coordinate with entrance gates, other facilities, and obstructions. Comply with regulations of authorities having jurisdiction and requirements indicated on Drawings. OR as directed.
 a. Construct covered walkways using scaffold or shoring framing.
 b. Provide wood-plank overhead decking, protective plywood enclosure walls, handrails, barricades, warning signs, lights, safe and well-drained walkways, and similar provisions for protection and safe passage.
 c. Extend back wall beyond the structure to complete enclosure fence.
 d. Paint and maintain in a manner approved by Owner and the Owner.

10. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities. Provide temporary weathertight enclosure for building exterior.
 a. Where heating or cooling is needed and permanent enclosure is not complete, insulate temporary enclosures.

11. Temporary Partitions: Provide floor-to-ceiling dustproof partitions to limit dust and dirt migration and to separate areas occupied by Owner and tenants from fumes and noise.
 a. Construct dustproof partitions with gypsum wallboard with joints taped on occupied side, and fire-retardant plywood on construction operations side.
 b. If containment of airborne particles and dust generated by construction activities is critical to occupant of other spaces in building, e.g., occupied healthcare facilities: Construct dustproof partitions with 2 layers of 3-mil (0.07-mm) polyethylene sheet on each side. Cover floor with 2 layers of 3-mil (0.07-mm) polyethylene sheet, extending sheets 18 inches (460 mm) up the sidewalls. Overlap and tape full length of joints. Cover floor with fire-retardant plywood.
 1) Construct vestibule and airlock at each entrance through temporary partition with not less than 48 inches (1219 mm) between doors. Maintain water-dampened foot mats in vestibule.
 c. Insulate partitions to provide noise protection to occupied areas.
 d. Seal joints and perimeter. Equip partitions with dustproof doors and security locks.
 e. Protect air-handling equipment.
 f. Weather strip openings.
 g. Provide walk-off mats at each entrance through temporary partition.

 a. Prohibit smoking in hazardous fire-exposure OR construction, as directed, areas.
 b. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.
 c. Develop and supervise an overall fire-prevention and -protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.
 d. Provide temporary standpipes and hoses for fire protection. Hang hoses with a warning sign stating that hoses are for fire-protection purposes only and are not to be removed. Match hose size with outlet size and equip with suitable nozzles.

E. Operation, Termination, And Removal

2. Maintenance: Maintain facilities in good operating condition until removal.
 a. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.

3. Operate Project-identification-sign lighting daily from dusk until 12:00 midnight.

4. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.

5. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.
 a. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.
 b. Remove temporary paving not intended for or acceptable for integration into permanent paving. Where area is intended for landscape development, remove soil and aggregate fill that do not comply with requirements for fill or subsoil. Remove materials contaminated with road oil, asphalt and other petrochemical compounds, and other substances that might impair growth of plant materials or lawns. Repair or replace street paving, curbs, and sidewalks at temporary entrances, as required by authorities having jurisdiction.
 c. At Substantial Completion, clean and renovate permanent facilities used during construction period. Comply with final cleaning requirements specified in General Requirements.

END OF SECTION 01 52 19 00
THIS PAGE INTENTIONALLY LEFT BLANK
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 52 19 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>01 55 26 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>01 56 16 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>01 56 26 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>01 56 29 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>01 56 33 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>01 58 13 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>01 71 13 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>01 74 16 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>01 74 19 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
</tbody>
</table>
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 02 32 13 00 - SUBSURFACE DRILLING, SAMPLING, AND TESTING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing of labor and equipment for drilling, sampling and testing for subsurface investigation of soils.

B. System Description: The purpose of the work specified herein is to determine the type, nature, and characteristics of subsurface materials and the extent and conditions of the various materials as they exist to the depths and at the locations specified. This is to be accomplished by means of auger borings, drive sample borings, undisturbed sample borings, core drilling, pressure testing, or test pits.

 1. Auger Borings and Sampling: An auger boring is any boring made in unconsolidated soils with a conventional manually or power-driven earth auger for the purpose of obtaining samples of subsurface materials. Auger boring and sampling shall be performed in accordance with ASTM D 1452.

 2. Drive Sample Borings and Sampling: A drive sample boring is a boring made through unconsolidated or partly consolidated sediments or decomposed rock by means of a mechanically driven sampler. The purpose of these borings is to obtain knowledge of the composition, the thickness, the depth, the sequence, the structure, and the pertinent physical properties of foundation or borrow materials. Drive sample boring and sampling shall be performed in accordance with ASTM D 1587. Standard Penetration Tests (SPT) shall be performed in accordance with ASTM D 1586.

 3. Undisturbed Sample Borings and Sampling: An undisturbed sample boring is a boring made to obtain soil samples which, when tested, will show properties as close to the in situ (in place) properties as any sample which can be obtained. All undisturbed sampling shall be accomplished in accordance with ASTM D 1587.

 4. Core Drilling: Drilling of cores shall be performed as per ASTM D 2113. The method used shall provide equally good recovery of cores from both hard and soft rocks.

 5. Pressure Testing (Hydraulic): Hydraulic pressure testing is the process of forcing water under pressure into subsurface rock formations through pre-drilled holes for the purpose of determining the subsurface leakage conditions and possible grouting requirements.

 6. Test Pit Excavation and Sampling: A test pit is any excavation in soil, hardpan, decomposed rock, or other unconsolidated or partially consolidated overburden materials which has an open cross-sectional area large enough to permit efficient excavation and shoring/lining, engineering and geological inspection and photographing of the subsurface soils and manual undisturbed sampling from within the test pit. All test pits shall be excavated, dewatered (if necessary), shored/lined and protected from surface water drainage in accordance with all applicable Federal, State, local, and OSHA safety regulations.

C. Submittals

 1. Permits, Certifications, and Licenses: Comply with all Federal, State and local laws, regulations and ordinances relating to the performance of this work. The Contractor shall, at his own expense, procure all required permits, certifications and licenses required of him by Federal, State, and local law for the execution of this work. Furnish copies of all such documents to the Owner prior to starting work.

 2. Drilling, Sampling, and Testing Plan: Prior to starting work, submit a plan for drilling, sampling, testing, and safety. The plan shall include, but not be limited to, the proposed method of drilling and sampling including a description of the equipment and sampling tools that will be used, a listing of any subcontractors to include a description of how the subcontractors will be used and a description of all methods and procedures that will be utilized to ensure a safe operation and to
protect the environment. This submittal shall also include a statement of the prior experience, in the type of work described in these specifications, of the person or persons designated to perform the work specified herein. No work shall be performed until this plan has been approved and no deviation from the approved plan will be permitted without prior approval by the Owner.

3. Drilling Log: Submit complete, legible copies of drilling log and records to the Owner within 5 days after a hole or test pit is completed.

D. Care And Delivery Of Samples
1. General: The Contractor shall be solely responsible for preserving all samples in good condition. Keep samples from freezing and from undue exposure to the weather, and shall keep all descriptive labels and designations on sample jars, tubes, and boxes clean and legible until final delivery of samples to, and acceptance by, the Owner. Except as otherwise specified, deliver samples to the Owner. Deliver samples within the time limits specified for each type of investigation or in accordance with schedules prepared by the Owner.

2. Undisturbed Samples: Take every precaution to avoid damage to samples as a result of careless handling and undue delay in shipping. Ship samples in containers approved by the Owner, of sufficient durability to protect the samples from any damage during shipment. Pack sample tubes in vermiculite or other equal material approved by the Owner to protect the samples against vibration. Avoid exposing sealed and crated samples to precipitation, direct sunlight, freezing and temperatures in excess of 100 degrees F (38 degrees C). Samples permitted to freeze, even partially, shall be replaced by the Contractor at his expense. In general, no undisturbed samples shall remain on the site of sampling for more than one week before shipment. Store and ship samples with the tube in a horizontal OR vertical, as directed, position in order to prevent consolidation and segregation or change of water content.

E. Project/Site Conditions
1. Environmental Requirements
 a. In order to prevent and to provide for abatement and control of any environmental pollution arising from Contractor activities in the performance of this contract, the Contractor and his subcontractors shall comply with all applicable Federal, State, and local laws, regulations, and ordinances concerning environmental pollution control and abatement.
 1) The Contractor shall be responsible for keeping informed of all updates and changes in all applicable laws, regulations, and ordinances.
 2) The Contractor shall not pollute lakes, ditches, rivers, springs, canals, waterways, groundwaters, or reservoirs with drill fluids, fuels, oils, bitumens, calcium chloride, insecticides, herbicides, or other materials that may be harmful to the environment or a detriment to outdoor recreation.

2. Field Measurements: The approximate locations of drill holes or test pits shall be as directed. The actual locations will be established in the field by the Owner prior to the start of work. The elevations of the established locations will also be provided by the Owner prior to the start of work. The Contractor will provide access to the locations as he deems necessary for the prosecution of the work. Since no separate payment will be made for access construction, all costs associated with this shall be included in the cost of drilling or excavating.

F. Sequencing And Scheduling
1. Schedule of Drilling, Sampling and Testing: The schedule of Drilling, Sampling, and Testing is listed in the following schedule:

 SCHEDULE OF DRILLING, SAMPLING AND TESTING

 HOLE NO. or PIT NO. METHOD DEPTH VERTICAL or INCLINED SPECIAL INSTRUCTIONS

2. Order of Work: The order in which the work is to be accomplished will be determined in the field by the Owner.
1.2 PRODUCTS

A. Containers: Furnish jars, tubes, and boxes that meet the following requirements. All such containers will become the property of the Owner and the cost thereof shall be included in the contract price for the applicable item for which payment is provided.

1. Sample Jars: Sample jars shall be 1 pint (0.5 L) OR 1 quart (1.0 L), as directed, capacity, wide-mouth over 2-1/4 inches (57 mm) in diameter, glass OR plastic, as directed, jars with moisture-tight screw tops.

2. Shipping Boxes: Boxes for shipping sample jars shall be corrugated cardboard OR wooden, as directed, boxes that have the capacity to hold no more than 12 sample jars and the strength to contain and protect the jars and their contents under ordinary handling and environmental conditions.

3. Tubes and Crates: Undisturbed samples shall be shipped in thin walled Shelby tubes packed in crates.

4. Core Boxes: Longitudinally partitioned, hinged top, wooden core boxes constructed of plywood and dressed lumber or other approved materials shall be used for all rock cores. As many core boxes as may be required shall be used to box all core. Core boxes shall be completely equipped with all necessary partitions, hinges, and a hasp for holding down the cover. In addition, the Contractor shall provide wood spacers made of surfaced lumber (not plywood) and having dimensions that are 1/8 inch (3 mm) less than the inside dimensions of the individual core box troughs and no less than 3/4 inch (19 mm) thick for blocking the core in the boxes and for providing a marking space to identify core runs and pull depths/elevations. The quantities of these blocks that are required are: ten blocks per core box for 3-inch (75-mm) or smaller core, five blocks per core box for 4-inch (100-mm) and PQ core, and three blocks per core box for 6-inch (150-mm) core. The box should have the following capacities:

- 6-inch (150-mm) core, single row of core
- 4-inch (100-mm) or PQ core, 2 rows of core
- 3-inch (75-mm) or smaller core, 3 or 4 rows of core

The maximum length of a core box shall be 4 feet (1.2 m) for 3-inch (75 mm) or smaller core and shall be dimensioned so that a box will hold 12 to 16 feet (3.6 to 4.9 m) of core. The maximum length of a core box for core that is larger than 3 inches (75 mm) shall be 5 feet (1.5 m).

B. Labels

1. Sample Jar Labels: A printed or type-written, fade resistant and waterproof label shall be affixed to the outside of each jar and shall contain the following information:

 PROJECT__________________________LOCATION__________________________
 (Such as Table Rock Dam) (Such as Borrow Area B)
 HOLE NO. _______________________STATION__________________________
 JAR NO. _________ of _________ JARS
 TOP ELEV. OF HOLE______________ DEPTH OF SAMPLE _________________
 DESCRIPTION OF MATERIAL__
 (Such as moist, silty, medium sand)

2. Shipping Box Labels: Each box of jar samples shall be identified with weatherproof and wear-proof labels indicating the following:

 PROJECT: [______]
 LOCATION: [______]
 JAR SAMPLES FROM HOLE OR HOLES: [______]

3. Core Box Labels: Core boxes shall be identified with stenciled labels. The information on this label shall contain the following:

 PROJECT: [______]
 HOLE NO. [______]
 BOX NO. [______]
 TOTAL NUMBER OF BOXES FOR THE HOLE: [______]
1.3 EXECUTION

A. Mobilization and Demobilization
1. Mobilization: Mobilization shall consist of the delivery to the site of all plant, equipment, materials and supplies to be furnished by the Contractor, the complete assembly in satisfactory working order of all such plant and equipment at the jobsite and the satisfactory storage at the site of all such materials and supplies.
2. Demobilization: Demobilization shall consist of the removal from the site of all plant, equipment, materials and supplies after completion of the work and also includes, at the direction of the Owner, the cleanup and removal of all scrap, waste backfill material, waste drilling fluid, soil contaminated with engine/hydraulic oil, backfilling all sumps or excavations resulting from the operations and, in general, returning the site as close to its original condition as possible.

B. Equipment and Supplies
1. Auger Boring and Sampling: The equipment to be furnished by the Contractor for making auger borings shall include, but not be limited to, standard continuous flight augers and/or standard cup-type earth augers, similar or equal to the Iwan Auger and not less than 4 inches (100 mm) in diameter unless otherwise approved. The augers shall be completely equipped with all the accessories necessary for boring and sampling of overburden materials to the depths and diameters specified or shown on the drawings.
2. Drive Sample Boring and Sampling: Equipment to be furnished by the Contractor for making drive sample borings shall include, but not be limited to, standard 2-inch (50 mm) split barrel or solid barrel, as directed, drive samplers and power-driven drilling machinery of a type or types approved by the Owner, complete with a drive-hammer of the weight as required to meet project requirements, and all other accessories for taking samples of all types of soils or decomposed rock at the locations and to the depths indicated in the schedule in paragraph SCHEDULE OF DRILLING, SAMPLING, AND TESTING. The drive shoe for the split barrel samplers shall be of hardened steel and shall be replaced or repaired when it becomes dented or distorted. Supplies shall include, but not be limited to, all casing, drill stem, drill bits, drill fluid and additives, pumps, and power necessary to accomplish the required boring and sampling.
3. Undisturbed Sample Boring and Sampling: Equipment to be furnished by the Contractor for making undisturbed sample borings shall include, but not be limited to, power-driven drilling machinery of an approved type or types complete with the special devices and accessories enumerated and described hereinafter. Drilling machinery shall be of the hydraulic feed type. Supplies shall include, but not be limited to, all samplers, casing, drill stem, drill bits, drill fluid and additives, pumps, and power necessary to accomplish the required boring and sampling. Drill casing, if used, shall be of such minimum inside diameter as to allow use of the selected sampler.
 a. Sands and Cohesive Soils: The sampling device used to sample fine to medium grain sands and cohesive soils shall be a fixed or stationary piston type that uses a 3-inch (75-mm) or 5-inch (125-mm), as directed, diameter thin wall Shelby tube. Subject to the approval of the Owner, floating or free piston and non-piston type samplers may be used provided adequate means, such as check valve or vacuum system, are provided to prevent loss of samples.
 b. Stiff and Dense Soils: The sampling device for obtaining samples of stiff and dense soils shall be similar or equal to a Denison double tube, swivel head core barrel, or a Pitcher sampler and must be approved by the Owner prior to use.
4. Core Drilling - Size BX and NX Core: Equipment to be furnished by the Contractor for core drilling shall include core-drilling machinery of a type or types approved by the Owner complete with all the accessories needed to take continuous rock cores of a diameter consistent with bit size to the depths specified. The Contractor shall use, as a minimum, a standard ball-bearing, swivel-head, double-tube core barrel, or equivalent. The capacity of the core barrel shall not exceed 10.5 feet (3.2 m) of core. Supplies for core drilling to be furnished by the Contractor shall include, but not be limited to, all casing, drill rods, core barrels, coring bits, piping, pumps, water, tools, and power required for drilling and all boxes and containers required for core samples.
Selection of the type of bit shall be at the Contractor's discretion provided that the selected bit produces high quality rock core. (see paragraph SUPPLEMENTAL BORINGS or PITS). The Contractor's drilling equipment shall be capable of drilling inclined as well as vertical core holes as specified.

5. Pressure Testing (Hydraulic): Pressure testing equipment to be furnished by the Contractor shall include, but not be limited to, a water pump with a minimum capacity of 50 gallons per minute (3.15 liters per second) that is capable of delivering a constant discharge pressure with double expander packers with rubber expansion elements set 5 feet (1.5 m) OR 10 feet (3 m), as directed, apart with piping so arranged that water may be admitted either below the bottom packer element or between the two packer elements, a pressure relief valve, a pressure gage capable of measuring water pressures to the nearest 10 psi (1.45 kPa) and water meter capable of measuring flows to the nearest 1.6 gallon(s) per minute (0.1 liter(s) per second). Supplies shall include, but not be limited to, all accessory valves, gages, surge tanks, stopcocks, plugs, expanders, potable water for testing, standby pumps, fuels, pipes, pressure hose, and tools necessary for maintaining uninterrupted tests for each boring to be tested. The pressure test equipment shall be configured so that the pressure gage is located at the top of the hole, a bypass water line and valve are located between the pump and the gage, a flow meter is located between the by-pass and the pressure gage, and a valve is located in the line between the flow meter and the pressure gage. All equipment and supplies used for pressure testing shall be approved by the Owner prior to use.

6. Test Pit Excavation and Sampling: Selection of the test pit excavation, shoring/lining and dewatering (if necessary) methods and equipment shall be at the Contractor's discretion but must be approved by the Owner. When the number of test pits to be excavated is large, and when adaptable mechanical trenching equipment is available, the Owner may require that such mechanical excavating equipment be used to expedite completion of the pits. Supplies which the Contractor shall furnish for obtaining undisturbed samples shall include, but not be limited to, split metal cylinders and/or metal or wooden boxes of acceptable sizes and types. Accessories to be supplied by the Contractor shall include, but not be limited to, a small sample trimming shovel or spade, hatchet, trimming knife, wax and facilities for melting and brushing same, trowels, labels, and boxes for shipping samples. The Contractor shall also furnish all materials required for shoring/lining to comply with all applicable safety regulations. The Owner may require the Contractor to salvage and re-use this shoring/lining material in successive test pits.

C. Identifying Samples: Sample jars, shipping boxes, and labels shall comply with paragraphs SAMPLE JARS, SHIPPING BOXES, and LABELS, respectively. The Contractor shall take all precautions required to insure that the shipping boxes are not subjected to rough handling or damaging environmental conditions, and complies with paragraph CARE AND DELIVERY OF SAMPLES. A copy of the boring log for the portion of the boring that the samples came from shall be enclosed in the shipping box.

D. Auger Boring and Sampling: Samples shall be labeled in accordance with paragraph IDENTIFYING SAMPLES. Samples shall be obtained for each change of overburden material and at maximum vertical intervals as directed by the Owner. In order to retain the natural moisture content of the material to the fullest extent possible, all samples shall be of sufficient volume to completely fill the sample jars and the samples shall be placed in the sample jars as soon as possible after they are taken from the hole. All sample jars shall be labeled. In general, no sample shall remain on the site of boring for more than 1 week after being taken from the boring and placed in a jar.

E. Drive Sample Boring and Sampling: Samples shall be labeled in accordance with paragraph IDENTIFYING SAMPLES. Drive sample borings drilled through overburden materials shall be suitably cased to permit obtaining drive samples of the size or sizes specified or as directed. Samples shall be taken either continuously or at a change in materials in accordance with instructions contained in the SCHEDULE OF DRILLING, SAMPLING, AND TESTING or as otherwise directed by the Owner. To minimize the compacting effect of casing driving when casing is used to stabilize a boring, the bottom of the casing shall be kept as high above the soil sampling zone as conditions permit. If hollow stem auger
is used as a casing and/or to advance the boring, a plug assembly must be used to keep soil from entering the inside of the auger. Above the water table, samples shall be obtained from a dry hole. Below the water table, water shall be maintained within the hole at or above the groundwater level. Where information on the natural water content of soils above the water table is not needed and when approved by the Owner, boreholes may be drilled without casing by using a suitable drilling fluid to prevent collapse of sidewalls. When a drilling fluid is used, soil sampling shall be done by such means that will prevent inclusion of drilling fluid in the samples. The samples shall be placed in sample jars as soon as possible after they are taken from the hole and, when possible, the volume of the sample shall be large enough to completely fill the sample jar in order that the natural moisture content of the material may be retained to the fullest extent possible. All samples shall be labeled. No sample shall remain at the site of boring for more than one week after being taken from the hole.

F. Undisturbed Sample Boring And Sampling: In general, labeling of undisturbed samples shall conform to paragraph IDENTIFYING SAMPLES. Particular care shall be taken to indicate the top and bottom of each sample tube. Tubes and crates for undisturbed samples shall be labeled "DO NOT JAR OR VIBRATE" and "HANDLE, HAUL, AND SHIP IN A HORIZONTAL OR VERTICAL POSITION," as directed.

1. Procedure: The procedure for Undisturbed Sample Boring and Sampling shall be the same as outlined in paragraph DRIVE SAMPLE BORING AND SAMPLING, except that the sampling device shall be advanced downward by one continuous, smooth drive using the drill rig’s hydraulic feed system. The hydraulic down pressure shall be read and recorded at 6 inch (150 mm) intervals during each sample drive. The sampling device for stiff and dense soils shall be advanced by continuous rotation of the outer cutting barrel in conjunction with use of drill fluid circulation. Driving of any undisturbed sampling device by means such as a drop hammer will not be permitted.

2. Sealing
 a. Alternate 1: The soil sample obtained in a thin wall Shelby tube shall be retained in the tube and sealed on both ends with a mechanically expandable O-ring sealing disk of the appropriate size.
 b. Alternate 2: The soil sample obtained in a thin wall Shelby tube shall be extruded from the tube in the field as soon as the tube is removed from the boring by a method approved by the Owner. The extruded soil sample shall immediately be wrapped in aluminum foil or thin plastic wrap and placed in the center of a metal bottomed, waxed cardboard or plastic tube that has a diameter of at least 1 inch (25 mm) larger than the diameter of the soil sample, is at least 1-inch (25 mm) longer than the length of the soil sample, and has at least 1/2-inch (13 mm) of congealed 50/50 mixture of paraffin and microcrystalline wax in the bottom. The annular space between the soil sample and the tube shall be filled with a 50/50 mixture of paraffin and microcrystalline wax to a distance of at least 1/2-inch (13 mm) above the top of the soil sample.
 c. Alternate 3: Both ends of the soil sample tube/liner obtained with a Denison barrel, or its equivalent, shall be cleaned out to remove all drill fluid contaminated and/or disturbed soil or to a minimum distance of 2 inches (50 mm) from the ends of the tube/liner. Any material removed that is not contaminated with drill fluid shall be placed in a sample jar and labeled in accordance with paragraph IDENTIFYING SAMPLES. The cleaned out ends of the sample liner tube shall then be sealed with a 50/50 mixture of paraffin and microcrystalline wax. A metal or wooden disk, having a diameter just slightly smaller than the inside diameter of the liner tube shall be inserted into the wax to a distance of 1/4-inch (6 mm) from the end of the soil sample. The wax plugs shall be flush with the ends of the tube and a final seal consisting of a metal cap or tape shall be placed over the ends of the tube.

G. Core Hole Overburden Drilling: Where samples of overburden materials are required in connection with core drilling, the soil overburden shall be drilled and sampled in accordance with the applicable provisions for the type of samples required. Where sampling of the overburden materials is not required, the Contractor may utilize any method and equipment for drilling and, if required, casing
through the overburden that will not affect the quality of the core drilling from the rock surface downward in accordance with these specifications. The method chosen must be approved by the Owner prior to starting any overburden drilling.

H. Core Drilling - Size BX and NX core.
 1. Procedure: All holes shall be drilled vertically OR at the inclined angles listed in paragraph SCHEDULE OF DRILLING, SAMPLING, AND TESTING, as directed, to the bottom elevations or depths specified unless indicated in the schedule of borings or directed to be drilled otherwise. Off-setting of borings from the locations specified in the Plan of Borings or as shown on the drawings, will not be permitted without prior approval. Casing through the overburden may be required. This casing shall be sealed in the rock at the elevation where rock is encountered prior to commencement of rock coring. The Contractor shall operate his drills at such speeds and with such down pressures and shall control drill fluid pressures and quantities to insure maximum core quality and recovery in whatever kind of rock is encountered. Where soft or broken rock is encountered, the Contractor shall reduce the length of runs to 5 feet (1.5 m) or less in order to reduce and/or keep core loss and core disturbance to the minimum. Failure to comply with the foregoing procedures shall constitute justification for the Owner to require redrilling, at the Contractor's expense, of any boring from which the core recovery is unsatisfactory. The Contractor shall exercise particular care in recording zones of water loss, cavities, rod jerks, rough drilling and other unusual and non-ordinary coring experiences that, supplementing the core record, will throw light on the nature and the extent of any fracturing or abnormalities.
 2. Arrangement of Core: Core boxes shall comply with paragraph CORE BOXES. All cores shall be arranged neatly in the partitioned boxes in the same sequence in which they occurred before removal from the hole. Facing the open box with the hinged cover above and the open box below, cores shall be arranged in descending sequence beginning at the left end of the trough nearest the hinges and continuing in the other troughs from left to right. The highest part of the core shall be placed in box 1, and the lower portions of the core shall be placed in the other boxes in consecutive order.
 3. Preservation of Core: Representative samples of core shall be wrapped in aluminum foil or thin plastic wrap or cheese cloth and then sealed by applying paraffin wax to the outside of the wrapping material prior to placing the core in the core box. This sealing process shall be accomplished as soon as possible after the core is removed from the core barrel. The minimum length of core that is preserved from each boring shall be no less than 2.5 times the core diameter. Spacer blocks shall be marked and placed in the core box to show where samples have been removed.
 4. Labeling, Marking and Packing Core: Stenciled labels for core boxes complying with paragraph CORE BOX LABELS shall be placed on the inside and outside of the top cover in addition to each end. In addition, the depths (or elevations) of each core run/pull shall be marked with a black waterproof pen on the spacer blocks that are placed between core pulls. When a box is full, the space between the core and the trough sides shall be filled with finely ground vermiculite or other packing material approved by the Owner.
 5. Disposition of Core: While on site, the Contractor shall protect the filled core boxes from direct sunlight, precipitation, and freezing by some form of the Owner approved shelter that allows ventilation to the boxes. Upon completion of core drilling and sampling operations, core boxes containing cores shall be stored in an area provided by the Owner near the site of drilling OR shipped or delivered to address provided by the Owner, as directed.

I. Pressure Testing (Hydraulic): The Contractor shall pressure-test each hole commencing at the top of bedrock and progressing downward to the bottom of the hole or to such depths as determined by the Owner below which testing of the hole is not necessary. Where core data from the test holes indicate only isolated zones that are open or fractured, pressure testing may be limited by the Owner to these zones only. Water pressure employed for each lift shall be determined in the field by the Owner and shall not exceed of depth one pound per square inch per foot (22.6 kPa per meter) of depth to the upper expander. The pressure test will be divided into two phases; the first phase will be a flow test which shall then be followed by the second phase which is a duration test. In performing the first phase, water
is pumped slowly at first, and the flow then gradually increased to the point where the predetermined
maximum pressure is maintained, by adjusting the valve on the by-pass line. The allowable pressure
shall be held for 1 minute before any readings are taken. The volume of flow into the test section shall
be measured for a period of 5 minutes during which time the pressure shall not vary by more than 5 psi
(34.5 kPa). After this 5-minute test, the second phase shall be started by closing the valve located
between the flow meter and the pressure gage. The drop in pressure is then read for a period of 5
minutes at 15 to 30-second intervals. In some situations, such as in a very tight formation, the Owner
may eliminate phase one of the test. The Contractor may be required to make check tests at his own
expense if the testing equipment or its assembly and arrangement are found to be faulty during or after
the testing of any holes. The Contractor shall record all gage and meter readings made during a
pressure test on a suitable form approved by the Owner.

J. Test Pit Excavation And Sampling

1. Excavation: The test pits shall be excavated in the order scheduled in paragraph SCHEDULE OF
DRILLING, SAMPLING, AND TESTING, and shall be excavated to depths and dimensions
indicated in paragraph SCHEDULE OF DRILLING, SAMPLING, AND TESTING. Before
excavating pits, the Contractor shall thoroughly familiarize himself with work site and with all
available subsurface data, particularly groundwater conditions. Regardless of the method of
excavation employed, the pits shall be excavated, dewatered and shored/lined in conformance
with all applicable safety regulations.

2. Sampling: Soil samples shall be obtained from each pit at the depths/elevations indicated in
paragraph SCHEDULE OF DRILLING, SAMPLING, AND TESTING OR at depths determined by
the Owner, as directed. In obtaining samples from test pits, the undisturbed in situ (in place)
natural physical and structural characteristics of the sampled materials shall be preserved insofar
as possible both while samples are being taken and during shipment to the point of testing. In
cohesive and partially cohesive soils this may be accomplished by isolating the soil column or
cube to be sampled by gently trenching around it and knife-trimming it to the required dimensions
of the split cylinder or box. A thin coating of melted 50/50 mixture of paraffin and microcrystalline
wax shall then be applied quickly but gently to the sample with a paint brush to seal it against loss
of moisture. The metal or wooden sample container, with the top and bottom removed shall then
be placed over the wax coated sample such that the sample is centered within the container and
the top of the container sides are at least 1 inch (25 mm) above the top of the sample. The
spaces between the sample and the side walls of the container shall then be filled with melted
wax. After this wax has congealed, the space between the top of the sample container sides and
the top of the sample shall be filled with wax. After this wax has congealed, it shall be trimmed so
that when the top of the sample container is installed there is no void between the container top
and the wax. After the container top is installed, the soil column or cube shall then be cut off a
few hundred inches (millimeters) below the container, the sample and container inverted and
removed from the pit and the sample trimmed at the base so that the bottom of the sample is at
least 1 inch (25 mm) below the bottom of the container. This space shall be filled with wax and,
after the wax has congealed, it shall be trimmed so that when the bottom of the container is
installed, there shall be no void between the wax and the bottom of the container. Where
overburden materials to be sampled are only partially cohesive, it is best not to expose the entire
soil column before waxing. By exposing and waxing small sections at a time, the sample will be
subjected to less disturbance. Where natural moisture content is an important factor, delay shall
be avoided in taking the sample in order that the natural moisture content of the material may be
retained to the fullest extent.

3. Disposition of Samples: Samples shall be packed in vermiculite or a packing material approved
by the Owner and shipped in sturdy wooden boxes of strength and construction sufficient to
guarantee against damage during shipment. Boxes should be no larger than is required for
shipping two such samples. All sample boxes shall be marked FRAGILE-HANDLE WITH CARE
and shall be identified by labels, similar to those as specified in paragraph IDENTIFYING
SAMPLES, attached to the outside of each box. Extreme care shall be taken to indicate the top
and bottom of each sample. The Contractor shall avoid exposing sealed and crated samples to
precipitation and extremes of temperature. Undisturbed samples permitted to freeze, even partially, shall be replaced by the Contractor at his expense. The Contractor shall not hold these samples at the site of sampling for a period in excess of one week. Prior to shipment, each sealed and boxed sample shall be checked for correct labeling.

K. Supplemental Borings or Pits: Borings or Pits that are abandoned or from which unsatisfactory samples or cores are obtained will be supplemented by other borings or pits adjacent to the original in order that satisfactory samples or the required information will be obtained. Actual locations of any supplemental borings or pits will be established by the Owner. Penetration to the depth where the original was abandoned or to the depths where unsatisfactory samples were obtained may be made by any method selected by the Contractor that in the opinion of the Owner will permit satisfactory completion and sampling below the elevation where the last satisfactory sample was obtained in the abandoned or satisfactory sampling in the reaches where satisfactory samples were not obtained in the original borings or pits. No payment will be made for supplemental borings or pits that are required to be drilled or excavated to replace borings or pits that were abandoned or from which satisfactory samples were not obtained because of mechanical failure of drilling and sampling equipment, negligence on the part of the Contractor, or other preventable cause for which the Contractor is responsible except that payment will be made for acceptable portions of these supplementary borings or pits below the depths or outside the reaches for which payment was made for the original borings or pits.

L. Backfilling
 1. Drill Holes: Unless otherwise noted in these specifications or directed by the Owner, all drill holes shall be backfilled and abandoned in accordance with all Federal, State, and local laws, regulations and ordinances. The Contractor shall preserve all holes in good condition until final measurement and until the records and samples have been accepted. As a minimum, all holes shall be grouted from the bottom of the hole to within 2 feet (600 mm) of the ground. All grout shall be pumped through a tremie pipe that is inserted to the bottom of the boring to ensure that the grout fills the full extent of the hole. The remaining ungrouted portion of the hole shall be backfilled with local soil and tamped. All backfilling operations shall be performed in the presence of the Owner and, if required by regulation, Federal, State, and local officials. No separate payment will be made for backfilling drill holes. The cost of this work shall be included in the drilling costs.
 2. Test Pits: The Contractor shall backfill all test pits with local soil compacted to original densities as directed by the Owner. No separate payment will be made for backfilling test pits. The cost of this work shall be included in the test pit excavation costs.

M. Records: The Contractor shall keep accurate driller's logs and records of all work accomplished under this contract and shall deliver complete, legible copies of these logs and records to the Owner upon completion of the work or at such other time or times as he may be directed. All such records shall be recorded during the actual performance of the work and shall be preserved in good condition and order by the Contractor until they are delivered and accepted. The Owner shall have the right to examine and review all such records at any time prior to their delivery to him and shall have the right to request changes to the record keeping procedure. The following information shall be included on the logs or in the records for each hole or test pit:
 1. Hole or Test Pit number or designation and elevation of top of hole or test pit.
 2. Driller's name and Geologist's name.
 3. Make, size, and manufacturer's model designation of drilling, sampling, pressure testing, and test-pit excavating equipment.
 4. Type of drilling, sampling, and pressure testing operation by depth.
 5. Hole diameter.
 6. Dates and time by depths when test-pit excavation, drilling, sampling, and pressure testing operations were performed.
 7. Time required for drilling each run and pressure testing each interval tested.
 8. Drill action, rotation speed, hydraulic pressure, water pressure, tool drops, and any other unusual and non-ordinary experience which could indicate the subsurface conditions encountered.
9. Depths at which samples or cores were recovered or attempts made to sample or core including top and bottom depth of each run and of each interval pressure tested.

10. Classification or description by depths of the materials sampled, cored, or penetrated using the Unified Soil Classification System (ASTM D 2487) and including a description of moisture conditions, consistency and other appropriate descriptive information described in paragraph SUPPLEMENTAL BORINGS or PITS of ASTM D 2488. This classification or description shall be made immediately after the samples or cores are retrieved.

11. Classification and description by depths of rock materials sampled or cored including rock type, composition, texture, presence and orientation of bedding, foliation, or fractures, presence of vugs or other interstices, and the RQD for each cored interval.

12. Indication of penetration resistance such as drive-hammer blows given in blows per foot for driving sample spoons and casing and the pressure in applied to push thin-wall or piston-type samplers.

13. Weight (Force) of drive hammer.

14. Percentage of sample or core recovered per run.

15. Depth at which groundwater is encountered initially and when stabilized.

16. Depths at which drill water is lost and regained and amounts.

17. Depths at which the color of the drill water return changes.

18. Type and weight of drill fluid.

19. Depth of bottom of hole.

20. Pressures employed in pressure testing.
<table>
<thead>
<tr>
<th>TABLE 1 - COMMON CORE DIAMETERS</th>
<th>CORE DIAMETER</th>
<th>HOLE DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in. (mm)</td>
<td>in. (mm)</td>
</tr>
<tr>
<td>Conventional Core Barrels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWG</td>
<td>1.185 (30.1)</td>
<td>1.890 (48.0)</td>
</tr>
<tr>
<td>BWG</td>
<td>1.655 (42.0)</td>
<td>2.360 (60.0)</td>
</tr>
<tr>
<td>NWG</td>
<td>2.155 (54.7)</td>
<td>2.980 (75.7)</td>
</tr>
<tr>
<td>HWG</td>
<td>3.000 (76.2)</td>
<td>3.907 (99.2)</td>
</tr>
<tr>
<td>Wireline Core Barrels*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.064 (27.0)</td>
<td>1.890 (48.0)</td>
</tr>
<tr>
<td>B</td>
<td>1.432 (36.5)</td>
<td>2.360 (60.0)</td>
</tr>
<tr>
<td>N</td>
<td>1.875 (47.6)</td>
<td>2.980 (75.7)</td>
</tr>
<tr>
<td>H</td>
<td>2.450 (62.2)</td>
<td>3.716 (94.4)</td>
</tr>
<tr>
<td></td>
<td>3.345 (85.0)</td>
<td>4.827 (122.6)</td>
</tr>
<tr>
<td>Large Diameter Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3/4" X 3-7/8"</td>
<td>2.690 (68.3)</td>
<td>3.875 (98.4)</td>
</tr>
<tr>
<td>4" X 5-1/2"</td>
<td>3.970 (100.8)</td>
<td>5.495 (139.6)</td>
</tr>
<tr>
<td>6" X 7-3/4"</td>
<td>5.970 (151.6)</td>
<td>7.750 (196.9)</td>
</tr>
</tbody>
</table>

*No Industry Standard for Wireline Sizes. Diameters shown for wireline core barrels are nominal and vary between manufacturers.

END OF SECTION 02 32 13 00
SECTION 02 41 13 13 - SELECTIVE DEMOLITION

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for selective demolition. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes the following:
 a. Demolition and removal of selected portions of building or structure.
 b. Demolition and removal of selected site elements.
 c. Salvage of existing items to be reused or recycled.

C. Definitions
1. Remove: Detach items from existing construction and legally dispose of them off-site, unless indicated to be removed and salvaged or removed and reinstalled.
2. Remove and Salvage: Detach items from existing construction and deliver them to Owner ready for reuse, as directed.
3. Remove and Reinstall: Detach items from existing construction, prepare them for reuse, and reinstall them where indicated.
4. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

D. Materials Ownership
1. Historic items, relics, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, antiques, and other items of interest or value to Owner that may be encountered during selective demolition remain Owner's property. Carefully remove and salvage each item or object in a manner to prevent damage and deliver promptly to Owner. a. Coordinate with Owner's archaeologist OR historical adviser, as directed, who will establish special procedures for removal and salvage.

E. Submittals
1. Qualification Data: For demolition firm, professional engineer, refrigerant recovery technician, as directed.
2. Schedule of Selective Demolition Activities: Indicate the following:
 a. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's building manager's and other tenants' on-site operations are uninterrupted.
 b. Interruption of utility services. Indicate how long utility services will be interrupted.
 c. Coordination for shutoff, capping, and continuation of utility services.
 d. Use of elevator and stairs.
 e. Locations of proposed dust- and noise-control temporary partitions and means of egress, including for other tenants affected by selective demolition operations.
 f. Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work.
 g. Means of protection for items to remain and items in path of waste removal from building.
3. Inventory: After selective demolition is complete, submit a list of items that have been removed and salvaged.
4. Predemolition Photographs or Videotapes: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by selective demolition operations. Submit before Work begins.

5. Landfill Records: Indicate receipt and acceptance of hazardous wastes by a landfill facility licensed to accept hazardous wastes.
 a. Comply with submittal requirements in Division 01 Section "Construction Waste Management And Disposal".

F. Quality Assurance
1. Demolition Firm Qualifications: An experienced firm that has specialized in demolition work similar in material and extent to that indicated for this Project.
2. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.
3. LEED Requirements for Building Reuse:
 a. Credit MR 1.1 and 1.2, as directed: Maintain existing building structure (including structural floor and roof decking) and envelope (exterior skin and framing, excluding window assemblies and nonstructural roofing material) not indicated to be demolished; do not demolish such existing construction beyond indicated limits.
 b. Credit MR 1.3: Maintain existing interior nonstructural elements (interior walls, doors, floor coverings, and ceiling systems) not indicated to be demolished; do not demolish such existing construction beyond indicated limits.
 c. Credit MR 1.2 and 1.3, as directed: Maintain existing nonshell, nonstructural components (walls, flooring, and ceilings) not indicated to be demolished; do not demolish such existing construction beyond indicated limits.
4. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
6. Predemolition Conference: Conduct conference at Project site. Review methods and procedures related to selective demolition including, but not limited to, the following:
 a. Inspect and discuss condition of construction to be selectively demolished.
 b. Review structural load limitations of existing structure.
 c. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 d. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
 e. Review areas where existing construction is to remain and requires protection.

G. Project Conditions
1. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.
2. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
 a. Before selective demolition, items will be removed as directed by the Owner.
3. Notify the Owner of discrepancies between existing conditions and Drawings before proceeding with selective demolition.
4. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 a. Hazardous materials will be removed by Owner before start of the Work OR have been removed by Owner under a separate contract, as directed.
 b. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify the Owner and Owner. Owner will remove hazardous materials under a separate contract.

OR
5. Hazardous Materials: It is unknown whether hazardous materials will be encountered in the Work.
 a. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify the Owner and Owner. Owner will remove hazardous materials under a separate contract.

6. Hazardous Materials (if asbestos abatement is part of Work of this Contract): Hazardous materials are present in construction to be selectively demolished. A report on the presence of hazardous materials is on file for review and use. Examine report to become aware of locations where hazardous materials are present:
 a. Hazardous material remediation is specified elsewhere in the Contract Documents.
 b. Do not disturb hazardous materials or items suspected of containing hazardous materials except under procedures specified elsewhere in the Contract Documents.

7. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 a. Maintain fire-protection facilities in service during selective demolition operations.

H. Warranty
1. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties.

1.2 PRODUCTS (Not Used)

1.3 EXECUTION

A. Utility Services And Mechanical/Electrical Systems
1. Existing Services/Systems: Maintain services/systems indicated to remain and protect them against damage during selective demolition operations.
2. Service/System Requirements: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.
 a. the Owner will arrange to shut off indicated services/systems when requested by Contractor.
 b. Arrange to shut off indicated utilities with utility companies.
 c. If services/systems are required to be removed, relocated, or abandoned, before proceeding with selective demolition provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 d. Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit after bypassing.
 1) Where entire wall is to be removed, existing services/systems may be removed with removal of the wall.

B. Preparation
1. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
2. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 a. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 b. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
c. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.

d. Cover and protect furniture, furnishings, and equipment that have not been removed.

e. Comply with requirements for temporary enclosures, dust control, heating, and cooling.

3. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.

 a. Strengthen or add new supports when required during progress of selective demolition.

C. Selective Demolition, General

1. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:

 a. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.

 b. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.

 c. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.

 d. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations.

 e. Maintain adequate ventilation when using cutting torches.

 f. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.

 g. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.

 h. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.

 i. Dispose of demolished items and materials promptly. Comply with requirements in Division 01 Section "Construction Waste Management And Disposal".

2. Reuse of Building Elements: Project has been designed to result in end-of-Project rates for reuse of building elements as follows. Do not demolish building elements beyond what is indicated on Drawings without the Owner's approval.

 a. Building Structure and Shell: 75 OR 100, as directed, percent.

 b. Nonshell Elements: 50 percent.

3. Removed and Salvaged Items:

 a. Clean salvaged items.

 b. Pack or crate items after cleaning. Identify contents of containers.

 c. Store items in a secure area until delivery to Owner.

 d. Transport items to Owner's storage area on-site OR off-site OR designated by Owner OR indicated on Drawings, as directed.

 e. Protect items from damage during transport and storage.

4. Removed and Reinstalled Items:

 a. Clean and repair items to functional condition adequate for intended reuse. Paint equipment to match new equipment.

 b. Pack or crate items after cleaning and repairing. Identify contents of containers.

 c. Protect items from damage during transport and storage.
d. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.

5. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by the Owner, items may be removed to a suitable, protected storage location during selective demolition and cleaned, as directed, and reinstalled in their original locations after selective demolition operations are complete.

D. Selective Demolition Procedures For Specific Materials

1. Concrete: Demolish in small sections. Cut concrete to a depth of at least 3/4 inch (19 mm) at junctures with construction to remain, using power-driven saw. Dislodge concrete from reinforcement at perimeter of areas being demolished, cut reinforcement, and then remove remainder of concrete indicated for selective demolition. Neatly trim openings to dimensions indicated.

OR

Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals, using power-driven saw, then remove concrete between saw cuts.

2. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, then remove masonry between saw cuts.

3. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.

4. Resilient Floor Coverings: Remove floor coverings and adhesive according to recommendations in RFCI-WP and its Addendum.
 a. Remove residual adhesive and prepare substrate for new floor coverings by one of the methods recommended by RFCI.

5. Roofing: Remove no more existing roofing than can be covered in one day by new roofing and so that building interior remains watertight and weathertight. Refer to Division 07 for new roofing requirements.
 a. Remove existing roof membrane, flashings, copings, and roof accessories.
 b. Remove existing roofing system down to substrate.

E. Disposal Of Demolished Materials

1. General: Except for items or materials indicated to be recycled, as directed, reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.
 a. Do not allow demolished materials to accumulate on-site.
 b. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 c. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
 d. Comply with requirements specified in Division 01 Section "Construction Waste Management And Disposal".

2. Burning: Do not burn demolished materials.

 OR

 Burning: Burning of demolished materials will be permitted only at designated areas on Owner's property, as directed, provided required permits are obtained. Provide full-time monitoring for burning materials until fires are extinguished.

3. Disposal: Transport demolished materials and dispose of at designated spoil areas on Owner's property.

 OR

 Disposal: Transport demolished materials off Owner's property and legally dispose of them.

F. Cleaning
1. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

G. Selective Demolition Schedule
1. Existing Items **OR** Construction, **as directed**, to Be Removed, as directed by the Owner.
2. Existing Items to Be Removed and Salvaged, as directed by the Owner.
3. Existing Items to Be Removed and Reinstalled, as directed by the Owner.
4. Existing Items to Remain, as directed by the Owner.

END OF SECTION 02 41 13 13
SECTION 02 41 13 13a - PORTLAND CEMENT CONCRETE REMOVAL

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of materials for portland cement concrete removal. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Section Includes:
 1. Provide all labor, materials and equipment required for the removal work and disposal of existing Portland Cement Concrete indicated on the drawings and specified, including but not limited to the following:
 a. Saw cutting existing concrete pavements, sidewalks, driveways, curbs and gutters noted on drawings to be removed.
 b. Saw cutting existing concrete sidewalks for new tree pit openings (refer to drawings for locations).
 c. Saw cutting existing bituminous paving noted on drawings to be removed.
 d. Removal and disposal of demolished concrete sidewalks, driveways, curbs and gutters, including concrete removed for new tree pit openings.
 e. Removal and disposal of demolished bituminous paving.
 f. All excavating, rough grading and compacting as required to establish subgrade for new sidewalks, and Subgrade and Sub-Base for driveways.
 g. Providing, placing and grading sand fill under new sidewalks. Top of compacted subgrades shall allow for the placement of sidewalks plus thickness of sand fill.
 h. Removal and disposal of excavated material.

C. Special Requirements:
 1. Protection: Provide protection barricades, maintain all lights and signals and other measures as required by federal, state, and municipal laws, for the full period of demolition operations and remove same when directed. In removing work, perform all work required to protect and maintain adjacent property, streets, alleys, sidewalks, curbs, and other structures remaining in place.

1.2 PRODUCTS

A. Backfilling Material:
 1. Sand: Natural sand, with the following gradation: 100% passing the 1 sieve-, 65-100% passing the No. 4 sieve; 40-90% passing the No. 10 sieve- 30-80% passing the No. 16 sieve- 10-50% passing the No. 50 sieve; 0-30% passing the No. 100 sieve, and 0-10% passing the No. 200 sieve.
 2. Crushed Stone: Crushed stone having a #57 crusher run gradation.

1.3 EXECUTION

A. Demolition:
 1. The contractor shall accept the site as he finds it and shall inform himself as to the character and types of work to be removed. The Owner assumes no responsibility for the condition of the existing construction to be removed or demolished.
 2. No demolition shall be commenced until a program of operations has been coordinated with the Owner, except that preparatory work may be started if specifically approved by the Owner.
3. Operations shall be done in such manner as to avoid hazards to persons and property and interference with use of adjacent areas or interruption of free passage to and from such areas. Maintain Pedestrian access to all private entrances where construction of new sidewalks is in progress. Provide temporary walk ways or other means as required to maintain entry into the private properties, complying with all laws and ordinances and as approved by the Owner. Care shall be taken to prevent the spread of dust and flying particles.

4. Demolition and removal work shall be executed in a careful and orderly manner. Accumulation of rubbish will not be permitted.

5. After work is started, it shall be continued to completion at a rate that will allow the balance of the work to be completed within the time specified. If extra shifts are necessary beyond regular working hours, the work shall proceed with a minimum of nuisance to surrounding properties.

6. Contractor shall determine the nature and extent of demolition that will be necessary by comparing the drawings with the existing field conditions. It is expressly understood that this contract includes all work of a demolition nature that may be required or necessary for a full and complete execution of the work, whether particularly referred to herein or not.

B. Removal And Excavation:

1. When removing existing sidewalks, driveways, curbs and gutters provisions shall be made for satisfactory transition between replacements and the portion remaining in place. The contractor shall saw cut to a minimum depth of 1-1/2 inches with a concrete sawing machine to prevent the surface from spalling when the concrete is broken out. This work shall be done in such a manner that a straight joint will be secured.

2. It shall be the responsibility of the contractor to determine the thickness of the existing sidewalk to be removed. No additional compensation will be allowed because of variations from the assumed thickness or from the thickness shown on the plans.

3. After existing concrete sidewalks and driveways have been removed, excavate to depth required for sand fill.

4. The bottoms of all excavations shall be properly leveled off and all loose materials shall be removed from excavations. All wood, timber and organic materials, that are exposed at the bottom of all excavations, shall be removed and the area backfilled with sand and compacted.

5. Any excess or unauthorized excavation shall be backfilled with sand and compacted, at no additional cost to the Owner.

6. No backfill shall be placed in standing water, on frozen ground or on surfaces which have not been approved by the Commissioner.

7. Backfilling for all areas shall be approved material. Backfill shall be compacted to 95% maximum density in accordance with ASTM D 1557.

8. Contractor shall determine the nature and extent of excavation work that will be necessary by comparing the drawings with the existing areas to be excavated. It is expressly understood that this contract includes all work of an excavation nature that may be required or necessary for a complete execution of all excavation work, whether particularly referred to herein or not.

C. Disposal Of Materials:

1. All demolished and unsuitable materials, including excavated earth removed to establish required grade elevations shall be disposed of legally in such a manner that public or private property will not be damaged or endangered.

D. Clean-Up:

1. On completion of the demolition work, excavation work and before acceptance by the Owner, clean the areas affected, including areas outside the limits of the contractor's work area where permission to work has been granted. Remove surplus construction material or debris resulting from the demolition work and excavation work, and dispose of legally off the site.

2. Access routes to and from the site shall be kept clean of debris resulting from the work.
02 - Existing Conditions

<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 41 19 13</td>
<td>02 41 13 13</td>
<td>Selective Demolition</td>
</tr>
<tr>
<td>02 41 19 16</td>
<td>02 41 13 13</td>
<td>Selective Demolition</td>
</tr>
</tbody>
</table>
SECTION 02 61 00 00 - EXCAVATION AND HANDLING OF CONTAMINATED MATERIAL

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for excavation and handling of contaminated material. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Shop Drawings: Separate cross-sections of each area before and after excavation and after backfilling.
2. Product Data: Work Plan within 30 calendar days after notice to proceed. No work at the site, with the exception of site inspections and surveys, shall be performed until the Work Plan is approved. The Contractor shall allow 30 calendar days in the schedule for the Owner's review. No adjustment for time or money will be made if resubmittals of the Work Plan are required due to deficiencies in the plan. At a minimum, the Work Plan shall include:
 a. Schedule of activities.
 b. Method of excavation and equipment to be used.
 c. Shoring or side-wall slopes proposed.
 d. Dewatering plan.
 e. Storage methods and locations for liquid and solid contaminated material.
 f. Borrow sources and haul routes.
 g. Decontamination procedures.
 h. Spill contingency plan.
3. Closure Report: Three (3) copies of the Closure Report within 14 calendar days of work completion at the site.
4. Test Reports
 a. Backfill
 b. Surveys
 c. Confirmation Sampling and Analysis
 d. Sampling of Stored Material
 e. Sampling Liquid
 f. Compaction
 g. Test results.

C. Surveys
1. Surveys shall be performed immediately prior to and after excavation of contaminated material to determine the volume of contaminated material removed. Surveys shall also be performed immediately after backfill of each excavation. The Contractor shall provide cross-sections on 25 foot (7.6 meter) intervals and at break points for all excavated areas. Locations of confirmation samples shall also be surveyed and shown on the drawings.

D. Regulatory Requirements
1. Permits and Licenses: The Contractor shall obtain required federal, state, and local permits for excavation and storage of contaminated material. Permits shall be obtained at no additional cost to the Owner.
2. Air Emissions: Air emissions shall be monitored and controlled in accordance with Owner's Environmental Requirements.

E. Chemical Testing
1. Required sampling and chemical analysis shall be conducted in accordance with local requirements and the Owner’s requirements.

F. Scheduling
1. The Contractor shall notify the Owner five (5) calendar days prior to the start of excavation of contaminated material. The Owner will OR The Contractor shall, as directed, be responsible for contacting regulatory agencies in accordance with the applicable reporting requirements.

1.2 PRODUCTS

A. Backfill
1. Backfill material shall be obtained from the location indicated on the drawings OR offsite sources approved by the Owner, as directed. Backfill shall be classified in accordance with ASTM D 2487 as GW, GP, GM, GC, SW, SP, SM, SC, ML, MH, CL, or CH and shall be free from roots and other organic matter, trash, debris, snow, ice or frozen materials. Backfill material shall be tested for the parameters listed below at a frequency of once per 3000 cubic yards (cubic meters). A minimum of one set of classification tests shall be performed per borrow source. One backfill sample per borrow source shall also be collected and tested for the chemical parameters listed below.

<table>
<thead>
<tr>
<th>Physical Parameter</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain Size</td>
<td>ASTM D 422</td>
</tr>
<tr>
<td>Compaction</td>
<td>ASTM D 698</td>
</tr>
</tbody>
</table>

Backfill shall not be used until borrow source chemical and physical test results have been submitted and approved.

B. Spill Response Materials
1. The Contractor shall provide appropriate spill response materials including, but not limited to the following: containers, adsorbents, shovels, and personal protective equipment. Spill response materials shall be available at all times when contaminated materials/wastes are being handled or transported. Spill response materials shall be compatible with the type of materials and contaminants being handled.

1.3 EXECUTION

A. Existing Structures And Utilities
1. No excavation shall be performed until site utilities have been field located. The Contractor shall take the necessary precautions to ensure no damage occurs to existing structures and utilities. Damage to existing structures and utilities resulting from the Contractor's operations shall be repaired at no additional cost to the Owner. Utilities encountered that were not previously shown or otherwise located shall not be disturbed without approval from the Owner.

B. Clearing
1. Clearing shall be performed to the limits shown on the drawings in accordance with Division 2 Section “Site Clearing.”

C. Contaminated Material Removal
1. Excavation: Areas of contamination shall be excavated to the depth and extent shown on the drawings and not more than 0.2 feet (60 mm) beyond the depth and extent shown on the drawings unless directed by the Owner. Excavation shall be performed in a manner that will limit spills and the potential for contaminated material to be mixed with uncontaminated material. An excavation log describing visible signs of contamination encountered shall be maintained for each area of excavation. Excavation logs shall be prepared in accordance with ASTM D 5434.
2. Shoring: If workers must enter the excavation, it shall be evaluated, shored, sloped or braced as required by U.S. Army Corps of Engineers (USACE) EM 385-1-1 and U.S. National Archives and Records Administration (NARA) 29 CFR 1926 section 650.

3. Dewatering: Surface water shall be diverted to prevent entry into the excavation. Dewatering shall be limited to that necessary to assure adequate access, a safe excavation, prevent the spread of contamination, and to ensure that compaction requirements can be met. No dewatering shall be performed without prior approval of the Owner.

D. Confirmation Sampling And Analysis
1. The Owner shall be present to inspect the removal of contaminated material from each site. After all material suspected of being contaminated has been removed, the excavation shall be examined for evidence of contamination. If the excavation appears to be free of contamination, field analysis shall be used to determine the presence of contamination using a real time vapor monitoring instrument OR immunoassay field kits, as directed. Excavation of additional material shall be as directed by the Owner. After all suspected contaminated material is removed, confirmation samples shall be collected and analyzed.

2. Samples shall be collected at a frequency as directed by the Owner. A minimum of one sample shall be collected from the bottom and each side wall of the excavation. Based on test results, the Contractor shall propose any additional excavation which may be required to remove material which is contaminated above action levels. Additional excavation shall be subject to approval by the Owner. Locations of samples shall be marked in the field and documented on the as-built drawings.

E. Contaminated Material Storage
1. Material shall be placed in temporary storage immediately after excavation OR after treatment while awaiting test results, as directed. The following paragraphs describe acceptable methods of material storage. Storage units shall be in good condition and constructed of materials that are compatible with the material or liquid to be stored. If multiple storage units are required, each unit shall be clearly labeled with an identification number and a written log shall be kept to track the source of contaminated material in each temporary storage unit.

2. Stockpiles
 a. Stockpiles shall be constructed to isolate stored contaminated material from the environment. The maximum stockpile size shall be as directed by the Owner. Stockpiles shall be constructed to include:
 1) A chemically resistant geomembrane liner free of holes and other damage. Non-reinforced geomembrane liners shall have a minimum thickness of 20 mils (0.5 mm). Scrim reinforced geomembrane liners shall have a minimum weight of 40 lbs. per 1000 square feet (20 kg/100 square meters). The ground surface on which the geomembrane is to be placed shall be free of rocks greater than 0.5 inches (12 mm) in diameter and any other object which could damage the membrane.
 2) Geomembrane cover free of holes or other damage to prevent precipitation from entering the stockpile. Non-reinforced geomembrane covers shall have a minimum thickness of 10 mils (0.25 mm). Scrim reinforced geomembrane covers shall have a minimum weight of 26 lbs. per 1000 square feet (13 kg/100 square meters). The cover material shall be extended over the berms and anchored or ballasted to prevent it from being removed or damaged by wind.
 3) Berms surrounding the stockpile, a minimum of 12 inches (300 mm) in height. Vehicle access points shall also be bermed.
 4) The liner system shall be sloped to allow collection of leachate. Storage and removal of liquid which collects in the stockpile, in accordance with paragraph Liquid Storage.

3. Roll-Off Units: Roll-off units used to temporarily store contaminated material shall be water tight. A cover shall be placed over the units to prevent precipitation from contacting the stored material. The units shall be located as shown on the drawings. Liquid which collects inside the units shall be removed and stored in accordance with paragraph Liquid Storage.
4. Liquid Storage: Liquid collected from excavations and stockpiles shall be temporarily stored in 55 gallon barrels (220 L barrels) OR 500 gallon tanks (2000 L tanks), as directed. Liquid storage containers shall be water-tight and shall be located as shown on the drawings.

F. Sampling
1. Sampling of Stored Material
 a. Samples of stored material shall be collected at a frequency as directed by the Owner.
 b. Stored material with contaminant levels that exceed the action levels shall be treated offsite. Analyses for contaminated material to be taken to an offsite treatment facility shall conform to local, state, and federal criteria as well as to the requirements of the treatment facility. Documentation of all analyses performed shall be furnished to the Owner. Additional sampling and analyses to the extent required by the approved offsite treatment, storage or disposal (TSD) facility shall be the responsibility of the Contractor and shall be performed at no additional cost to the Owner OR subject to approval by the Owner, as directed.

OR

Stored material with contaminant levels that exceed the action levels shall be treated onsite.

2. Sampling Liquid
 a. Liquid collected from excavations OR storage areas OR decontamination facilities, as directed, shall be sampled at a frequency of once for every 500 gallons (2,000 L) of liquid collected.
 b. Liquid with contaminant levels that exceed action levels shall be treated offsite. Analyses for contaminated liquid to be taken to an offsite treatment facility shall conform to local, state, and federal criteria as well as to the requirements of the treatment facility. Documentation of all analyses performed shall be furnished to the Owner. Additional sampling and analyses to the extent required by the approved offsite treatment, storage or disposal (TSD) facility receiving the material shall be the responsibility of the Contractor and shall be performed at no additional cost to the Owner OR subject to approval by the Owner.

OR

Liquid with contaminant levels that exceed action levels shall be treated onsite.

3. Sampling Beneath Storage Units
 a. Samples from beneath each storage unit shall be collected prior to construction of and after removal of the storage unit. Samples shall be collected at a frequency as directed by the Owner from a depth interval of 0 to 0.5 feet (0 to 0.15 m).
 b. Based on test results, soil which has become contaminated above action levels shall be removed at no additional cost to the Owner. Contaminated material which is removed from beneath the storage unit shall be handled in accordance with paragraph Sampling of Stored Material, as directed by the Owner and at no additional cost to the Owner, additional sampling and testing shall be performed to verify areas of contamination found beneath stockpiles have been cleaned up to below action levels.

G. Spills
1. In the event of a spill or release of a hazardous substance (as designated in NARA 40 CFR 302), pollutant, contaminant, or oil (as governed by the Oil Pollution Act [OPA], 33 U.S.C. 2701 et seq.), the Contractor shall notify the Owner immediately. If the spill exceeds the reporting threshold, the Contractor shall follow the pre-established procedures as described in the Contingency Plan for immediate reporting and containment. Immediate containment actions shall be taken to minimize the effect of any spill or leak. Cleanup shall be in accordance with applicable federal, state, and local regulations. as directed by the Owner, additional sampling and testing shall be performed to verify spills have been cleaned up. Spill cleanup and testing shall be done at no additional cost to the Owner.
H. Backfilling
 1. Confirmation Test Results: Excavations shall be backfilled immediately after all contaminated materials have been removed and confirmation test results have been approved. Backfill shall be placed and compacted to the lines and grades shown on the drawings.
 2. Compaction: Approved backfill shall be placed in lifts with a maximum loose thickness of 8 inches (200 mm). Soil shall be compacted to 90 percent of ASTM D 698 OR ASTM D 1557, as directed, maximum dry density. Density tests shall be performed at a frequency of once per 10,000 square feet (930 square meters) per lift. A minimum of one density test shall be performed on each lift of backfill placed. Field in-place dry density shall be determined in accordance with ASTM D 1556, ASTM D 2167, or ASTM D 2922. If ASTM D 2922 is used, a minimum of one in ten tests shall be checked using ASTM D 1556 or ASTM D 2167. Test results from ASTM D 1556 or ASTM D 2167 shall govern if there is a discrepancy with the ASTM D 2922 test results.

I. Disposal Requirements
 1. Offsite disposal of contaminated material shall be in accordance with Division 2 Section “Disposal of Hazardous Materials.”

J. Closure Report
 1. Three copies of a Closure Report shall be prepared and submitted within 14 calendar days of completing work at the site. The report shall be labeled with the contract number, project name, location, date, and name of general contractor. The Closure Report shall include the following information as a minimum:
 a. A cover letter signed by a responsible company official OR Professional Engineer registered in the state of the work who is a responsible company official, as directed, certifying that all services involved have been performed in accordance with the terms and conditions of the contract documents and regulatory requirements.
 b. A narrative report including, but not limited to, the following:
 1) site conditions, ground water elevation, and cleanup criteria;
 2) excavation logs;
 3) field screening readings;
 4) quantity of materials removed from each area of contamination;
 5) quantity of water/product removed during dewatering;
 6) sampling locations and sampling methods;
 7) sample collection data such as time of collection and method of preservation;
 8) sample chain-of-custody forms; and
 9) source of backfill.
 c. Copies of all chemical and physical test results.
 d. Copies of all manifests and land disposal restriction notifications.
 e. Copies of all certifications of final disposal signed by the responsible disposal facility official.
 f. Waste profile sheets.
 g. Scale drawings showing limits of each excavation, limits of contamination, known underground utilities within 50 feet (15 m) of excavation, sample locations, and sample identification numbers. On-site stockpile, storage, treatment, loading, and disposal areas shall also be shown on the drawings.
 h. Progress Photographs. Color photographs shall be used to document progress of the work. A minimum of four views of the site showing the location of the area of contamination, entrance/exit road, and any other notable site conditions shall be taken before work begins. After work has been started, activities at each work location shall be photographically recorded daily OR weekly, as directed. Photographs shall be a minimum of 3 x 5 inches (76.2 x 127.0 mm) and shall include:
 1) Soil removal and sampling.
 2) Dewatering operations.
3) Unanticipated events such as spills and the discovery of additional contaminated material.
4) Contaminated material/water storage, handling, treatment, and transport.
5) Site or task-specific employee respiratory and personal protection.
6) Fill placement and grading.
7) Post-construction photographs. After completion of work at each site, the Contractor shall take a minimum of four views of each excavation site. A digital version of all photos shown in the report shall be included with the Closure Report. Photographs shall be a minimum of 3 inches by 5 inches (76mm by 127 mm) and shall be mounted back-to-back in double face plastic sleeves punched to fit standard three ring binders. Each print shall have an information box attached. The box shall be typewritten and arranged as follows:

Project Name: Direction of View:
Location: Date/Time:
Photograph No.: Description of View:

END OF SECTION 02 61 00 00
SECTION 02 61 13 00 - UNDERGROUND STORAGE TANK REMOVAL

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing of labor and equipment for the underground storage tank removal. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Work Plan: The Work Plan within 30 days after notice to proceed. The Contractor shall allow 30 days in the schedule for the Owner’s review and approval. No adjustment for time or money will be made for resubmittals required as a result of noncompliance.
2. Qualifications: A document indicating that the Contractor meets the specified requirements.
3. Reports
 a. Backfill Material.
 b. Tank Contents Verification.
 c. Contaminated Water Disposal.
 d. Soil Examination, Testing, and Analysis.
 e. Reports including the chain-of-custody records.
 f. Backfilling.
 g. Copies of all laboratory and field test reports.
 h. Tank Closure Report: 3 copies of the report for each UST site opened, prepared in a standard 3-ring binder, within 14 days of completing work at each site. Each binder shall be labeled with contract number, project name, location and tank number; each binder shall be indexed. A copy of the report shall be furnished to the Installation Environmental Coordinator.
4. Records
5. Qualifications
 a. The Contractor shall have a minimum of 2 years of tank removal experience and shall be certified by the State in which the Project is located for tank removal work.
 b. Laboratory Services: For laboratory services the Contractor shall be validated in accordance with state certification requirements.
 c. Support Staff: The Contractor shall identify all staff involved for the various components, including personnel collecting and shipping samples. The qualifications of these staff members shall be detailed by the Contractor.

C. Regulatory Requirements
1. Permits and Licenses: The Contractor, as required or as directed by the Owner, shall obtain local, state, or federal permits and licenses that directly impact the Contractor's ability to perform the work prior to commencing removal operations.
2. Statutes and Regulations: Tank closures shall be carried out in accordance with 40 CFR 280, 40 CFR 262, 40 CFR 264, and 40 CFR 265 as well as the applicable local and State regulations. Hazardous material and/or waste shall be transported in accordance with applicable local and State regulations.

D. Project/Site Conditions: See the Detailed Scope of Work
1. Sequencing and Scheduling: The Contractor shall notify the Installation Environmental Coordinator and the Owner 5 days prior to tank removal. The Contractor shall be responsible for...
contacting the Implementation Agency (IA) in accordance with the applicable reporting requirements.

2. Work Plan
 a. The Contractor shall develop, implement, maintain, and supervise as part of the work, a comprehensive plan for tank removal and related operations. As a minimum the plan shall include, but not be limited to, excavation, removal, and ultimate disposal of the tank, its contents, and any contaminated materials. The Work Plan shall be based on work experience, on the requirements of this specification, and on the following references from the American Petroleum Institute:
 API RP 1604.
 API Standard 2015.
 API RP 2003.
 API Publication 2217A.
 API Publication 2219.

 No work at the site, with the exception of site inspections and mobilization, shall be performed until the Work Plan is approved. At a minimum, the Work Plan shall include:
 1) Discussion of the removal approach, tank cleaning, and tank cutting procedures.
 2) A Sampling and Analysis Plan.
 3) Methods to be employed for product, sludge, vapor, and pumpable liquid removal; purging and inerting; and storage methods proposed for control of surface water.
 4) Treatment options.
 5) Identification of waste, tank and contaminated soil transporters and means of transportation.
 6) Treatment, disposal, and alternate facilities, and means of treatment, disposal or remediation.
 7) Borrow source.
 8) Spill prevention plan.
 9) Spill contingency plan.
 10) Decontamination procedures, shoring plan, and safety measures.

1.2 PRODUCTS

 A. Backfill Material
 1. Backfill shall be classified in accordance with ASTM D 2487 as GW, GP, GM, GC, SW, SP, SM, SC, MH, CL, or CH and shall be free from roots and other organic matter, trash, debris, snow, ice or frozen materials. If off-site materials are used, soil classification test results shall be approved prior to bringing the material onsite. The testing frequency for backfill material shall be 1 per 1000 cubic yards or a minimum of 1 test. Non-contaminated material removed from the excavation shall be used for backfill in accordance with Paragraph BACKFILLING.

1.3 EXECUTION

 A. General Requirements
 1. Safety Guidelines: Personnel shall abide by the safety guidelines specified in Division 01.
 2. Burning and Explosives: Use of explosives or burning debris will not be allowed.
 3. Protection of Existing Structures and Utilities: The Contractor shall take all necessary precautions to avoid damage to existing structures, their appurtenances, monitoring wells, or utilities that may be affected by work activities. Any damage to utilities or monitoring wells resulting from the Contractor’s operations shall be repaired at no expense to the Owner. The Contractor shall coordinate with the installation to locate underground utilities prior to beginning construction. Utilities encountered which were not previously shown or otherwise located shall not be disturbed without approval from the Owner.

Underground Storage Tank Removal

County of Santa Clara Roads and Airports Department,

RAD-2012-01
4. Shoring: Shoring requirements shall be provided.

B. Tank Contents Verification
 1. Sampling: Tank product, pumpable liquids, tank coatings and sludge shall be sampled by the Contractor. If the data is not adequate, additional sampling and analysis to the extent required by the approved permitted treatment, storage or disposal (TSD) facility receiving the material shall be the responsibility of the Contractor. Meeting all regulatory requirements, including the preparation of hazardous materials and waste for transportation shall be the responsibility of the Contractor.
 2. Analysis: Tank contents shall be tested by the Contractor for the parameters listed herein. Analyses shall include total petroleum hydrocarbons (TPH), benzene, ethylbenzene, toluene and xylene (BETX), and lead.
 3. Characterization: Prior to removing any of the tank contents, the contents shall be characterized to determine if the tank contents must be disposed as a hazardous or special waste or in a special manner based on local, state, and Federal disposal regulations. Tank product, pumpable liquids, and sludge shall be characterized in accordance with 40 CFR 261 and 40 CFR 279. The waste contents determination and accompanying test results for each phase present in the tank shall be submitted to the Owner. The Contractor shall be responsible for any additional requirements identified by the disposal facility. The tank contents shall not be removed until approval is given by the Owner.

C. Clearing, Grubbing And Removals
 1. Areas designated for clearing and grubbing shall be cleared of all trees, stumps, down timber, brush, rubbish, roots larger than 75 mm (3 inches) in diameter, and matted roots prior to commencing operations. Concrete or asphalt pavement shall be saw cut at the limits of removal, broken and removed with the resulting debris disposed of as directed by the Owner. Chain link fence shall be removed and salvaged for reuse or disposed of off-site, as directed by the Owner.

D. Topsoil
 1. Uncontaminated topsoil shall be stripped and stockpiled separately for reuse at a location approved by the Owner if it meets the requirements of clean fill given in Paragraph BACKFILLING. Additional topsoil in excess of that produced by excavation shall be obtained where directed by the Owner. All areas disturbed by tank removal operations, other than areas to receive pavement or similar surface under this contract, shall be topsoiled. Topsoil shall be used wherever directed by the Owner.

E. Preparations For Excavation: Before excavating, the Contractor shall drain product piping back to the tank, remove residual liquids trapped in the product lines, and remove all product from the tank; and the tank shall be purged and vented in accordance with API RP 1604, and as specified herein.
 1. Removal of Product, Pumpable Liquids, and Sludge: Tank product, pumpable liquids, and sludge shall be contained, and stored onsite, prior to disposal. Contaminated water shall be treated as specified. Tank product, pumpable liquids, and sludge shall be analyzed and segregated to recover reusable products by the Owner prior to being transported to the designated location or treatment, storage and disposal (TSD) facility. Tank product, pumpable liquids, and sludge shall be removed and disposed of by the Contractor. No Owner facilities shall be used for permanent storage or disposal of the wastes. Temporary storage on Owner’s facilities will be allowed only until testing is complete, manifests (if necessary) are complete, and transportation is arranged. The Contractor shall be responsible for obtaining all required permits. Usable product shall be the property of the Contractor. The Contractor shall provide approved containers, vehicles, equipment, labor, signs, labels, placards and manifests and associated land disposal restriction notices and notifications, necessary for accomplishment of the work, including materials necessary for cleaning up spills that could occur from tank removal operations.
 2. Contaminated Water Disposal:
 a. Sampling, Analysis, and Containment
1) Contaminated water shall be sampled and analyzed both prior to and after treatment. Contaminated water produced from excavation operations and tank pumping treated onsite, shall be analyzed for pH; benzene, ethylbenzene, toluene, and xylenes (BETX); total lead; oil and grease; total petroleum hydrocarbons (TPH). Sampling and analysis shall be performed prior to disposal for every 200,000 L (50,000 gallons) of contaminated water treated. Analysis for contaminated water to be taken to an off-site treatment facility shall conform to the requirements of the treatment facility with documentation of all analyses performed furnished to the Owner in accordance with paragraph RECORDS.

2) Contaminated water shall be contained, stored onsite, and analyzed and disposed of by the Contractor in accordance with applicable Federal and state disposal regulations. The Contractor shall provide approved containers, vehicles, equipment, labor, signs, labels, placards and manifests and associated land disposal notices and notifications, necessary for accomplishment of the work.

b. Treatment: Contaminated water shall be treated by oil water separation, filtering, air stripping and activated carbon, or other means as approved by the Owner. If contaminated water is to be treated onsite, the proposed treatment shall be specified in the Work Plan and submitted for approval. Temporary storage and treatment equipment shall be installed at a location approved by the Owner. Treated effluent shall be sampled and analyzed and the results approved by the Owner before discharge to the sanitary sewer or the surface. Effluent shall be treated and discharged in accordance with the discharge permit.

F. Purging And Inerting: After the tank and piping contents have been removed, but prior to excavation beyond the top of the tank, the Contractor shall disconnect all the piping (except the piping needed to purge or inert the tank). Flammable and toxic vapors shall be purged from the tank or the tank made inert in accordance with API RP 1604, with the exceptions that filling with water shall not be used and, if dry ice is employed, the Contractor shall use a minimum of 1.8 kg per 500 L (3 pounds per 100 gallons) of tank volume. The tank atmosphere shall be continuously monitored for combustible vapors if the tank is purged, or continuously monitored for oxygen if the tank is inerted.

G. Excavation: Excavation areas, as well as work near roadways, shall be marked as directed by the Owner.
1. Exploratory Trenches: Exploratory trenches shall be excavated as necessary to determine the tank location, limits and the location of ancillary equipment.
2. Tank Excavation: Excavation around the perimeter of the tank shall be performed limiting the amount of potentially petroleum contaminated soil that could be mixed with previously uncontaminated soil. Petroleum contaminated soil shall be segregated in separate stockpiles. The Contractor shall maintain around the tank an excavation of sufficient size to allow workers ample room to complete the work, but also protect the workers from sliding or cave-ins. Sheetling, bracing, or shoring shall be installed in the absence of adequate side slopes if there is a need for workers to enter the excavated area. Surface water shall be diverted to prevent direct entry into the excavation. Dewatering of the excavation may require a discharge permit by the State and shall be limited to allow adequate access to the tank and piping, to assure a safe excavation, and to ensure that compaction and moisture requirements are met during backfilling. Dewatering may result in the production of petroleum contaminated water and/or free product. Free product shall be recovered from the groundwater only as part of necessary dewatering.
3. Piping Excavation: Excavation shall be performed as necessary to remove tank piping and ancillary equipment in accordance with paragraphs: Shoring, Tank Excavation, and Open Excavations.
4. Open Excavations: Open excavations and stockpile areas shall be secured while awaiting confirmation test results from the soil beneath the tank. The excavation shall be backfilled as soon as possible after tank and contaminated soil removals have been completed and confirmation samples have been taken. The Contractor shall divert surface water around excavations to prevent water from directly entering into the excavation.
5. **Stockpiles:** Uncontaminated excavated soil and petroleum contaminated soil that is not a state-regulated hazardous waste shall be stockpiled and used for backfill in the tank excavation prior to using borrow material or disposed of off-site. Excavated material that is regulated by the state as a hazardous waste shall be considered contaminated and shall be placed in containers such as drums, roll-offs or dumpsters for sampling in accordance with paragraph Stockpiled Material Sampling. Uncontaminated soil shall be stockpiled separately from the contaminated soil, a safe distance away from, but adjacent to, the excavation.

H. Removal Of Piping, Ancillary Equipment, And Tank

1. **Piping and Ancillary Equipment:** All piping and ancillary equipment shall be disconnected from the tank. The piping shall be removed completely (interior and exterior of the tank). All tank ancillary equipment and piping connections shall be capped, except those connections necessary to inert the tank within the excavation zone. The piping exterior and ancillary equipment shall be cleaned to remove all soil and inspected for signs of corrosion and leakage. The Contractor shall ensure no spillage of the piping contents occurs, as specified in the Work Plan, and as required in paragraph SPILLS. If the soil under and around the tank pad is contaminated, the tank pad shall be removed and disposed of off-site at an approved non-hazardous or hazardous waste facility, as required. If the soil under and around the tank pad is not contaminated, the tank pad shall remain in place.

2. **Tank:** The tank shall be removed from the excavation and the exterior cleaned to remove all soil and inspected for signs of corrosion, structural damage, or leakage. All materials coming into contact with the tank, or in the vicinity of the excavation such as shovels, slings and tools shall be of the non-sparking type. After removal from the excavation, the tank shall be placed on a level surface at an approved location and secured with wood blocks to prevent movement.

3. **Contaminated Soil, Tank and Piping Excavation Examination:** After the tank has been removed from the ground, the adjacent and underlying soil shall be examined for any evidence of leakage. The soil shall be visually inspected for staining after removal of all obviously contaminated soil, then screened for the presence of volatile and/or semi-volatile contamination using a real time vapor monitoring instrument or immunoassay field kits, as required. Uncontaminated soil or petroleum contaminated soil not regulated by the state as hazardous waste shall be transported off-site for disposal. Contaminated soil or suspected contaminated soil shall be containerized. the Owner shall determine the extent of the contaminated soil to be removed from each site. The Contractor shall report any evidence indicating that the amount of contaminated soil may exceed the individual site limit specified, to the Owner the same day it is discovered. If minimal additional excavation is required, the Owner may allow the Contractor to proceed. If extensive contamination is encountered, the excavation shall be sampled and backfilled in accordance with paragraph BACKFILLING. After the known contaminated soil is removed, the excavation shall be sampled and analyzed.

I. Tank Cleaning

1. **Exterior:** Soil shall be removed from the exterior of the tank, piping, and associated equipment to eliminate soil deposition on roadways during transportation to a temporary storage area, ensure markings will adhere to the surfaces, and simplify tank cutting. Soil shall be removed using non-sparking tools. Removed uncontaminated soil and soil not regulated by the state as a hazardous waste shall be recovered and used as backfill in the former tank excavation. Soil believed to be contaminated shall be removed and containerized.

2. **Temporary Storage:** If the tank is stored after the tank exterior is cleaned and ancillary equipment is removed, and prior to being cut into sections, the tank shall be labeled as directed in API RP 1604, placed on blocks, and temporarily stored in the area of the existing tank site. Prior to cleaning the tank interior the tank atmosphere shall be monitored for combustible vapors and purged or inerted if combustible vapors are detected.

3. **Interior:**
 a. The tank interior shall be cleaned using a high pressure (greater than 500 psi (3.45 Mpa)), low volume (less than 2 gpm (0.13 L/s)) water spray or steam cleaned until all loose scale and sludge is removed, and contamination, in the form of a sheen, is no longer visible in
the effluent stream. The interior surfaces of piping shall also be cleaned, to the extent
possible, using the same method used for cleaning the tank. Contaminated water
generated from interior cleaning operations (of both piping and tank) shall not exceed the
following quantities for each UST cleaned:

<table>
<thead>
<tr>
<th>UST VOLUME (LITERS)</th>
<th>PERCENT OF UST VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,785 or less</td>
<td>5</td>
</tr>
<tr>
<td>37,850 or less</td>
<td>5 or 378 L, whichever is less</td>
</tr>
<tr>
<td>75,700 or less</td>
<td>1 or 568 L, whichever is less</td>
</tr>
<tr>
<td>greater than 75,700</td>
<td>1 or 946 L, whichever is less</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UST VOLUME (GALLONS)</th>
<th>PERCENT OF UST VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 or less</td>
<td>5</td>
</tr>
<tr>
<td>10,000 or less</td>
<td>5 or 100 gal., whichever is less</td>
</tr>
<tr>
<td>20,000 or less</td>
<td>1 or 150 gal., whichever is less</td>
</tr>
<tr>
<td>greater than 20,000</td>
<td>1 or 250 gal., whichever is less</td>
</tr>
</tbody>
</table>

b. All contaminated water resulting from cleaning operations shall be handled in accordance
with paragraph Contaminated Water Disposal. Cleaning shall be accomplished eliminating,
to the greatest extent possible, the need for personnel to enter the tank. Cleaning shall be
done using specially designed tank cleaning equipment which allows the tank to be
cleaned prior to cutting into sections without requiring personnel to enter the tank or, if less
specialized equipment is used, the tank shall be partially dissected to overcome confined
space entry hazards.

J. Soil Examination, Testing, And Analysis
 1. Tank Excavation Sampling Procedures: After soil known to be contaminated has been removed
 or after soil excavation is complete, the excavation shall be sampled with procedures, number,
 location, and methodology in accordance with state regulations. Samples shall be obtained from
 the pits, in accordance with ASTM D 1587, using a backhoe with a Shelby tube attached to the
 bucket.
 2. Stockpiled Material Sampling: Sampling locations, number and specific procedures shall be as
 required by the implementing agency and the disposal facility.
 3. Analysis: Soil samples from the excavation and stockpiled material shall be tested in accordance
 with the approved Sampling and Analysis Plan for the following parameters: total petroleum
 hydrocarbon (TPH); benzene, ethylbenzene, toluene, xylene (BETX); toxicity characteristic
 leaching procedure (TCLP). Copies of all test results shall be provided to the Owner.

K. Backfilling: The tank area and any other excavations shall be backfilled only after the soil test results
 have been approved. Contaminated soil removal shall be complete after the bottom of the tank
 excavation is determined to have soil contamination levels below the state standards of approval by the
 Owner. The excavation shall be dewatered if necessary. Stockpiled material subjected to chemical
 confirmation testing shall be used as backfill if it is found to conform to the requirements of clean fill per
 appropriate state and local regulations. Backfill consisting of clean fill shall be placed in layers with a
 maximum loose thickness of 200 mm (8 inches) and compacted to 90 percent maximum density for
 cohesive soils and 95 percent maximum density for cohesionless soils. Density tests shall be performed
 by an approved commercial testing laboratory or by facilities furnished by the Contractor. Test results
 shall be attached to contractor's Quality Control Report. A minimum of 1 density test shall be performed
 on each lift. Laboratory tests for moisture density relations shall be determined in accordance with
 ASTM D 1557, Method B, C, or D, or ASTM D 3017. A mechanical tamper may be used provided that
 the results are correlated with those obtained by the hand tamper. Field in-place density shall be
determined in accordance with ASTM D 1556, ASTM D 2922, or ASTM D 2167.

L. Disposal Requirements
1. Treatment, Disposal, and Recycling: Disposal of hazardous or special wastes shall be in accordance with all local, State, and Federal solid and hazardous waste laws and regulations; and conditions specified herein. This work shall include all necessary personnel, labor, transportation, packaging, detailed analyses (if required for disposal, manifesting or completing waste profile sheets), equipment, and reports. Product and pumpable liquids removed from the tank shall be recycled to the greatest extent practicable. The tanks removed shall be disposed of at one of the state approved facilities. Each tank disposed of in this manner shall be manifested as required by the State to document delivery and acceptance at the disposal facility.

2. Tank and Ancillary Equipment Disposal: After the tank, piping, and ancillary equipment have been removed from the excavation and the tank cleaned, the tank shall be cut into sections with no dimension greater than 1500 mm (5 feet). Tank and piping sections shall be disposed of in a State approved off-site disposal facility or in a salvage yard. The tank shall be cut into sections prior to being taken from the tank removal site. The Contractor shall not sell the tank intact. Ancillary equipment shall be disposed of at an approved off-site disposal facility or a salvage yard. Piping shall be disconnected from the tank and removed or grouted full of a portland cement and water slurry consisting of 22.7 L (6 gallons) of clean water per 42.6 kg (94 pound) sack of portland cement, thoroughly mixed and free of lumps, unless otherwise indicated.

3. Transportation of Wastes: Transportation shall be provided in accordance with Department of Transportation (DOT) Hazardous Material Regulations and State and local requirements, including obtaining all necessary permits, licenses, and approvals. Evidence that a State licensed hazardous waste or waste transporter is being used shall be included in the SUBMITTALS.

4. Salvage Rights: The Contractor shall retain the rights to salvage value of recycled or reclaimed product and metal not otherwise identified, so long as the requirements of 40 CFR 266 and 40 CFR 279, or the applicable State requirements are met. At the end of the contract, the Contractor shall provide documentation on the disposition of salvaged materials.

5. Records: Records shall be maintained of all waste determinations, including appropriate results of analyses performed, substances and sample location, the time of collection, and other pertinent data as required by 40 CFR 280, Section 74 and 40 CFR 262 Subpart D. Transportation, treatment, disposal methods and dates, the quantities of waste, the names and addresses of each transporter and the disposal or reclamation facility, shall also be recorded and available for inspection, as well as copies of the following documents:
 a. Manifests.
 b. Waste analyses or waste profile sheets.
 c. Certifications of final treatment/disposal signed by the responsible disposal facility official.
 d. Land disposal notification records required under 40 CFR 268 for hazardous wastes.

6. Hazardous/Special Waste Manifests: Manifesting shall conform to Federal, State and local requirements.

7. Documentation of Treatment or Disposal: The wastes, other than recyclable or reclaimable product or metal, shall be taken to a treatment, storage, or disposal facility which has EPA or appropriate state permits and hazardous or special waste identification numbers and complies with the provisions of the disposal regulations. Documentation of acceptance of special waste by a facility legally permitted to treat or dispose of those materials shall be furnished to the Owner not later than 5 working days following the delivery of those materials to the facility; and a copy shall be included in the Tank Closure Report. A statement of agreement from the proposed treatment, storage or disposal facility and certified transporters to accept hazardous or special wastes shall be furnished to the Owner not less than 14 days before transporting any wastes. If the Contractor selects a different facility than is identified in the contract, documentation shall be provided for approval to certify that the facility is authorized and meets the standards specified in 40 CFR 264.

M. Spills: Immediate containment actions shall be taken as necessary to minimize effect of any spill or leak. Cleanup shall be in accordance with applicable Federal, State, local laws and regulations, and district policy at no additional cost to the Owner.

N. Tank Closure Report: Tank Closure Reports shall include the following information as a minimum:
1. A cover letter signed by a Professional Engineer registered in the State in which the Project is located certifying that all services involved have been performed in accordance with the terms and conditions of this specification.

2. A narrative report describing what was encountered at each site, including:
 a. condition of the UST.
 b. any visible evidence of leaks or stained soils.
 c. results of vapor monitoring readings.
 d. actions taken including quantities of materials treated or removed.
 e. reasons for selecting sample locations.
 f. sample locations.
 g. collection data such as time of collection and method of preservation.
 h. reasons for backfilling site.
 i. whether or not groundwater was encountered.

3. Copies of all analyses performed for disposal.

4. Copies of all waste analyses or waste profile sheets.

5. Copies of all certifications of final disposal signed by the responsible disposal installation official.

6. Information on who sampled, analyzed, transported, and accepted all wastes encountered, including copies of manifests, waste profile sheets, land disposal restriction, notification and certification forms, certificates of disposal, and other pertinent documentation.

7. Copies of all analyses performed for confirmation that underlying soil is not contaminated, with copies of chain-of-custody for each sample. Analyses shall give the identification number of the sample used. Sample identification numbers shall correspond to those provided on the one-line drawings.

8. Scaled one-line drawings showing tank locations, limits of excavation, limits of contamination, underground utilities within 15 m (50 feet) sample locations, and sample identification numbers.

9. Progress Photographs. The Contractor shall take a minimum of 4 views of the site showing such things as the location of each tank, entrance/exit road, and any other notable site condition before work begins. After work has been started at the site, the Contractor shall photographically record activities at each work location daily. Photographs shall be 76.2 x 127.0 mm (3 x 5 inches) and shall include:
 a. Soil removal, handling, and sampling.
 b. Unanticipated events such as discovery of additional contaminated areas.
 c. Soil stockpile area.
 d. Tank.
 e. Site or task-specific employee respiratory and personal protection.
 f. Fill placement and grading.
 g. Post-construction photographs. After completion of work at each site, the Contractor shall take a minimum of four (4) views of the site. Prints shall illustrate the condition and location of work and the state of progress. The photographs shall be mounted and enclosed back-to-back in a double face plastic sleeve punched to fit standard three ring binders. Each color print shall show an information box, 40 x 90 mm (1-1/2 x 3-1/2 inches). The information box for the 76.2 x 127.0 mm (3 x 5 inch) photographs shall be scaled down accordingly, or taped to the bottom of the photo. The box shall be typewritten and arranged as follows:
 - Project No.
 - Contract No.
 - Location
 - Contractor/Photographer
 - Photograph No. Date/Time:
 - Description
 - Direction of View
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 61 13 00</td>
<td>02 41 13 13</td>
<td>Selective Demolition</td>
</tr>
<tr>
<td>02 61 13 00</td>
<td>02 61 00 00</td>
<td>Excavation And Handling Of Contaminated Material</td>
</tr>
<tr>
<td>02 65 00 00</td>
<td>02 41 13 13</td>
<td>Selective Demolition</td>
</tr>
<tr>
<td>02 65 00 00</td>
<td>02 61 00 00</td>
<td>Excavation And Handling Of Contaminated Material</td>
</tr>
<tr>
<td>02 65 00 00</td>
<td>02 61 13 00</td>
<td>Underground Storage Tank Removal</td>
</tr>
</tbody>
</table>
SECTION 03 01 30 71 - CONCRETE REHABILITATION

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for concrete rehabilitation. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes the following:
 a. Removal of deteriorated concrete and reinforcement and subsequent replacement and patching.
 b. Floor joint repair.
 c. Epoxy crack injection.
 e. Polymer overlays.
 f. Polymer sealers.
 g. Steel structural reinforcement.
 h. Composite structural reinforcement.

C. Submittals
1. Product Data: For each type of product indicated. Include material descriptions, chemical composition, physical properties, test data, and mixing, preparation, and application instructions.
2. Formwork and Shoring Drawings: Prepared by or under the supervision of a qualified professional engineer detailing formwork and temporary shoring and supports. Include schedule and sequence for erection and removal relative to removal of deteriorated concrete and reinforcement and subsequent repair and reinforcement.
3. Samples: Cured Samples of overlay and patching materials.
4. Rehabilitation Program: For each phase of rehabilitation process, including protection of surrounding materials and Project site during operations. Describe in detail materials, methods, equipment, and sequence of operations to be used for each phase of the Work.
 a. If alternative materials and methods to those indicated are proposed for any phase of rehabilitation work, submit substitution request and provide a written description of proposed materials and methods, including evidence of successful use on other comparable projects, and a testing program to demonstrate their effectiveness for this Project.

D. Delivery, Storage, And Handling
1. Deliver materials to Project site in manufacturer's original and unopened containers, labeled with type and name of products and manufacturers.
2. Comply with manufacturer's written instructions for minimum and maximum temperature requirements and other conditions for storage.
3. Store cementitious materials off the ground, under cover, and in a dry location.
4. Store aggregates, covered and in a dry location, where grading and other required characteristics can be maintained and contamination avoided.

E. Project Conditions
1. Environmental Limitations for Epoxies: Do not apply when air and substrate temperatures are outside limits permitted by manufacturer. During hot weather, cool epoxy components before mixing, store mixed products in shade, and cool unused mixed products to retard setting. Do not apply to wet substrates unless approved by manufacturer.
a. Use only Class A epoxies when substrate temperatures are below or are expected to go below 40 deg F (5 deg C) within 8 hours.
b. Use only Class A or B epoxies when substrate temperatures are below or are expected to go below 60 deg F (16 deg C) within 8 hours.
c. Use only Class C epoxies when substrate temperatures are above and are expected to stay above 60 deg F (16 deg C) for 8 hours.

2. Cold-Weather Requirements for Cementitious Materials:
 a. Do not apply unless air temperature is above 40 deg F (5 deg C) and will remain so for at least 48 hours after completion of Work.
 OR
 Comply with the following procedures:
 1) When air temperature is below 40 deg F (5 deg C), heat patching material ingredients and existing concrete to produce temperatures between 40 and 90 deg F (5 and 32 deg C).
 2) When mean daily air temperature is between 25 and 40 deg F (minus 4 and plus 5 deg C), cover completed Work with weather-resistant insulating blankets for 48 hours after repair or provide enclosure and heat to maintain temperatures above 32 deg F (0 deg C) within the enclosure for 48 hours after repair.
 3) When mean daily air temperature is below 25 deg F (minus 4 deg C), provide enclosure and heat to maintain temperatures above 32 deg F (0 deg C) within the enclosure for 48 hours after repair.

3. Hot-Weather Requirements for Cementitious Materials: Protect repair work when temperature and humidity conditions produce excessive evaporation of water from patching materials. Provide artificial shade and wind breaks, and use cooled materials as required. Do not apply to substrates with temperatures of 90 deg F (32 deg C) and above.

4. Environmental Limitations for High-Molecular-Weight Methacrylate Sealers: Do not apply when concrete surface temperature is below 55 deg F (13 deg C) or above 75 deg F (24 deg C) OR 90 deg F (32 deg C), as directed. Apply only to dry substrates OR substrates that have been dry for at least 72 hours.

1.2 PRODUCTS

A. Bonding Agents
 1. Epoxy-Modified, Cementitious Bonding and Anticorrosion Agent: Product that consists of water-insensitive epoxy adhesive, portland cement, and water-based solution of corrosion-inhibiting chemicals that forms a protective film on steel reinforcement.
 2. Epoxy Bonding Agent: ASTM C 881/C 881M, Type II OR V, as directed.
 a. Thin Film Open Time: Not less than two OR six OR 24, as directed, hours.
 3. Latex Bonding Agent: ASTM C 1059, Type I OR II OR II at exterior locations and where indicated, Type I at other locations, as directed.
 4. Mortar Scrub-Coat: 1 part portland cement complying with ASTM C 150, Type I, II, or III and 1 part fine aggregate complying with ASTM C 144, except 100 percent passing a No. 16 (1.18-mm) sieve.

B. Patching Mortar
 1. Patching Mortar, General:
 a. Overhead Patching Mortar: For overhead repairs, use patching mortar recommended by manufacturer for overhead use and as specified in this Article.
 b. Coarse Aggregate for Adding to Patching Mortar: Washed aggregate complying with ASTM C 33, Size No. 8, Class 5S. Add only as permitted by patching mortar manufacturer.
2. **Job-Mixed Patching Mortar**: 1 part portland cement complying with ASTM C 150, Type I, II, or III and 2-1/2 parts fine aggregate complying with ASTM C 144, except 100 percent passing a No. 16 (1.18-mm) sieve.

3. **Cementitious Patching Mortar**: Packaged, dry mix complying with ASTM C 928.

4. **Polymer-Modified, Cementitious Patching Mortar**: Packaged, dry mix complying with ASTM C 928, that contains a non-redispersible latex additive as either a dry powder or a separate liquid that is added during mixing.

5. **Polymer-Modified, Silica-Fume-Enhanced, Cementitious Patching Mortar**: Packaged, dry mix complying with ASTM C 928, that contains silica fume complying with ASTM C 1240 and a non-redispersible latex additive as either a dry powder or a separate liquid that is added during mixing.

C. Concrete

1. **Concrete Materials and Admixtures**: Comply with Division 03 Section "Cast-in-place Concrete".

2. **Steel and Fiber Reinforcement and Reinforcement Accessories**: Comply with Division 03 Section "Cast-in-place Concrete".

3. **Form-Facing Materials**: Comply with Division 03 Section "Cast-in-place Concrete".

4. **Shotcrete**: Comply with Division 03 Section "Shotcrete".

5. **Preplaced Aggregate**: Washed aggregate complying with ASTM C 33, Class 5S, with 95 to 100 percent passing a 1-1/2-inch (37.5-mm) sieve, 40 to 80 percent passing a 1-inch (25-mm) sieve, 20 to 45 percent passing a 3/4-inch (19-mm) sieve, 0 to 10 percent passing a 1/2-inch (12.5-mm) sieve, and 0 to 2 percent passing a 3/8-inch (9.5-mm) sieve, **OR** 100 percent passing a 1-1/2-inch (37.5-mm) sieve, 95 to 100 percent passing a 1-inch (25-mm) sieve, 40 to 80 percent passing a 3/4-inch (19-mm) sieve, 0 to 15 percent passing a 1/2-inch (12.5-mm) sieve, and 0 to 2 percent passing a 3/8-inch (9.5-mm) sieve, **as directed**.

6. **Fine Aggregate for Grout Used with Preplaced Aggregate**: Fine aggregate complying with ASTM C 33, but with 100 percent passing a No. 8 (2.36-mm) sieve, 95 to 100 percent passing a No. 16 (1.18-mm) sieve, 55 to 80 percent passing a No. 30 (0.6-mm) sieve, 30 to 55 percent passing a No. 50 (0.3-mm) sieve, 10 to 30 percent passing a No. 100 (0.15-mm) sieve, 0 to 10 percent passing a No. 200 (0.075-mm) sieve, and having a fineness modulus of 1.30 to 2.10.

7. **Grout Fluidifier for Grout Used with Preplaced Aggregate**: ASTM C 937.

8. **Portland Cement for Grout Used with Preplaced Aggregate**: ASTM C 150.

9. **Pozzolans for Grout Used with Preplaced Aggregate**: ASTM C 618.

D. Miscellaneous Materials

1. **Epoxy Joint Filler**: 2-component, semirigid, 100 percent solids, epoxy resin with a Type A Shore durometer hardness of at least 80 per ASTM D 2240.

2. **Polyurea Joint Filler**: 2-component, semirigid, 100 percent solids, polyurea resin with a Type A Shore durometer hardness of at least 80 per ASTM D 2240.

3. **Epoxy Crack Injection Adhesive**: ASTM C 881/C 881M, Type I **OR** IV, **as directed**, Grade 1, except for gel time **OR** solvent free, **as directed**.

4. **Capping Adhesive**: Product manufactured for use with crack injection adhesive by same manufacturer.

5. **Corrosion-Inhibiting Treatment Materials**: Water-based solution of alkaline corrosion-inhibiting chemicals that penetrates concrete by diffusion and forms a protective film on steel reinforcement.

6. **Polymer Overlay**: Epoxy adhesive complying with ASTM C 881/C 881M, Type III.

7. **Aggregate for Use with Polymer Overlay**: Oven-dried, washed silica sand complying with ACI 503.3.

8. **Polymer Sealer**: Low-viscosity epoxy or high-molecular-weight methacrylate penetrating sealer recommended by manufacturer for application to exterior concrete traffic surfaces.

9. **Methylmethacrylate Sealer/Brighteners**: Clear low-viscosity sealer recommended by manufacturer for sealing exterior exposed-aggregate concrete, and formulated to bring out color of aggregates and give concrete a wet look.

10. **Steel Plates, Shapes, and Bars**: ASTM A 36/A 36M.
a. After fabricating, prepare surfaces to comply with SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."

b. For minimum protection to steel after preparation, apply one coat of lead- and chromate-free, modified-alkyd primer complying with MPI#76 and one coat of alkyd-gloss enamel complying with MPI#96.

c. After preparation, apply two-coat high-performance coating system consisting of organic zinc-rich primer, complying with SSPC-Paint 20 or SSPC-Paint 29 and topcoat of high-build, urethane or epoxy coating recommended by manufacturer for application over specified zinc-rich primer. Comply with coating manufacturer's written directions and with requirements in SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.

11. Bolts, Nuts, and Washers: Carbon steel; ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6), for bolts; ASTM A 563 (ASTM A 563M), Grade A, for nuts; and ASTM F 436 (ASTM F 436M) for washers; hot-dip or mechanically zinc coated.

12. Postinstalled Anchors: Chemical or expansion anchors, made from stainless-steel components complying with ASTM F 593 and ASTM F 594, Alloy Group 1 or 2 (ASTM F 738M and ASTM F 836M, Alloy Group A1 or A4) for bolts and nuts; ASTM A 666 or ASTM A 276, Type 304 or 316, for anchors, with capability to sustain, without failure, a load equal to four times the load imposed, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.

13. Composite Structural Reinforcement: Manufacturer's system consisting of carbon OR glass, as directed, fiber reinforcement in the form of preimpregnated sheets or tow sheet with field-applied saturant, and epoxy primers, fillers, adhesives, saturants, and topcoats, designed for use as external structural reinforcement for concrete.

E. Mixes

1. Mix products, in clean containers, according to manufacturer's written instructions.
 a. Add clean silica sand and coarse aggregates to products only as recommended by manufacturer.
 b. Do not add water, thinners, or additives unless recommended by manufacturer.
 c. When practical, use manufacturer's premeasured packages to ensure that materials are mixed in proper proportions. When premeasured packages are not used, measure ingredients using graduated measuring containers; do not estimate quantities or use shovel or trowel as unit of measure.
 d. Do not mix more materials than can be used within recommended open time. Discard materials that have begun to set.

2. Mortar Scrub-Coat: Mix with enough water to provide consistency of thick cream.

3. Dry-Pack Mortar: Mix with just enough liquid to form damp cohesive mixture that can be squeezed by hand into a ball but is not plastic.

4. Concrete: Comply with Division 03 Section "Cast-in-place Concrete."

5. Shotcrete: Comply with Division 03 Section "Shotcrete."

6. Grout for Use with Preplaced Aggregate: Proportion according to ASTM C 938. Add grout fluidifier to mixing water followed by cementitious materials and then fine aggregate.

1.3 EXECUTION

A. Examination

1. Notify the Owner seven days in advance of dates when areas of deteriorated or delaminated concrete and deteriorated reinforcing bars will be located.

2. Locate areas of deteriorated or delaminated concrete using hammer or chain drag sounding and mark boundaries. Mark areas for removal by simplifying and squaring off boundaries. At columns and walls make boundaries level and plumb, unless otherwise indicated.
3. Locate at least three reinforcing bars using a pachometer, and drill test holes to determine depth of cover. Calibrate pachometer, using depth of cover measurements, and verify depth of cover in removal areas using pachometer.

B. Preparation
1. Protect people, motor vehicles, equipment, surrounding construction, Project site, plants, and surrounding buildings from injury resulting from concrete rehabilitation work.
 a. Erect and maintain temporary protective covers over pedestrian walkways and at points of entrance and exit for people and vehicles, unless such areas are made inaccessible during the course of concrete rehabilitation work. Construct covers of tightly fitted, 3/4-inch (19-mm) exterior-grade plywood supported at 16 inches (405 mm) o.c. and covered with asphalt roll roofing.
 b. Protect adjacent equipment and surfaces by covering them with heavy polyethylene film and waterproof masking tape or a liquid strippable masking agent. If practical, remove items, store, and reinstall after potentially damaging operations are complete.
 c. Neutralize and collect alkaline and acid wastes according to requirements of authorities having jurisdiction, and dispose of by legal means off Owner's property.
 d. Dispose of runoff from wet operations by legal means and in a manner that prevents soil erosion, undermining of paving and foundations, damage to landscaping, and water penetration into building interiors.
 e. Collect runoff from wet operations and dispose of by legal means off Owner's property.
3. Concrete Removal:
 a. Saw-cut perimeter of areas indicated for removal to a depth of at least 1/2 inch (13 mm). Make cuts perpendicular to concrete surfaces and no deeper than cover on reinforcement.
 b. Remove deteriorated and delaminated concrete by breaking up and dislodging from reinforcement.
 c. Remove additional concrete, if necessary, to provide a depth of removal of at least 1/2 inch (13 mm) over entire removal area.
 d. Where half or more of the perimeter of reinforcing bar is exposed, bond between reinforcing bar and surrounding concrete is broken, or reinforcing bar is corroded, remove concrete from entire perimeter of bar and to provide at least a 3/4-inch (19-mm) clearance around bar.
 e. Test areas where concrete has been removed by tapping with hammer, and remove additional concrete until unsound and disbonded concrete is completely removed.
 f. Provide fractured aggregate surfaces with a profile of at least 1/8 inch (3 mm) that are approximately perpendicular or parallel to original concrete surfaces. At columns and walls, make top and bottom surfaces level, unless otherwise directed.
4. Reinforcing Bar Preparation: Remove loose and flaking rust from reinforcing bars by high-pressure water cleaning OR abrasive blast cleaning OR needle scaling OR wire brushing, as directed, until only tightly bonded light rust remains.
 a. Where section loss of reinforcing bar is more than 25 percent, or 20 percent in 2 or more adjacent bars, cut bars and remove and replace. Remove additional concrete as necessary to provide at least 3/4-inch (19-mm) clearance at existing and replacement bars. Splice replacement bars to existing bars according to ACI 318 (ACI 318M), by lapping, welding, or using mechanical couplings.
5. Preparation of Floor Joints for Repair: Saw-cut joints full width to edges and depth of spalls, but not less than 3/4 inch (19 mm) OR 1 inch (25 mm) OR 2 inches (50 mm), as directed, deep. Clean out debris and loose concrete; vacuum or blow clear with compressed air.
6. Surface Preparation for Corrosion-Inhibiting Treatment: Clean concrete by low-pressure water cleaning OR detergent scrubbing OR sand blasting, as directed, to remove dirt, oils, films, and other materials detrimental to treatment application. Allow surface to dry before applying corrosion-inhibiting treatment.
7. **Surface Preparation for Overlays:** Remove delaminated material and deteriorated concrete surface material. Roughen surface of concrete by sand blasting OR shot blasting OR scarifying OR needle scaling OR high-pressure water jetting OR scabbling OR flame blasting OR milling, as directed, to produce a surface profile matching CSP 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9, as directed, per ICRI 03732. Sweep and vacuum roughened surface to remove debris followed by low-pressure water cleaning.

8. **Surface Preparation for Sealers:** Clean concrete by shot blasting OR low-pressure water cleaning OR detergent scrubbing, as directed, to remove dirt, oils, films, and other materials detrimental to sealer application.

9. **Surface Preparation for Sealers:** Acid etch surface of concrete to produce a surface profile matching CSP 1 per ICRI 03732. Prepare surface for acid etching by detergent scrubbing to remove oils and films that may prevent acid penetration.
 a. Remove excess acid solution, reaction products, and debris by squeegeeing or vacuuming.
 b. Scrub surface with an alkaline detergent, rinse, and squeegee or vacuum.
 c. Check acidity of surface with pH test paper and continue rinsing until pH is acceptable.
 d. When pH is acceptable and surface is clean, vacuum dry.

10. **Surface Preparation for Composite Structural Reinforcement:** Remove delaminated material and deteriorated concrete surface material. Clean concrete where reinforcement and epoxy patching mortar is to be applied by low-pressure water cleaning OR detergent scrubbing, as directed, to remove dirt, oils, films, and other materials detrimental to epoxy application. Roughen surface of concrete by sand blasting.

C. **Application**

1. **General:** Comply with manufacturer's written instructions and recommendations for application of products, including surface preparation.

2. **Epoxy-Modified, Cementitious Bonding and Anticorrosion Agent:** Apply to reinforcing bars and concrete by stiff brush or hopper spray according to manufacturer's written instructions. Apply to reinforcing bars in two coats, allowing first coat to dry two to three hours before applying second coat. Allow to dry before placing patching mortar or concrete.

3. **Epoxy Bonding Agent:** Apply to reinforcing bars and concrete by brush, roller, or spray according to manufacturer's written instructions, leaving no pinholes or other uncoated areas. Apply to reinforcing bars in at least two coats, allowing first coat to dry before applying second coat. Apply patching mortar or concrete while epoxy is still tacky. If epoxy dries, recoat before placing patching mortar or concrete.

4. **Latex Bonding Agent, Type II:** Mix with portland cement and scrub into concrete surface according to manufacturer's written instructions. Apply patching mortar or concrete while bonding agent is still wet. If bonding agent dries, recoat before placing patching mortar or concrete.

5. **Latex Bonding Agent, Type I:** Apply to concrete by brush roller or spray. Allow to dry before placing patching mortar or concrete.

6. **Mortar Scrub-Coat:** Dampen repair area and surrounding concrete 6 inches (150 mm) beyond repair area. Remove standing water and apply scrub-coat with a brush, scrubbing it into surface and thoroughly coating repair area. If scrub-coat dries, recoat before applying patching mortar or concrete.

7. **Patching Mortar:** Unless otherwise recommended by manufacturer, apply as follows:
 a. Wet substrate thoroughly and then remove standing water. Scrub a slurry of neat patching mortar mixed with latex bonding agent into substrate, filling pores and voids.
 b. Place patching mortar by troweling toward edges of patch to force intimate contact with edge surfaces. For large patches, fill edges first and then work toward center, always troweling toward edges of patch. At fully exposed reinforcing bars, force patching mortar to fill space behind bars by compacting with trowel from sides of bars.
 c. For vertical patching, place material in lifts of not more than 1 inch (25 mm) OR 1-1/2 inches (38 mm) OR 2 inches (50 mm) OR 3 inches (75 mm), as directed, nor less than 1/8 inch (3 mm) OR 1/4 inch (6 mm), as directed. Do not feather edge.
d. For overhead patching, place material in lifts of not more than 1 inch (25 mm) OR 1-1/2 inches (38 mm) OR 2 inches (50 mm), as directed, nor less than 1/8 inch (3 mm) OR 1/4 inch (6 mm), as directed. Do not feather edge.

e. After each lift is placed, consolidate material and screed surface.

f. Where multiple lifts are used, score surface of lifts to provide a rough surface for application of subsequent lifts. Allow each lift to reach final set before placing subsequent lifts.

g. Allow surfaces of lifts that are to remain exposed to become firm and then finish to a smooth OR rough, as directed, surface with a wood or sponge float OR broom or burlap drag, as directed.

h. Wet-cure cementitious patching materials, including polymer-modified, cementitious patching materials, for not less than seven days by water-fog spray or water-saturated absorptive cover.

8. Dry-Pack Mortar: Use for deep cavities and where indicated. Unless otherwise recommended by manufacturer, apply as follows:

a. Provide forms where necessary to confine patch to required shape.

b. Wet substrate and forms thoroughly and then remove standing water.

c. Place dry-pack mortar into cavity by hand, and compact into place with a hardwood drive stick and mallet or hammer. Do not place more material at a time than can be properly compacted. Continue placing and compacting until patch is approximately level with surrounding surface.

d. After cavity is filled and patch is compacted, trowel surface to match profile and finish of surrounding concrete. A thin coat of patching mortar may be troweled into the surface of patch to help obtain required finish.

e. Wet-cure patch for not less than seven days by water-fog spray or water-saturated absorptive cover.

9. Concrete: Place according to Division 03 Section “Cast-in-place Concrete” and as follows:

a. Apply epoxy-modified, cementitious bonding and anticorrosion agent OR epoxy bonding agent, as directed, to reinforcement and concrete substrate.

b. Apply latex bonding agent OR Type I, latex bonding agent OR mortar scrub-coat, as directed, to concrete substrate.

c. Use vibrators to consolidate concrete as it is placed.

d. At unformed surfaces, screed concrete to produce a surface that when finished with patching mortar will match required profile and surrounding concrete.

e. Where indicated place concrete by form and pump method.

1) Design and construct forms to resist pumping pressure in addition to weight of wet concrete. Seal joints and seams in forms and junctions of forms with existing concrete.

2) Pump concrete into place, releasing air from forms as concrete is introduced. When formed space is full, close air vents and pressurize to 14 psi (96 kPa).

f. Wet-cure concrete for not less than seven days by leaving forms in place or keeping surfaces continuously wet by water-fog spray or water-saturated absorptive cover.

g. Fill placement cavities with dry-pack mortar and repair voids with patching mortar. Finish to match surrounding concrete.

10. Shotcrete: Place according to Division 03 Section “Shotcrete” and as follows:

a. Apply epoxy-modified, cementitious bonding and anticorrosion agent OR epoxy bonding agent, as directed, to reinforcement and concrete substrate.

b. Apply latex bonding agent OR Type I, latex bonding agent OR mortar scrub-coat, as directed, to concrete substrate.

c. Screed and finish shotcrete to produce a surface matching required profile and surrounding concrete.

11. Grouted Preplaced Aggregate Concrete: Use for column and wall repairs OR where indicated, as directed. Place as follows:

a. Design and construct forms to resist pumping pressure in addition to weight of wet grout. Seal joints and seams in forms and junctions of forms with existing concrete.
b. Apply epoxy-modified, cementitious bonding and anticorrosion agent OR epoxy bonding agent, as directed, to reinforcement and concrete substrate.

c. Place aggregate in forms, consolidating aggregate as it is placed. Pack aggregate into upper areas of forms to achieve intimate contact with concrete surfaces.

d. Fill forms with water to thoroughly dampen aggregate and substrates. Drain water from forms before placing grout.

e. Pump grout into place at bottom of preplaced aggregate, forcing grout upward. Release air from forms at top as grout is introduced. When formed space is full and grout flows from air vents, close vents and pressurize to 14 psi (96 kPa).

f. Wet-cure concrete for not less than seven days by leaving forms in place or keeping surfaces continuously wet by water-fog spray or water-saturated absorptive cover.

g. Repair voids with patching mortar and finish to match surrounding concrete.

a. Install filler to a depth of at least 3/4 inch (19 mm) OR 1 inch (25 mm) OR 2 inches (50 mm), as directed. Use fine silica sand no more than 1/4 inch (6 mm) deep to close base of joint. Do not use sealant backer rods or compressible fillers below joint filler.

b. Install filler so that when cured, it is flush at top surface of adjacent concrete. If necessary, overfill joint and remove excess when filler has cured.

13. Epoxy Crack Injection: Comply with manufacturer's written instructions and the following:

a. Clean areas to receive capping adhesive of oil, dirt, and other substances that would interfere with bond, and clean cracks with oil-free compressed air or low-pressure water to remove loose particles.

b. Place injection ports as recommended by epoxy manufacturer, spacing no farther apart than thickness of member being injected. Seal injection ports in place with capping adhesive.

c. Seal cracks at exposed surfaces with a ribbon of capping adhesive at least 1/4 inch (6 mm) thick by 1 inch (25 mm) wider than crack.

d. Inject cracks wider than 0.003 inch (0.075 mm) to a depth of 8 inches (200 mm) or to a width of less than 0.003 inch (0.075 mm), whichever is less.

e. Inject epoxy adhesive, beginning at widest part of crack and working toward narrower parts. Inject adhesive into ports to refusal, capping adjacent ports when they extrude epoxy. Cap injected ports and inject through adjacent ports until crack is filled.

f. After epoxy adhesive has set, remove injection ports and grind surfaces smooth.

14. Corrosion-Inhibiting Treatment: Apply by brush, roller, or airless spray in two coats at manufacturer's recommended application rate. Remove film of excess treatment by high-pressure washing before patching treated concrete or applying a sealer or overlay.

15. Polymer Overlay: Apply according to ACI 503.3.

a. Apply to traffic-bearing surfaces, including parking areas and walks.

16. Polymer Sealer: Apply by brush, roller, or airless spray at manufacturer's recommended application rate.

a. Apply to traffic-bearing surfaces, including parking areas and walks.

17. Methylmethacrylate Sealer/Brighteners: Apply by brush, roller, or airless spray at manufacturer's recommended application rate.

a. Apply to exterior concrete surfaces that are exposed to view, excluding traffic-bearing surfaces.

18. Composite Structural Reinforcement Using Preimpregnated Fiber Sheet: Unless otherwise recommended by manufacturer, apply as follows:

a. Patch surface defects with epoxy mortar and allow to set before beginning reinforcement application.

b. Apply epoxy adhesive to a thickness of 1/16 inch (1.6 mm) to prepared concrete surfaces in areas where composite structural reinforcement will be applied.

c. Clean preimpregnated fiber sheet with acetone or other suitable solvent, and apply epoxy adhesive to a thickness of 1/16 inch (1.6 mm).
d. Apply adhesive-coated fiber sheet to adhesive-coated concrete within open time of epoxy adhesive, and roll with a hard rubber roller until fiber sheet is fully embedded in adhesive, air pockets are removed, and adhesive is forced out from beneath fiber sheet at edges.

e. Apply additional layers as indicated using same procedure.

19. Composite Structural Reinforcement Using Fiber Tow Sheet and Saturant: Unless otherwise recommended by manufacturer, apply as follows:

a. Apply epoxy primer using brush or short nap roller to prepared concrete surfaces in areas where composite structural reinforcement will be applied.

b. After primer has set, patch surface defects with epoxy filler and allow to set before beginning reinforcement application.

c. Apply epoxy saturant to fiber tow sheet or primed and patched surface with 3/8-inch- (10-mm-) nap roller. Apply fiber tow sheet to primed and patched surface while saturant is still wet, using pressure roller to remove air pockets. Remove paper backing from fiber tow sheet and apply additional epoxy as needed to fully saturate tow sheet.

d. Apply additional layers as indicated, fully saturating each with epoxy.

e. After saturant has cured, apply protective topcoat by brush, roller or spray.

D. Field Quality Control

1. Testing Agency: Engage a qualified testing agency to sample materials and perform tests as follows:

a. Patching Mortar, Packaged Mixes: <Insert number> randomly selected samples tested according to ASTM C 928.

b. Patching Mortar, Field Mixed: <Insert number> randomly selected samples tested for compressive strength according to ASTM C 109/C 109M.

c. Concrete: As specified in Division 03 Section “Cast-in-place Concrete”.

d. Shotcrete: As specified in Division 03 Section “Shotcrete”.

e. Grouted Preplaced Aggregate: Tested for compressive strength of grout according to ASTM C 942.

1) Testing Frequency: One sample for each 25 cu. yd. (19 cu. m) of grout or fraction thereof, but not less than one sample for each day's work.

f. Joint Filler: Core drilled samples to verify proper installation.

1) Testing Frequency: One sample for each 100 feet (30 m) of joint filled.

2) Where samples are taken, fill holes with joint filler.

g. Epoxy Crack Injection: Core drilled samples to verify proper installation.

1) Testing Frequency: 3 samples from mockup and 1 sample for each 100 feet (30 m) of crack injected.

2) Where samples are taken, fill holes with epoxy mortar.

END OF SECTION 03 01 30 71
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 01 30 71</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
</tbody>
</table>
SECTIONS 03 11 13 00 - CAST-IN-PLACE CONCRETE

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for cast-in-place concrete. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section specifies cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes, for the following:
 a. Footings.
 b. Foundation walls.
 c. Slabs-on-grade.
 d. Suspended slabs.
 e. Concrete toppings.
 f. Building frame members.
 g. Building walls.

C. Definitions
1. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume; subject to compliance with requirements.

D. Submittals
1. Product Data: For each type of product indicated.
2. LEED Submittals:
 a. Product Data for Credit MR 4.1 and Credit MR 4.2, as directed: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. 1) Include statement indicating costs for each product having recycled content.
 b. Design Mixtures for Credit ID 1.1: For each concrete mixture containing fly ash as a replacement for portland cement or other portland cement replacements and for equivalent concrete mixtures that do not contain portland cement replacements.
3. Design Mixtures: For each concrete mixture.
4. Shop Drawings: For steel reinforcement and formwork. Material test reports OR certificates, as directed.

E. Quality Assurance
1. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment. a. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
2. Testing Agency Qualifications: An independent agency, acceptable to authorities having jurisdiction, as directed, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated, as documented according to ASTM E 548.
3. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 a. ACI 301, "Specification for Structural Concrete," Sections 1 through 5 OR Sections 1 through 5 and Section 7, "Lightweight Concrete", as directed.
 b. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."
4. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.
5. Reinstallation Conference: Conduct conference at Project site.

F. Delivery, Storage, And Handling
1. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage. Avoid damaging coatings on steel reinforcement, as directed.
2. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants.

1.2 PRODUCTS

A. Form-Facing Materials
1. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
2. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.
3. Forms for Cylindrical Columns, Pedestals, and Supports: Metal, glass-fiber-reinforced plastic, paper, or fiber tubes that will produce surfaces with gradual or abrupt irregularities not exceeding specified formwork surface class. Provide units with sufficient wall thickness to resist plastic concrete loads without detrimental deformation.
4. Pan-Type Forms: Glass-fiber-reinforced plastic or formed steel, stiffened to resist plastic concrete loads without detrimental deformation.
5. Void Forms: Biodegradable paper surface, treated for moisture resistance, structurally sufficient to support weight of plastic concrete and other superimposed loads.
8. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.
9. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 a. Furnish units that will leave no corrodible metal closer than 1 inch (25 mm) to the plane of exposed concrete surface.
 b. Furnish ties that, when removed, will leave holes no larger than 1 inch (25 mm) in diameter in concrete surface.
 c. Furnish ties with integral water-barrier plates to walls indicated to receive dampproofing or waterproofing.

B. Steel Reinforcement
1. Recycled Content of Steel Products: Provide products with an average recycled content of steel products so postconsumer recycled content plus one-half of preconsumer recycled content is not less than 25 OR 60, as directed, percent.
2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
4. Galvanized Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420) OR ASTM A 706/A 706M, as directed, deformed bars, ASTM A 767/A 767M, Class I OR II, as directed, zinc coated after fabrication and bending.
5. Epoxy-Coated Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420) OR ASTM A 706/A 706M, as directed, deformed bars, ASTM A 775/A 775M OR
ASTM A 934/A 934M, as directed, epoxy coated, with less than 2 percent damaged coating in each 12-inch (300-mm) bar length.

6. Stainless-Steel Reinforcing Bars: ASTM A 955/A 955M, Grade 60 (Grade 420), Type 304 OR 316L, as directed, deformed.

7. Steel Bar Mats: ASTM A 184/A 184M, fabricated from ASTM A 615/A 615M, Grade 60 (Grade 420) OR ASTM A 706/A 706M, as directed, deformed bars, assembled with clips.

8. Plain-Steel Wire: ASTM A 82, as drawn OR galvanized, as directed.

10. Epoxy-Coated Wire: ASTM A 884/A 884M, Class A, Type 1 coated, as-drawn, plain-steel-wire OR deformed-steel wire, as directed, with less than 2 percent damaged coating in each 12-inch (300-mm) wire length.

11. Plain-Steel Welded Wire Reinforcement: ASTM A 185, plain, fabricated from as-drawn steel wire into flat sheets.

14. Epoxy-Coated Welded Wire Reinforcement: ASTM A 884/A 884M, Class A coated, Type 1, plain OR deformed, as directed, steel.

C. Reinforcement Accessories

1. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), plain-steel bars, cut bars true to length with ends square and free of burrs.

2. Epoxy-Coated Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), plain-steel bars, ASTM A 775/A 775M epoxy coated.

3. Epoxy Repair Coating: Liquid, two-part, epoxy repair coating; compatible with epoxy coating on reinforcement and complying with ASTM A 775/A 775M.

5. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:
 a. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.
 b. For epoxy-coated reinforcement, use epoxy-coated or other dielectric-polymer-coated wire bar supports.
 c. For zinc-coated reinforcement, use galvanized wire or dielectric-polymer-coated wire bar supports.

D. Concrete Materials

1. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 a. Portland Cement: ASTM C 150, Type I OR II OR I/II OR III OR V, as directed, gray OR white, as directed. Supplement with the following:
 1) Fly Ash: ASTM C 618, Class C OR F, as directed.
 2) Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
 b. Blended Hydraulic Cement: ASTM C 595, Type IS, portland blast-furnace slag OR IP, portland-pozzolan OR I (PM), pozzolan-modified portland OR I (SM), slag-modified Portland, as directed, cement.

3. Normal-Weight Aggregates: ASTM C 33, graded, 1-1/2-inch (38-mm) OR 1-inch (25-mm) OR 3/4-inch (19-mm), as directed, nominal maximum coarse-aggregate size.

4. Lightweight Aggregate: ASTM C 330, 1-inch (25-mm) OR 3/4-inch (19-mm) OR 1/2-inch (13-mm) OR 3/8-inch (10-mm), as directed, nominal maximum aggregate size.
5. Water: ASTM C 94/C 94M and potable, as directed.

E. Admixtures
2. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 a. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 b. Retarding Admixture: ASTM C 494/C 494M, Type B.
 c. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 d. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 e. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 f. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
3. Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete and complying with ASTM C 494/C 494M, Type C.
4. Non-Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, non-set-accelerating, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete.
5. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, free of carbon black, as directed, nonfading, and resistant to lime and other alkalis.
 a. Color: As indicated by manufacturer's designation OR Match the Owner's sample OR As selected by the Owner from manufacturer's full range, as directed.

F. Fiber Reinforcement
1. Carbon-Steel Fiber: ASTM A 820, deformed, minimum of 1.5 inches (38 mm) OR 2 inches (50 mm) OR 2.4 inches (60 mm), as directed, long, and aspect ratio of 35 to 40 OR 45 to 50 OR 60 to 65, as directed.
 a. Fiber: Type 1, cold-drawn wire OR 2, cut sheet, as directed.
2. Synthetic Micro-Fiber: Monofilament or fibrillated polypropylene micro-fibers engineered and designed for use in concrete, complying with ASTM C 1116/C 1116M, Type III, 1/2 to 1-1/2 inches (13 to 38 mm) OR 1 to 2-1/4 inches (25 to 57 mm) long.
3. Synthetic Macro-Fiber: Polyolefin macro-fibers engineered and designed for use in concrete, complying with ASTM C 1116/C 1116M, Type III, 1 to 2-1/4 inches (25 to 57 mm) long.

G. Waterstops
1. Flexible Rubber Waterstops: CE CRD-C 513, with factory-installed metal eyelets, as directed, for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.
 a. Profile: Flat, dumbbell with center bulb OR Flat, dumbbell without center bulb OR Ribbed with center bulb OR Ribbed without center bulb OR As indicated, as directed.
 b. Dimensions: 4 inches by 3/16 inch thick (100 mm by 4.75 mm thick) OR 6 inches by 3/8 inch thick (150 mm by 10 mm thick) OR 9 inches by 3/8 inch thick (225 mm by 10 mm thick), as directed; nontapered.
2. Chemically Resistant Flexible Waterstops: Thermoplastic elastomer rubber waterstops with factory-installed metal eyelets, as directed, for embedding in concrete to prevent passage of fluids through joints; resistant to oils, solvents, and chemicals. Factory fabricate corners, intersections, and directional changes.
 a. Profile: Flat, dumbbell with center bulb OR Flat, dumbbell without center bulb OR Ribbed with center bulb OR Ribbed without center bulb OR As indicated, as directed.
 b. Dimensions: 4 inches by 3/16 inch thick (100 mm by 4.75 mm thick) OR 6 inches by 3/16 inch thick (150 mm by 4.75 mm thick) OR 6 inches by 3/8 inch thick (150 mm by 10 mm thick), as directed; nontapered.
thick) OR 9 inches by 3/16 inch thick (225 mm by 4.75 mm thick) OR 9 inches by 3/8 inch thick (225 mm by 10 mm thick), as directed; nontapered.

3. Flexible PVC Waterstops: CE CRD-C 572, with factory-installed metal eyelets, as directed, for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.
 a. Profile: Flat, dumbbell with center bulb OR Flat, dumbbell without center bulb OR Ribbed with center bulb OR Ribbed without center bulb OR As indicated, as directed.
 b. Dimensions: 4 inches by 3/16 inch thick (100 mm by 4.75 mm thick) OR 6 inches by 3/8 inch thick (150 mm by 10 mm thick) OR 9 inches by 3/8 inch thick (225 mm by 10 mm thick), as directed; nontapered.

4. Self-Expanding Butyl Strip Waterstops: Manufactured rectangular or trapezoidal strip, butyl rubber with sodium bentonite or other hydrophilic polymers, for adhesive bonding to concrete, 3/4 by 1 inch (19 by 25 mm).

5. Self-Expanding Rubber Strip Waterstops: Manufactured rectangular or trapezoidal strip, bentonite-free hydrophilic polymer modified chloroprene rubber, for adhesive bonding to concrete, 3/8 by 3/4 inch (10 by 19 mm).

H. Vapor Retarders
1. Plastic Vapor Retarder:
 a. ASTM E 1745, Class A. Include manufacturer's recommended adhesive or pressure-sensitive tape.
 b. ASTM E 1745, Class B. Include manufacturer's recommended adhesive or pressure-sensitive tape.
 c. ASTM E 1745, Class C, or polyethylene sheet, ASTM D 4397, not less than 10 mils (0.25 mm) thick, as directed. Include manufacturer's recommended adhesive or pressure-sensitive joint tape.

2. Bituminous Vapor Retarder: 110-mil- (2.8-mm-) thick, semiflexible, 7-ply sheet membrane consisting of reinforced core and carrier sheet with fortified asphalt layers, protective weathercoating, and removable plastic release liner. Furnish manufacturer's accessories including bonding asphalt, pointing mastics, and self-adhering joint tape.
 a. Water-Vapor Permeance: 0.00 grains/h x sq. ft. x inches Hg (0.00 ng/Pa x s x sq. m); ASTM E 154.
 b. Tensile Strength: 140 lbf/in. (24.5 kN/m); ASTM E 154.
 c. Puncture Resistance: 90 lbf (400N); ASTM E 154.

3. Granular Fill: Clean mixture of crushed stone or crushed or uncrushed gravel; ASTM D 448, Size 57, with 100 percent passing a 1-1/2-inch (37.5-mm) sieve and 0 to 5 percent passing a No. 8 (2.36-mm) sieve.

4. Fine-Graded Granular Material: Clean mixture of crushed stone, crushed gravel, and manufactured or natural sand; ASTM D 448, Size 10, with 100 percent passing a 3/8-inch (9.5-mm) sieve, 10 to 30 percent passing a No. 100 (0.15-mm) sieve, and at least 5 percent passing No. 200 (0.075-mm) sieve; complying with deleterious substance limits of ASTM C 33 for fine aggregates.

I. Floor And Slab Treatments
1. Slip-Resistive Emery Aggregate Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive, crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials with 100 percent passing 3/8-inch (9.5-mm) OR No. 4 (4.75-mm) OR No. 8 (2.36-mm), as directed, sieve.

2. Slip-Resistive Aluminum Granule Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of not less than 95 percent fused aluminum-oxide granules.

3. Emery Dry-Shake Floor Hardener: Pigmented OR Unpigmented, as directed, factory-packaged, dry combination of portland cement, graded emery aggregate, and plasticizing admixture; with emery aggregate consisting of no less than 60 percent of total aggregate content.
a. Color: As indicated by manufacturer's designation OR Match the Owner's sample OR As selected by the Owner from manufacturer's full range, as directed.

4. Metallic Dry-Shake Floor Hardener: Pigmented OR Unpigmented, as directed, factory-packaged, dry combination of portland cement, graded metallic aggregate, rust inhibitors, and plasticizing admixture; with metallic aggregate consisting of no less than 65 percent of total aggregate content.
 a. Color: As indicated by manufacturer's designation OR Match the Owner's sample OR As selected by the Owner from manufacturer's full range, as directed.

5. Unpigmented Mineral Dry-Shake Floor Hardener: Factory-packaged dry combination of portland cement, graded quartz aggregate, and plasticizing admixture.

6. Pigmented Mineral Dry-Shake Floor Hardener: Factory-packaged, dry combination of portland cement, graded quartz aggregate, color pigments, and plasticizing admixture. Use color pigments that are finely ground, nontainting mineral oxides interground with cement.
 a. Color: As indicated by manufacturer's designation OR Match the Owner's sample OR As selected by the Owner from manufacturer's full range, as directed.

7. Penetrating Liquid Floor Treatment: Clear, chemically reactive, waterborne solution of inorganic silicate or siliconeate materials and proprietary components; odorless; colorless; that penetrates, hardens, and densifies concrete surfaces.

J. Liquid Floor Treatments
 1. Penetrating Liquid Floor Treatment: Clear, chemically reactive, waterborne solution of inorganic silicate or siliconeate materials and proprietary components; odorless; that penetrates, hardens, and densifies concrete surfaces.

2. Penetrating Liquid Floor Treatments for Polished Concrete Finish: Clear, waterborne solution of inorganic silicate or siliconeate materials and proprietary components; odorless; that penetrates, hardens, and is suitable for polished concrete surfaces.

K. Curing Materials

 2. Absorptive Cover: AASHTO M 182. Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) when dry.

 5. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.

 6. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, nondissipating, certified by curing compound manufacturer to not interfere with bonding of floor covering, as directed.

 7. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, 18 to 25 percent solids, nondissipating, certified by curing compound manufacturer to not interfere with bonding of floor covering, as directed.

 8. Clear, Solvent-Borne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.

 9. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.

L. Related Materials
 1. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber OR ASTM D 1752, cork or self-expanding cork, as directed.

 2. Semirigid Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 OR aromatic polyurea with a Type A shore durometer hardness range of 90 to 95, as directed, per ASTM D 2240.

 3. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
4. Epoxy Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to suit requirements, and as follows:
 a. Types I and II, non-load bearing OR IV and V, load bearing, as directed, for bonding hardened or freshly mixed concrete to hardened concrete.
5. Reglets: Fabricate reglets of not less than 0.0217-inch- (0.55-mm-) thick, galvanized steel sheet. Temporarily fill or cover face opening of reglet to prevent intrusion of concrete or debris.
6. Dovetail Anchor Slots: Hot-dip galvanized steel sheet, not less than 0.0336 inch (0.85 mm) thick, with bent tab anchors. Temporarily fill or cover face opening of slots to prevent intrusion of concrete or debris.

M. Repair Materials
1. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch (3.2 mm) and that can be feathered at edges to match adjacent floor elevations.
 a. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 b. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
 c. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3.2 to 6 mm) or coarse sand as recommended by underlayment manufacturer.
 d. Compressive Strength: Not less than 4100 psi (29 MPa) at 28 days when tested according to ASTM C 109/C 109M.
2. Repair Overlay: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch (3.2 mm) and that can be feathered at edges to match adjacent floor elevations.
 a. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 b. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
 c. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3.2 to 6 mm) or coarse sand as recommended by topping manufacturer.
 d. Compressive Strength: Not less than 5000 psi (34.5 MPa) at 28 days when tested according to ASTM C 109/C 109M.

N. Concrete Mixtures, General
1. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
 a. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.
2. Cementitious Materials: Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent OR Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows, as directed
 c. Ground Granulated Blast-Furnace Slag: 50 percent.
 d. Combined Fly Ash or Pozzolan and Ground Granulated Blast-Furnace Slag: 50 percent portland cement minimum, with fly ash or pozzolan not exceeding 25 percent.
 e. Silica Fume: 10 percent.
 f. Combined Fly Ash, Pozzolans, and Silica Fume: 35 percent with fly ash or pozzolans not exceeding 25 percent and silica fume not exceeding 10 percent.
 g. Combined Fly Ash or Pozzolans, Ground Granulated Blast-Furnace Slag, and Silica Fume: 50 percent with fly ash or pozzolans not exceeding 25 percent and silica fume not exceeding 10 percent.
3. Limit water-soluble, chloride-ion content in hardened concrete to 0.06 or 0.15 or 0.30 or 1.00, as directed, percent by weight of cement.

4. Admixtures: Use admixtures according to manufacturer's written instructions.
 a. Use water-reducing or high-range water-reducing or plasticizing, as directed, admixture in concrete, as required, for placement and workability.
 b. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 c. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50.
 d. Use corrosion-inhibiting admixture in concrete mixtures where indicated.

5. Color Pigment: Add color pigment to concrete mixture according to manufacturer's written instructions and to result in hardened concrete color consistent with approved mockup.

O. Concrete Mixtures For Building Elements

1. Footings: Proportion normal-weight concrete mixture as follows:
 a. Minimum Compressive Strength: 5000 psi (34.5 MPa) or 4500 psi (31 MPa) or 4000 psi (27.6 MPa) or 3500 psi (24.1 MPa) or 3000 psi (20.7 MPa), as directed, at 28 days.
 b. Maximum Water-Cementitious Materials Ratio: 0.50 or 0.45 or 0.40, as directed.
 c. Slump Limit: 4 inches (100 mm) or 5 inches (125 mm) or 8 inches (200 mm) for concrete with verified slump of 2 to 4 inches (50 to 100 mm) before adding high-range water-reducing admixture or plasticizing admixture, as directed, plus or minus 1 inch (25 mm).

 d. Air Content:
 1) 5-1/2 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size.
 2) 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch (25-mm) or 3/4-inch (19-mm), as directed, nominal maximum aggregate size.

2. Foundation Walls: Proportion normal-weight concrete mixture as follows:
 a. Minimum Compressive Strength: 5000 psi (34.5 MPa) or 4500 psi (31 MPa) or 4000 psi (27.6 MPa) or 3500 psi (24.1 MPa) or 3000 psi (20.7 MPa), as directed, at 28 days.
 b. Maximum Water-Cementitious Materials Ratio: 0.50 or 0.45 or 0.40, as directed.
 c. Slump Limit: 4 inches (100 mm) or 5 inches (125 mm) or 8 inches (200 mm) for concrete with verified slump of 2 to 4 inches (50 to 100 mm) before adding high-range water-reducing admixture or plasticizing admixture, as directed, plus or minus 1 inch (25 mm).

 d. Air Content:
 1) 5-1/2 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size.
 2) 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch (25-mm) or 3/4-inch (19-mm), as directed, nominal maximum aggregate size.

3. Slabs-on-Grade: Proportion normal-weight concrete mixture as follows:
 a. Minimum Compressive Strength: 5000 psi (34.5 MPa) or 4500 psi (31 MPa) or 4000 psi (27.6 MPa) or 3500 psi (24.1 MPa) or 3000 psi (20.7 MPa), as directed, at 28 days.
 b. Minimum Cementitious Materials Content: 470 lb/cu. yd. (279 kg/cu. m) or 520 lb/cu. yd. (309 kg/cu. m) or 540 lb/cu. yd. (320 kg/cu. m), as directed.
 c. Slump Limit: 4 inches (100 mm) or 5 inches (125 mm), as directed, plus or minus 1 inch (25 mm).

 d. Air Content:
 1) 5-1/2 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size.
 2) 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch (25-mm) or 3/4-inch (19-mm), as directed, nominal maximum aggregate size.
 3) Do not allow air content of troweled finished floors to exceed 3 percent.
e. Steel-Fiber Reinforcement: Add to concrete mixture, according to manufacturer's written instructions, at a rate of 50 lb/cu. yd. (29.7 kg/cu. m).

f. Synthetic Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than 1.0 lb/cu. yd. (0.60 kg/cu. m) OR 1.5 lb/cu. yd. (0.90 kg/cu. m), as directed.

4. Suspended Slabs: Proportion normal-weight concrete mixture as follows:
 a. Minimum Compressive Strength: 5000 psi (34.5 MPa) OR 4500 psi (31 MPa) OR 4000 psi (27.6 MPa) OR 3500 psi (24.1 MPa) OR 3000 psi (20.7 MPa), as directed, at 28 days.
 b. Minimum Cementitious Materials Content: 470 lb/cu. yd. (279 kg/cu. m) OR 520 lb/cu. yd. (309 kg/cu. m) OR 540 lb/cu. yd. (320 kg/cu. m), as directed.
 c. Slump Limit: 4 inches (100 mm) OR 5 inches (125 mm), as directed, plus or minus 1 inch (25 mm).
 d. Air Content:
 1) 5-1/2 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size.
 2) 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch (25-mm) OR 3/4-inch (19-mm), as directed, nominal maximum aggregate size.
 3) Do not allow air content of troweled finished floors to exceed 3 percent.

e. Steel-Fiber Reinforcement: Add to concrete mixture, according to manufacturer's written instructions, at a rate of 50 lb/cu. yd. (29.7 kg/cu. m).

f. Synthetic Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than 1.0 lb/cu. yd. (0.60 kg/cu. m) OR 1.5 lb/cu. yd. (0.90 kg/cu. m), as directed.

5. Suspended Slabs: Proportion structural lightweight concrete mixture as follows:
 a. Minimum Compressive Strength: 5000 psi (34.5 MPa) OR 4500 psi (31 MPa) OR 4000 psi (27.6 MPa) OR 3500 psi (24.1 MPa) OR 3000 psi (20.7 MPa), as directed, at 28 days.
 b. Calculated Equilibrium Unit Weight: 115 lb/cu. ft. (1842 kg/cu. m) OR 110 lb/cu. ft. (1762 kg/cu. m) OR 105 lb/cu. ft. (1682 kg/cu. m), as directed, plus or minus 3 lb/cu. ft. (48.1 kg/cu. m) as determined by ASTM C 567.
 c. Slump Limit: 4 inches (100 mm) OR 5 inches (125 mm), as directed, plus or minus 1 inch (25 mm).
 d. Air Content:
 1) 6 percent, plus or minus 2 percent at point of delivery for nominal maximum aggregate size greater than 3/8 inch (10 mm).
 2) 7 percent, plus or minus 2 percent at point of delivery for nominal maximum aggregate size 3/8 inch (10 mm) or less.
 3) Do not allow air content of troweled finished floors to exceed 3 percent.

e. Steel-Fiber Reinforcement: Add to concrete mixture, according to manufacturer's written instructions, at a rate of 50 lb/cu. yd. (29.7 kg/cu. m).

f. Synthetic Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than 1.0 lb/cu. yd. (0.60 kg/cu. m) OR 1.5 lb/cu. yd. (0.90 kg/cu. m), as directed.

6. Concrete Toppings: Proportion normal-weight concrete mixture as follows:
 a. Minimum Compressive Strength: 5000 psi (34.5 MPa) OR 4500 psi (31 MPa) OR 4000 psi (27.6 MPa) OR 3500 psi (24.1 MPa) OR 3000 psi (20.7 MPa), as directed, at 28 days.
 b. Minimum Cementitious Materials Content: 470 lb/cu. yd. (279 kg/cu. m) OR 520 lb/cu. yd. (309 kg/cu. m) OR 540 lb/cu. yd. (320 kg/cu. m), as directed.
 c. Slump Limit: 4 inches (100 mm) OR 5 inches (125 mm), as directed, plus or minus 1 inch (25 mm).
 d. Air Content:
 1) 5-1/2 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size.
 2) 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch (25-mm) OR 3/4-inch (19-mm), as directed, nominal maximum aggregate size.
 3) Do not allow air content of troweled finished toppings to exceed 3 percent.
e. Steel-Fiber Reinforcement: Add to concrete mixture, according to manufacturer’s written instructions, at a rate of 50 lb/cu. yd. (29.7 kg/cu. m).

f. Synthetic Fiber: Uniformly disperse in concrete mixture at manufacturer’s recommended rate, but not less than 1.0 lb/cu. yd. (0.60 kg/cu. m) OR 1.5 lb/cu. yd. (0.90 kg/cu. m), as directed.

7. Building Frame Members: Proportion normal-weight concrete mixture as follows:
 a. Minimum Compressive Strength: 5000 psi (34.5 MPa) OR 4500 psi (31 MPa) OR 4000 psi (27.6 MPa) OR 3500 psi (24.1 MPa) OR 3000 psi (20.7 MPa), as directed, at 28 days.
 b. Maximum Water-Cementitious Materials Ratio: 0.50 OR 0.45 OR 0.40, as directed.
 c. Slump Limit: 4 inches (100 mm) OR 5 inches (125 mm) OR 8 inches (200 mm) for concrete with verified slump of 2 to 4 inches (50 to 100 mm) before adding high-range water-reducing admixture or plasticizing admixture, as directed, plus or minus 1 inch (25 mm).
 d. Air Content:
 1) 5-1/2 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size.
 2) 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch (25-mm) OR 3/4-inch (19-mm), as directed, nominal maximum aggregate size.

8. Building Walls: Proportion normal-weight concrete mixture as follows:
 a. Minimum Compressive Strength: 5000 psi (34.5 MPa) OR 4500 psi (31 MPa) OR 4000 psi (27.6 MPa) OR 3500 psi (24.1 MPa) OR 3000 psi (20.7 MPa), as directed, at 28 days.
 b. Maximum Water-Cementitious Materials Ratio: 0.50 OR 0.45 OR 0.40, as directed.
 c. Slump Limit: 4 inches (100 mm) OR 5 inches (125 mm) OR 8 inches (200 mm) for concrete with verified slump of 2 to 4 inches (50 to 100 mm) before adding high-range water-reducing admixture or plasticizing admixture, as directed, plus or minus 1 inch (25 mm).
 d. Air Content:
 1) 5-1/2 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size.
 2) 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch (25-mm) OR 3/4-inch (19-mm), as directed, nominal maximum aggregate size.

P. Fabricating Reinforcement
 1. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

Q. Concrete Mixing
 1. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M and ASTM C 1116, as directed, and furnish batch ticket information.
 a. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.
 2. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 a. For mixer capacity of 1 cu. yd. (0.76 cu. m) or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 b. For mixer capacity larger than 1 cu. yd. (0.76 cu. m), increase mixing time by 15 seconds for each additional 1 cu. yd. (0.76 cu. m).
 c. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixture time, quantity, and amount of water added. Record approximate location of final deposit in structure.
1.3 EXECUTION

A. Formwork
1. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
2. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
3. Limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows:
 a. Class A, 1/8 inch (3.2 mm) for smooth-formed finished surfaces.
 b. Class B, 1/4 inch (6 mm) OR Class C, 1/2 inch (13 mm) OR Class D, 1 inch (25 mm), as directed, for rough-formed finished surfaces.
4. Construct forms tight enough to prevent loss of concrete mortar.
5. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 a. Install keyways, reglets, recesses, and the like, for easy removal.
 b. Do not use rust-stained steel form-facing material.
6. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.
7. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
8. Chamfer OR Do not chamfer, as directed, exterior corners and edges of permanently exposed concrete.
9. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.
10. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
11. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.
12. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

B. Embedded Items
1. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 a. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC's "Code of Standard Practice for Steel Buildings and Bridges."
 b. Install reglets to receive waterproofing and to receive through-wall flashings in outer face of concrete frame at exterior walls, where flashing is shown at lintels, shelf angles, and other conditions.
 c. Install dovetail anchor slots in concrete structures as indicated.

C. Removing And Reusing Forms
1. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F (10 deg C) for 24 hours after placing concrete, if concrete is hard enough to not be damaged by form-removal operations and curing and protection operations are maintained.
 a. Leave formwork for beam soffits, joists, slabs, and other structural elements that supports weight of concrete in place until concrete has achieved at least 70 percent of, as directed, its 28-day design compressive strength.
b. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.

2. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.

3. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by the Owner.

D. Shores And Reshores

1. Comply with ACI 318 (ACI 318M) and ACI 301 for design, installation, and removal of shoring and reshoring.
 a. Do not remove shoring or reshoring until measurement of slab tolerances is complete.

2. In multistory construction, extend shoring or reshoring over a sufficient number of stories to distribute loads in such a manner that no floor or member will be excessively loaded or will induce tensile stress in concrete members without sufficient steel reinforcement.

3. Plan sequence of removal of shores and reshore to avoid damage to concrete. Locate and provide adequate reshoring to support construction without excessive stress or deflection.

E. Vapor Retarders

1. Plastic Vapor Retarders: Place, protect, and repair vapor retarders according to ASTM E 1643 and manufacturer's written instructions.
 a. Lap joints 6 inches (150 mm) and seal with manufacturer's recommended tape.

2. Bituminous Vapor Retarders: Place, protect, and repair vapor retarders according to manufacturer's written instructions.

3. Granular Course: Cover vapor retarder with granular fill OR fine-graded granular material, as directed, moisten, and compact with mechanical equipment to elevation tolerances of plus 0 inch (0 mm) or minus 3/4 inch (19 mm).
 a. Place and compact a 1/2-inch- (13-mm-) thick layer of fine-graded granular material over granular fill.

F. Steel Reinforcement

 a. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

2. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.

3. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
 a. Weld reinforcing bars according to AWS D1.4, where indicated.

4. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

5. Install welded wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.

7. Zinc-Coated Reinforcement: Repair cut and damaged zinc coatings with zinc repair material according to ASTM A 780. Use galvanized steel wire ties to fasten zinc-coated steel reinforcement.

G. Joints
1. General: Construct joints true to line with faces perpendicular to surface plane of concrete.

2. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by the Owner.
 a. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints, unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
 b. Form keyed joints as indicated. Embed keys at least 1-1/2 inches (38 mm) into concrete.
 c. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.
 d. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.
 e. Space vertical joints in walls, as directed. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.
 f. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
 g. Use epoxy-bonding adhesive at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

3. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 a. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch (3.2 mm). Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 b. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3.2-mm-) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.

4. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 a. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface, unless otherwise indicated.
 b. Terminate full-width joint-filler strips not less than 1/2 inch (13 mm) or more than 1 inch (25 mm) below finished concrete surface where joint sealants, specified in Division 07 Section "Joint Sealants", are indicated.
 c. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.

5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

H. Waterstops
 1. Flexible Waterstops: Install in construction joints and at other joints indicated to form a continuous diaphragm. Install in longest lengths practicable. Support and protect exposed waterstops during progress of the Work. Field fabricate joints in waterstops according to manufacturer's written instructions.
 2. Self-Expanding Strip Waterstops: Install in construction joints and at other locations indicated, according to manufacturer's written instructions, adhesive bonding, mechanically fastening, and firmly pressing into place. Install in longest lengths practicable.

I. Concrete Placement
 1. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
 2. Do not add water to concrete during delivery, at Project site, or during placement unless approved by the Owner.
3. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.
 a. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.

4. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 a. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.
 b. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
 c. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches (150 mm) into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.

5. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 a. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 b. Maintain reinforcement in position on chairs during concrete placement.
 c. Screed slab surfaces with a straightedge and strike off to correct elevations.
 d. Slope surfaces uniformly to drains where required.
 e. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.

6. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 a. When average high and low temperature is expected to fall below 40 deg F (4.4 deg C) for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 b. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 c. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.

7. Hot-Weather Placement: Comply with ACI 301 and as follows:
 a. Maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 b. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

J. Finishing Formed Surfaces

1. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 a. Apply to concrete surfaces not exposed to public view.

2. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
3. Rubbed Finish: Apply the following to smooth-formed finished as-cast concrete where indicated:
 a. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.
 b. Grout-Cleaned Finish: Wet concrete surfaces and apply grout of a consistency of thick paint to coat surfaces and fill small holes. Mix one part portland cement to one and one-half parts fine sand with a 1:1 mixture of bonding admixture and water. Add white portland cement in amounts determined by trial patches so color of dry grout will match adjacent surfaces. Scrub grout into voids and remove excess grout. When grout whitens, rub surface with clean burlap and keep surface damp by fog spray for at least 36 hours.
 c. Cork-Floated Finish: Wet concrete surfaces and apply a stiff grout. Mix one part portland cement and one part fine sand with a 1:1 mixture of bonding agent and water. Add white portland cement in amounts determined by trial patches so color of dry grout will match adjacent surfaces. Compress grout into voids by grinding surface. In a swirling motion, finish surface with a cork float.

4. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces, unless otherwise indicated.

K. Finishing Floors And Slabs
 2. Scratch Finish: While still plastic, texture concrete surface that has been screeded and bull-floated or darbied. Use stiff brushes, brooms, or rakes to produce a profile amplitude of 1/4 inch (6 mm) in 1 direction.
 a. Apply scratch finish to surfaces indicated and to receive concrete floor toppings OR to receive mortar setting beds for bonded cementitious floor finishes, as directed.
 3. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 a. Apply float finish to surfaces indicated OR to receive trowel finish OR to be covered with fluid-applied or sheet waterproofing, built-up or membrane roofing, or sand-bed terrazzo, as directed.
 4. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraightening until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 a. Apply a trowel finish to surfaces indicated OR exposed to view OR to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin-film-finish coating system, as directed.
 b. Finish surfaces to the following tolerances, according to ASTM E 1155 (ASTM E 1155M), for a randomly trafficked floor surface:
 1) Specified overall values of flatness, F(F) 25; and of levelness, F(L) 20; with minimum local values of flatness, F(F) 17; and of levelness, F(L) 15.
 2) Specified overall values of flatness, F(F) 35; and of levelness, F(L) 25; with minimum local values of flatness, F(F) 24; and of levelness, F(L) 17; for slabs-on-grade.
 3) Specified overall values of flatness, F(F) 30; and of levelness, F(L) 20; with minimum local values of flatness, F(F) 24; and of levelness, F(L) 15; for suspended slabs.
 4) Specified overall values of flatness, F(F) 45; and of levelness, F(L) 35; with minimum local values of flatness, F(F) 30; and of levelness, F(L) 24.
c. Finish and measure surface so gap at any point between concrete surface and an un leveled, freestanding, 10-foot- (3.05-m-) long straightedge resting on 2 high spots and placed anywhere on the surface does not exceed 1/4 inch (6 mm) OR 3/16 inch (4.8 mm) OR 1/8 inch (3.2 mm), as directed.

5. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces indicated OR where ceramic or quarry tile is to be installed by either thickset or thin-set method, as directed. While concrete is still plastic, slightly scarify surface with a fine broom.
 a. Comply with flatness and levelness tolerances for trowel finished floor surfaces.

6. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, and ramps, and elsewhere as indicated.
 a. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with the Owner before application.

7. Slip-Resistive Finish: Before final floating, apply slip-resistive aggregate OR aluminum granule, as directed, finish where indicated and to concrete stair treads, platforms, and ramps. Apply according to manufacturer's written instructions and as follows:
 a. Uniformly spread 25 lb/100 sq. ft. (12 kg/10 sq. m) of dampened slip-resistive aggregate OR aluminum granules, as directed, over surface in 1 or 2 applications. Tamp aggregate flush with surface, but do not force below surface.
 b. After broadcasting and tamping, apply float finish.
 c. After curing, lightly work surface with a steel wire brush or an abrasive stone and water to expose slip-resistive aggregate OR aluminum granules, as directed.

8. Dry-Shake Floor Hardener Finish: After initial floating, apply dry-shake floor hardener to surfaces according to manufacturer's written instructions and as follows:
 a. Uniformly apply dry-shake floor hardener at a rate of 100 lb/100 sq. ft. (49 kg/10 sq. m), as directed, unless greater amount is recommended by manufacturer.
 b. Uniformly distribute approximately two-thirds of dry-shake floor hardener over surface by hand or with mechanical spreader, and embed by power floating. Follow power floating with a second dry-shake floor hardener application, uniformly distributing remainder of material, and embed by power floating.
 c. After final floating, apply a trowel finish. Cure concrete with curing compound recommended by dry-shake floor hardener manufacturer and apply immediately after final finishing.

L. Miscellaneous Concrete Items
 1. Filling In: Fill in holes and openings left in concrete structures, unless otherwise indicated, after work of other trades is in place. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.

 2. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

 3. Equipment Bases and Foundations: Provide machine and equipment bases and foundations as shown on Drawings. Set anchor bolts for machines and equipment at correct elevations, complying with diagrams or templates from manufacturer furnishing machines and equipment.

 4. Steel Pan Stairs: Provide concrete fill for steel pan stair treads, landings, and associated items. Cast-in inserts and accessories as shown on Drawings. Screed, tamp, and trowel-finish concrete surfaces.

M. Concrete Protecting And Curing
 1. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.
2. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft \(\times \) h (1 kg/sq. m \(\times \) h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

3. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.

5. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 a. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 1) Water.
 2) Continuous water-fog spray.
 3) Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.
 b. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 1) Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 2) Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 3) Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.
 c. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 1) After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies curing compound will not interfere with bonding of floor covering used on Project.
 d. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

N. Liquid Floor Treatments
 1. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer's written instructions.
 a. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
 b. Do not apply to concrete that is less than three OR seven OR 14 OR 28, as directed, days' old.
 c. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous.
 2. Polished Concrete Floor Treatment: Apply polished concrete finish system to cured and prepared slabs to match.
a. Machine grind floor surfaces to receive polished finishes level and smooth and to depth required to reveal aggregate to match.

b. Apply penetrating liquid floor treatment for polished concrete in polishing sequence and according to manufacturer’s written instructions, allowing recommended drying time between successive coats.

c. Continue polishing with progressively finer grit diamond polishing pads to gloss level to match approved mockup.

d. Control and dispose of waste products produced by grinding and polishing operations.

e. Neutralize and clean polished floor surfaces.

3. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller according to manufacturer's written instructions.

O. Joint Filling

1. Prepare, clean, and install joint filler according to manufacturer's written instructions.
 a. Defer joint filling until concrete has aged at least one OR six, as directed, month(s). Do not fill joints until construction traffic has permanently ceased.

2. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.

3. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches (50 mm) deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

P. Concrete Surface Repairs

1. Defective Concrete: Repair and patch defective areas when approved by the Owner. Remove and replace concrete that cannot be repaired and patched to the Owner's approval.

2. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and one-half parts fine aggregate passing a No. 16 (1.18-mm) sieve, using only enough water for handling and placing.

3. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spills, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 a. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch (13 mm) in any dimension in solid concrete, but not less than 1 inch (25 mm) in depth. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.

 b. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.

 c. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by the Owner.

4. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 a. Repair finished surfaces containing defects. Surface defects include spills, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch (0.25 mm) wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.

 b. After concrete has cured at least 14 days, correct high areas by grinding.

 c. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
d. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.

e. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch (6 mm) to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.

f. Repair defective areas, except random cracks and single holes 1 inch (25 mm) or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch (19-mm) clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.

g. Repair random cracks and single holes 1 inch (25 mm) or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.

5. Perform structural repairs of concrete, subject to the Owner's approval, using epoxy adhesive and patching mortar.

6. Repair materials and installation not specified above may be used, subject to the Owner's approval.

Q. Field Quality Control

1. Testing and Inspecting: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.

2. Inspections:
 a. Steel reinforcement placement.
 b. Steel reinforcement welding.
 c. Headed bolts and studs.
 d. Verification of use of required design mixture.
 e. Concrete placement, including conveying and depositing.
 f. Curing procedures and maintenance of curing temperature.
 g. Verification of concrete strength before removal of shores and forms from beams and slabs.

3. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 a. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. (76 cu. m) or fraction thereof of each concrete mixture placed each day.
 1) When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 b. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 c. Air Content: ASTM C 231, pressure method, for normal-weight concrete; ASTM C 173/C 173M, volumetric method, for structural lightweight concrete, as directed; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 d. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and when 80 deg F (27 deg C) and above, and one test for each composite sample.
e. Unit Weight: ASTM C 567, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

f. Compression Test Specimens: ASTM C 31/C 31M.
 1) Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.
 2) Cast and field cure two sets of two standard cylinder specimens for each composite sample.

g. Compressive-Strength Tests: ASTM C 39/C 39M; test one set of two laboratory-cured specimens at 7 days and one set of two specimens at 28 days.
 1) Test one set of two field-cured specimens at 7 days and one set of two specimens at 28 days.
 2) A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.

h. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.

i. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).

j. Test results shall be reported in writing to the Owner, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

k. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by the Owner but will not be used as sole basis for approval or rejection of concrete.

l. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by the Owner. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42/C 42M or by other methods as directed by the Owner.

m. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

n. Correct deficiencies in the Work that test reports and inspections indicate does not comply with the Contract Documents.

4. Measure floor and slab flatness and levelness according to ASTM E 1155 (ASTM E 1155M) within 24 OR 48, as directed, hours of finishing.

R. Protection Of Liquid Floor Treatments

1. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.

END OF SECTION 03 11 13 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 11 13 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>03 15 16 00</td>
<td>03 11 13 00</td>
<td>Cast-In-Place Concrete</td>
</tr>
<tr>
<td>03 21 11 00</td>
<td>03 11 13 00</td>
<td>Cast-In-Place Concrete</td>
</tr>
<tr>
<td>03 22 11 00</td>
<td>03 11 13 00</td>
<td>Cast-In-Place Concrete</td>
</tr>
<tr>
<td>03 31 13 00</td>
<td>03 11 13 00</td>
<td>Cast-In-Place Concrete</td>
</tr>
<tr>
<td>03 39 33 00</td>
<td>03 11 13 00</td>
<td>Cast-In-Place Concrete</td>
</tr>
</tbody>
</table>
SECTION 03 62 13 00 - PLANT-PRECAST STRUCTURAL CONCRETE

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for plant-precast structural concrete. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Precast structural concrete.
 b. Precast structural concrete with thin-brick or stone facings.
 c. Precast structural concrete with commercial architectural finish.

C. Definition
1. Design Reference Sample: Sample of approved precast structural concrete color, finish, and texture, preapproved by the Owner.

D. Performance Requirements
1. Delegated Design: Design precast structural concrete, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
2. Structural Performance: Precast structural concrete units and connections shall withstand design loads indicated within limits and under conditions indicated.
 a. Fire-Resistance Rating: Select material and minimum thicknesses to provide indicated fire rating.

E. Submittals
1. Product Data: For each type of product indicated.
2. LEED Submittals:
 a. Product Data for Credit MR 4.1 and Credit MR 4.2, as directed: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content.
 1) Include statement indicating costs for each product having recycled content.
 b. Design Mixtures for Credit ID 1.1: For each concrete mixture containing fly ash as a replacement for portland cement or other portland cement replacements and for equivalent concrete mixtures that do not contain portland cement replacements.
3. Design Mixtures: For each precast concrete mixture. Include compressive strength and water-absorption tests.
4. Shop Drawings: Include member locations, plans, elevations, dimensions, shapes and sections, openings, support conditions, and types of reinforcement, including special reinforcement. Detail fabrication and installation of precast structural concrete units.
5. Delegated-Design Submittal: For precast structural concrete indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
6. Qualification Data: For Installer OR fabricator OR testing agency, as directed.
7. Welding certificates.
8. Material Certificates.
9. Material Test Reports.
10. Source quality-control reports.
11. Field quality-control and special inspection, as directed, reports.
F. Quality Assurance
1. Fabricator Qualifications: A firm that assumes responsibility for engineering precast structural concrete units to comply with performance requirements. Responsibility includes preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer.
 a. Participates in PCI's Plant Certification program and is designated a PCI-certified plant as follows:
 1) Group C, Category C1 - Precast Concrete Products (no prestressed reinforcement) OR Category C2 - Prestressed Hollowcore and Repetitively Produced Products OR Category C3 - Prestressed Straight Strand Structural Members OR Category C4 - Prestressed Deflected Strand Structural Members, as directed.
 2) Group CA, Category C1A - Precast Concrete Products (no prestressed reinforcement) OR Category C2A - Prestressed Hollowcore and Repetitively Produced Products OR Category C3A - Prestressed Straight-Strand Structural Members OR Category C4A - Prestressed Deflected-Strand Structural Members, as directed.

2. Design Standards: Comply with ACI 318 (ACI 318M) and design recommendations in PCI MNL 120, "PCI Design Handbook - Precast and Prestressed Concrete," applicable to types of precast structural concrete units indicated.

3. Quality-Control Standard: For manufacturing procedures and testing requirements, quality-control recommendations, and dimensional tolerances for types of units required, comply with PCI MNL 116, "Manual for Quality Control for Plants and Production of Structural Precast Concrete Products."

4. Welding Qualifications: Qualify procedures and personnel according to the following:
 a. AWS D1.1/D.1.1M, "Structural Welding Code - Steel."
 b. AWS D1.4, "Structural Welding Code - Reinforcing Steel."

5. Fire-Resistance Calculations: Where indicated, provide precast structural concrete units whose fire resistance meets the prescriptive requirements of authorities having jurisdiction or has been calculated according to ACI 216.1/TMS 0216.1, "Standard Method for Determining Fire Resistance of Concrete and Masonry Construction Assemblies," OR PCI MNL 124, "Design for Fire Resistance of Precast Prestressed Concrete," as directed, and is acceptable to authorities having jurisdiction.

G. Delivery, Storage, And Handling
1. Support units during shipment on nonstaining shock-absorbing material in same position as during storage.
2. Store units with adequate bracing and protect units to prevent contact with soil, to prevent staining, and to prevent cracking, distortion, warping or other physical damage.
 a. Store units with dunnage across full width of each bearing point unless otherwise indicated.
 b. Place adequate dunnage of even thickness between each unit.
 c. Place stored units so identification marks are clearly visible, and units can be inspected.
3. Handle and transport units in a position consistent with their shape and design in order to avoid excessive stresses that would cause cracking or damage.
4. Lift and support units only at designated points shown on Shop Drawings.

H. Coordination
1. Furnish loose connection hardware and anchorage items to be embedded in or attached to other construction before starting that Work. Provide locations, setting diagrams, templates, instructions, and directions, as required, for installation.

1.2 PRODUCTS
A. Mold Materials
1. Molds: Rigid, dimensionally stable, non-absorptive material, warp and buckle free, that will provide continuous and true precast concrete surfaces within fabrication tolerances indicated; nonreactive with concrete and suitable for producing required finishes.
 a. Mold-Release Agent: Commercially produced liquid-release agent that will not bond with, stain or adversely affect precast concrete surfaces and will not impair subsequent surface or joint treatments of precast concrete.

2. Form Liners: Units of face design, texture, arrangement, and configuration indicated OR to match those used for precast concrete design reference sample, as directed. Furnish with manufacturer’s recommended liquid-release agent that will not bond with, stain, or adversely affect precast concrete surfaces and will not impair subsequent surface or joint treatments of precast concrete.

3. Surface Retarder: Chemical set retarder, capable of temporarily delaying final hardening of newly placed concrete mixture to depth of reveal specified.

B. Reinforcing Materials
1. Recycled Content of Steel Products: Provide products with an average recycled content of steel products so postconsumer recycled content plus one-half of preconsumer recycled content is not less than 25 OR 60, as directed, percent.
2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
4. Galvanized Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420) OR ASTM A 706/A 706M, as directed, deformed bars, ASTM A 767/A 767M, Class II zinc coated, hot-dip galvanized, and chromate wash treated after fabrication and bending, as directed.
5. Epoxy-Coated Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420) OR ASTM A 706/A 706M, as directed, deformed bars, ASTM A 775/A 775M OR ASTM A 934/A 934M, as directed, epoxy coated, with less than 2 percent damaged coating in each 12-inch (300-mm) bar length.
6. Steel Bar Mats: ASTM A 184/A 184M, fabricated from ASTM A 615/A 615M, Grade 60 (Grade 420) OR ASTM A 706/A 706M, as directed, deformed bars, assembled with clips.
7. Plain-Steel Welded Wire Reinforcement: ASTM A 884/A 884M, Class A coated, plain OR deformed, as directed, wire into flat sheets.
9. Epoxy-Coated-Steel Wire: ASTM A 884/A 884M, Class A coated, plain OR deformed, as directed, flat sheet, Type 1 bendable OR Type 2 nonbendable, as directed, coating.
10. Supports: Suspend reinforcement from back of mold or use bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place according to PCI MNL 116.

C. Prestressing Tendons
1. Pretensioning Strand: ASTM A 416/A 416M, Grade 250 (Grade 1720) or Grade 270 (Grade 1860), uncoated, 7-wire OR ASTM A 886/A 886M, Grade 270 (Grade 1860), indented, 7-wire, as directed, low-relaxation strand.
2. Unbonded Post-Tensioning Strand: ASTM A 416/A 416M, Grade 270 (Grade 1860), uncoated, 7-wire, low-relaxation strand.
 a. Coat unbonded post-tensioning strand with post-tensioning coating complying with ACI 423.6 and sheath with polypropylene tendon sheathing complying with ACI 423.6. Include anchorage devices and coupler assemblies.

D. Concrete Materials
1. Portland Cement: ASTM C 150, Type I or Type III, gray, unless otherwise indicated.
 a. For surfaces exposed to view in finished structure, mix gray with white cement, of same type, brand, and mill source.
2. Supplementary Cementitious Materials:
 a. Fly Ash: ASTM C 618, Class C or F, with maximum loss on ignition of 3 percent.
b. Metakaolin Admixture: ASTM C 618, Class N.
c. Silica Fume Admixture: ASTM C 1240, with optional chemical and physical requirement.
d. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.

3. Normal-Weight Aggregates: Except as modified by PCI MNL 116, ASTM C 33, with coarse aggregates complying with Class 5S OR Class 5M OR Class 4S OR Class 4M, as directed. Stockpile fine and coarse aggregates for each type of exposed finish from a single source (pit or quarry) for Project.
 a. Face-Mixture-Coarse Aggregates: Selected, hard, and durable; free of material that reacts with cement or causes staining; to match selected finish sample.
 1) Gradation: Uniformly graded OR Gap graded OR To match design reference sample, as directed.
 b. Face-Mixture-Fine Aggregates: Selected, natural or manufactured sand of same material as coarse aggregate unless otherwise approved by the Owner.

4. Lightweight Aggregates: Except as modified by PCI MNL 116, ASTM C 330, with absorption less than 11 percent.

5. Coloring Admixture: ASTM C 979, synthetic or natural mineral-oxide pigments or colored water-reducing admixtures, temperature stable, and nonfading.

6. Water: Potable; free from deleterious material that may affect color stability, setting, or strength of concrete and complying with chemical limits of PCI MNL 116.

7. Air-Entraining Admixture: ASTM C 260, certified by manufacturer to be compatible with other required admixtures.

8. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and to not contain calcium chloride, or more than 0.15 percent chloride ions or other salts by weight of admixture.
 a. Water-Reducing Admixtures: ASTM C 494/C 494M, Type A.
 b. Retarding Admixture: ASTM C 494/C 494M, Type B.
 c. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 d. Water-Reducing and Accelerating Admixture: ASTM C 494/C 494M, Type E.
 e. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 f. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 g. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M.

9. Corrosion-Inhibiting Admixture: Commercially formulated, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete.

E. Steel Connection Materials
1. Carbon-Steel Shapes and Plates: ASTM A 36/A 36M.
2. Carbon-Steel-Headed Studs: ASTM A 108, AISI 1018 through AISI 1020, cold finished, AWS D1.1/D1.1M, Type A or B, with arc shields and with minimum mechanical properties of PCI MNL 116.
3. Carbon-Steel Plate: ASTM A 283/A 283M.
4. Malleable-Iron Castings: ASTM A 47/A 47M.
5. Carbon-Steel Castings: ASTM A 27/A 27M, Grade 60-30 (Grade 415-205).
6. High-Strength, Low-Alloy Structural Steel: ASTM A 572/A 572M.
7. Carbon-Steel Structural Tubing: ASTM A 500, Grade B.
8. Wrought Carbon-Steel Bars: ASTM A 675/A 675M, Grade 65 (Grade 450).
9. Deformed-Steel Wire or Bar Anchors: ASTM A 496 or ASTM A 706/A 706M.
10. Carbon-Steel Bolts and Studs: ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); carbon-steel, hex-head bolts and studs; carbon-steel nuts, ASTM A 563 (ASTM A 563M); and flat, unhardened steel washers, ASTM F 844.
11. High-Strength Bolts and Nuts: ASTM A 325 (ASTM A 325M) or ASTM A 490 (ASTM A 490M), Type 1, heavy hex steel structural bolts; heavy hex carbon-steel nuts, ASTM A 563 (ASTM A 563M); and hardened carbon-steel washers, ASTM F 436 (ASTM F 436M).
 a. Do not zinc coat ASTM A 490 (ASTM A 490M) bolts.
12. Zinc-Coated Finish: For exterior steel items, steel in exterior walls, as directed, and items indicated for galvanizing, apply zinc coating by hot-dip process according to ASTM A 123/A 123M OR or ASTM A 153/A 153M OR electrodeposition according to ASTM B 633, SC 3, Types 1 and 2, as directed.
 a. For steel shapes, plates, and tubing to be galvanized, limit silicon content of steel to less than 0.03 percent or to between 0.15 and 0.25 percent or limit sum of silicon and 2.5 times phosphorous content to 0.09 percent.
 b. Galvanizing Repair Paint: High-zinc-dust-content paint with dry film containing not less than 94 percent zinc dust by weight, and complying with DOD-P-21035B OR SSPC-Paint 20.
13. Shop-Primed Finish: Prepare surfaces of nongalvanized-steel items, except those surfaces to be embedded in concrete, according to requirements in SSPC-SP 3, and shop apply lead- and chromate-free, rust-inhibitive primer, complying with performance requirements in MPI 79 OR SSPC-Paint 25, as directed, according to SSPC-PA 1.
15. Precast Accessory: Provide clips, hangers, plastic or steel shims, and other accessories required to install precast structural concrete units.

F. Stainless-Steel Connection Materials
1. Stainless-Steel Plate: ASTM A 666, Type 304, of grade suitable for application.
2. Stainless-Steel Bolts and Studs: ASTM F 593, Alloy 304 or 316, hex-head bolts and studs; stainless-steel nuts; and flat, stainless-steel washers. Lubricate threaded parts of stainless-steel bolts with an antisize thread lubricant during assembly.

G. Bearing Pads
1. Provide one of the following bearing pads for precast structural concrete units as recommended by precast fabricator for application, as directed:
 a. Elastomeric Pads: AASHTO M 251, plain, vulcanized, 100 percent polychloroprene (neoprene) elastomer, molded to size or cut from a molded sheet, 50 to 70 Shore, Type A durometer hardness, ASTM D 2240; minimum tensile strength 2250 psi (15.5 MPa), ASTM D 412.
 b. Random-Oriented, Fiber-Reinforced Elastomeric Pads: Preformed, randomly oriented synthetic fibers set in elastomer. 70 to 90 Shore, Type A durometer hardness, ASTM D 2240; capable of supporting a compressive stress of 3000 psi (20.7 MPa) with no cracking, splitting, or delaminating in the internal portions of pad. Test 1 specimen for every 200 pads used in Project.
 c. Cotton-Duck-Fabric-Reinforced Elastomeric Pads: Preformed, horizontally layered cotton-duck fabric bonded to an elastomer; 80 to 100 Shore, Type A durometer hardness, ASTM D 2240; complying with AASHTO’s "AASHTO Load and Resistance Factor Design (LRFD) Bridge Specifications," Division II, Section 18.10.2; or with MIL-C-882E.
 d. Frictionless Pads: Tetrafluoroethylene, glass-fiber reinforced, bonded to stainless- or mild-steel plate, of type required for in-service stress.
 e. High-Density Plastic: Multimonomer, nonleaching, plastic strip.

H. Grout Materials
2. Nonmetallic, Nonshrink Grout: Premixed, nonmetallic, noncorrosive, nonstaining grout containing selected silica sands, portland cement, shrinkage-compensating agents, plasticizing and water-reducing agents, complying with ASTM C 1107, Grade A for drypack and Grades B and C for flowable grout and of consistency suitable for application within a 30-minute working time.
3. Epoxy-Resin Grout: Two-component, mineral-filled epoxy resin; ASTM C 881/C 881M, of type, grade, and class to suit requirements.

I. Thin-Brick Units And Accessories
 1. Thin-Brick Units: ASTM C 216, Type FBX or ASTM C 1088, Grade Exterior, Type TBX, not less than 1/2 inch (13 mm) OR 3/4 inch (19 mm) OR 1 inch (25 mm), as directed, thick with a tolerance of plus or minus 1/16 inch (1.6 mm), and as follows:
 a. Face Color and Texture: Match the Owner's samples OR Medium brown, wire cut OR Full-range red, sand molded OR Gray, velour, as directed.
 b. Face Size:
 1) 2-1/4 inches (57 mm) high by 8 inches (203 mm) long.
 2) 2-1/4 inches (57 mm) high by 7-1/2 to 7-5/8 inches (190 to 194 mm) long.
 3) 2-3/4 to 2-13/16 inches (70 to 71 mm) high by 7-1/2 to 7-5/8 inches (190 to 194 mm) long.
 4) 3-1/2 to 3-5/8 inches (89 to 92 mm) high by 7-1/2 to 7-5/8 inches (190 to 194 mm) long.
 5) 3-1/2 to 3-5/8 inches (89 to 92 mm) high by 11-1/2 to 11-5/8 inches (292 to 295 mm) long.
 c. Where indicated to "match existing," provide thin brick matching color, texture, and face size of existing adjacent brick work.
 d. Face Size:
 1) 57 mm high by 190 mm long.
 2) 70 mm high by 190 mm long.
 3) 90 mm high by 190 mm long.
 4) 90 mm high by 290 mm long.
 e. Special Shapes: Include corners, edge corners, and end edge corners.
 f. Initial Rate of Absorption: Less than 30 g/30 sq. in. (30 g/194 sq. cm) per minute; ASTM C 67.
 g. Efflorescence: Tested according to ASTM C 67 and rated "not effloresced."
 h. Surface Coating: Thin brick with colors or textures applied as coatings shall withstand 50 cycles of freezing and thawing; ASTM C 67 with no observable difference in applied finish when viewed from 10 feet (3 m).
 i. Back Surface Texture: Scored, combed, wire roughened, ribbed, keybacked, or dovetailed.

3. Latex-Portland Cement Pointing Grout: ANSI A118.6 and as follows:
 a. Dry-grout mixture, factory prepared, of portland cement, graded aggregate, and dry, redispersible, ethylene-vinyl-acetate additive for mixing with water; uniformly colored.
 b. Commercial portland cement grout, factory prepared, with liquid styrene-butadiene rubber or acrylic-resin latex additive; uniformly colored.
 c. Colors: As indicated by manufacturer's designations OR Match the Owner's samples OR As selected by the Owner from manufacturer's full range, as directed.

J. Stone Materials And Accessories
 1. Stone facing for precast structural concrete is specified in Division 04 Section “Exterior Stone Cladding”.
 2. Anchors: Stainless steel, ASTM A 666, Type 304, of temper and diameter required to support loads without exceeding allowable design stresses.
 a. Fit each anchor leg with neoprene grommet collar of width at least twice the diameter and of length at least five times the diameter of anchor.
3. Sealant Filler: ASTM C 920, low-modulus, multicomponent, nonsag urethane sealant complying with requirements in Division 07 Section “Joint Sealants” and that is nonstaining to stone substrate.

4. Epoxy Filler: ASTM C 881/C 881M, 100 percent solids, sand-filled nonshrinking, nonstaining of type, class, and grade to suit application.
 a. Elastomeric Anchor Sleeve: 1/2 inch (13 mm) long; 60 Shore, Type A durometer hardness; ASTM D 2240.

5. Bond Breaker: Preformed, compressible, resilient, nonstaining, nonwaxing, closed-cell polyethylene foam pad, nonabsorbent to liquid and gas, 1/8 inch (3.2 mm) thick OR Polyethylene sheet, ASTM D 4397, 6 to 10 mils (0.15 to 0.25 mm) thick, as directed.

K. Insulated Flat Wall Panel Accessories
 1. Molded-Polystyrene Board Insulation: ASTM C 578, Type I, 0.90 lb/cu. ft. (15 kg/cu. m) OR Type VIII, 1.15 lb/cu. ft. (18 kg/cu. m) OR Type II, 1.35 lb/cu. ft. (22 kg/cu. m), as directed; square OR ship-lap, as directed, edges; with R-value and thickness as directed by the Owner.
 2. Extruded-Polystyrene Board Insulation: ASTM C 578, Type IV, 1.60 lb/cu. ft. (26 kg/cu. m) OR Type X, 1.30 lb/cu. ft. (21 kg/cu. m) OR Type VI, 1.80 lb/cu. ft. (29 kg/cu. m), as directed; square OR ship-lap, as directed, edges; with R-value and thickness as directed by the Owner.
 3. Polyisocyanurate Board Insulation: ASTM C 591, Type I, 1.8 lb/cu. ft. (29 kg/cu. m) OR Type IV, 2 lb/cu. ft. (32 kg/cu. m) OR Type II, 2.5 lb/cu. ft. (40 kg/cu. m), as directed, unfaced, with R-value and thickness as directed by the Owner.
 4. Wythe Connectors: Glass-fiber connectors OR Vinyl-ester polymer connectors OR Polypropylene pin connectors OR Stainless-steel pin connectors OR Bent galvanized reinforcing bars OR Galvanized welded wire trusses OR Galvanized bent wire connectors OR Cylindrical metal sleeve anchors, as directed, manufactured to connect wythes of precast concrete panels.

L. Concrete Mixtures
 1. Prepare design mixtures for each type of precast concrete required.
 a. Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.
 b. Limit use of fly ash to 25 percent replacement of portland cement by weight and granulated blast-furnace slag to 40 percent of portland cement by weight; metakaolin and silica fume to 10 percent of portland cement by weight.
 2. Design mixtures may be prepared by a qualified independent testing agency or by qualified precast plant personnel at precast structural concrete fabricator’s option.
 3. Limit water-soluble chloride ions to maximum percentage by weight of cement permitted by ACI 318 (ACI 318M) or PCI MNL 116 when tested according to ASTM C 1218/C 1218M.
 4. Normal-Weight Concrete Mixtures: Proportion face mixtures OR face and backup mixtures OR full-depth mixture, as directed, by either laboratory trial batch or field test data methods according to ACI 211.1, with materials to be used on Project, to provide normal-weight concrete with the following properties:
 a. Compressive Strength (28 Days): 5000 psi (34.5 MPa).
 b. Maximum Water-Cementitious Materials Ratio: 0.45.
 5. Water Absorption: 6 percent by weight or 14 percent by volume, tested according to PCI MNL 116.
 6. Lightweight Concrete Backup Mixtures: Proportion mixtures by either laboratory trial batch or field test data methods according to ACI 211.2, with materials to be used on Project, to provide lightweight concrete with the following properties:
 a. Compressive Strength (28 Days): 5000 psi (34.5 MPa).
 b. Unit Weight: Calculated equilibrium unit weight of 115 lb/cu. ft. (1842 kg/cu. m), plus or minus 3 lb/cu. ft. (48 kg/cu. m), according to ASTM C 567.
 7. Add air-entraining admixture at manufacturer’s prescribed rate to result in concrete at point of placement having an air content complying with PCI MNL 116.
8. When included in design mixtures, add other admixtures to concrete mixtures according to manufacturer's written instructions.
9. Concrete Mix Adjustments: Concrete mix design adjustments may be proposed if characteristics of materials, Project conditions, weather, test results, or other circumstances warrant.

M. Mold Fabrication
1. Molds: Accurately construct molds, mortar tight, of sufficient strength to withstand pressures due to concrete-placement operations and temperature changes and for prestressing and detensioning operations. Coat contact surfaces of molds with release agent before reinforcement is placed. Avoid contamination of reinforcement and prestressing tendons by release agent.
 a. Place form liners accurately to provide finished surface texture indicated. Provide solid backing and supports to maintain stability of liners during concrete placement. Coat form liner with form-release agent.
2. Maintain molds to provide completed precast structural concrete units of shapes, lines, and dimensions indicated, within fabrication tolerances specified.
 a. Form joints are not permitted on faces exposed to view in the finished work.
 b. Edge and Corner Treatment: Uniformly chamfered OR radiused, as directed.

N. Thin-Brick Facings
1. Place form-liner templates accurately to provide grid for thin-brick facings. Provide solid backing and supports to maintain stability of liners while placing thin bricks and during concrete placement.
2. Securely place thin-brick units face down into form-liner pockets and place concrete backing mixture.
3. Completely fill joint cavities between thin-brick units with sand-cement mortar, and place precast concrete backing mixture while sand-cement mortar is still fluid enough to ensure bond.
4. Mix and install pointing grout according to ANSI A108.10. Completely fill joint cavities between thin-brick units with pointing grout, and compress into place without spreading pointing grout onto faces of thin-brick units. Remove excess pointing grout immediately to prevent staining of brick.
 a. Tool joints to a slightly concave shape OR grapevine shape OR V-shape, as directed, when pointing grout is thumbprint hard.
5. Clean faces and joints of brick facing.

O. Stone Facings
1. Clean stone surfaces before placing in molds to remove soil, stains, and foreign materials. Use cleaning methods and materials recommended by stone supplier.
2. Accurately position stone facings to comply with requirements and in locations indicated on Shop Drawings. Install anchors, supports, and other attachments indicated or necessary to secure stone in place. Keep concrete reinforcement a minimum of 3/4 inch (19 mm) from the back surface of stone. Use continuous spacers to obtain uniform joints of widths indicated and with edges and faces aligned according to established relationships and indicated tolerances.
 a. Stone to Precast Anchorages: Provide anchors in numbers, types and locations required to satisfy specified performance criteria, but not less than 2 anchors per stone unit of less than 2 sq. ft. (0.19 sq. m) in area and 4 anchors per unit of less than 12 sq. ft. (1.1 sq. m) in area; for units larger than 12 sq. ft. (1.1 sq. m) in area, provide anchors spaced not more than 24 inches (600 mm) o.c. horizontally and vertically. Locate anchors a minimum of 6 inches (150 mm) from stone edge.
3. Fill anchor holes with sealant filler and install anchors OR epoxy filler and install anchors with elastomeric anchor sleeve at back surface of stone, as directed.
 a. Install polyethylene sheet to prevent bond between back of stone facing and concrete substrate and to ensure no passage of precast matrix to stone surface.
 b. Install 1/8-inch (3-mm) polyethylene-foam bond breaker to prevent bond between back of stone facing and concrete substrate and to ensure no passage of precast matrix to stone.
surface. Maintain minimum projection requirements of stone anchors into concrete substrate.

P. Fabrication

1. Cast-in Anchors, Inserts, Plates, Angles, and Other Anchorage Hardware: Fabricate anchorage hardware with sufficient anchorage and embedment to comply with design requirements. Accurately position for attachment of loose hardware, and secure in place during precasting operations. Locate anchorage hardware where it does not affect position of main reinforcement or concrete placement.
 a. Weld-headed studs and deformed bar anchors used for anchorage according to AWS D1.1/D1.1M and AWS C5.4, "Recommended Practices for Stud Welding."

2. Furnish loose hardware items including steel plates, clip angles, seat angles, anchors, dowels, cramps, hangers, and other hardware shapes for securing precast structural concrete units to supporting and adjacent construction.

3. Cast-in reglets, slots, holes, and other accessories in precast structural concrete units as indicated on the Contract Drawings.

4. Cast-in openings larger than 10 inches (250 mm) in any dimension. Do not drill or cut openings or prestressing strand without the Owner's approval.

5. Reinforcement: Comply with recommendations in PCI MNL 116 for fabricating, placing, and supporting reinforcement.
 a. Clean reinforcement of loose rust and mill scale, earth, and other materials that reduce or destroy the bond with concrete. When damage to epoxy-coated reinforcement exceeds limits specified, repair with patching material compatible with coating material and epoxy coat bar ends after cutting.
 b. Accurately position, support, and secure reinforcement against displacement during concrete-placement and consolidation operations. Completely conceal support devices to prevent exposure on finished surfaces.
 c. Place reinforcement to maintain at least 3/4-inch (19-mm) minimum coverage. Increase cover requirements according to ACI 318 (ACI 318M) when units are exposed to corrosive environment or severe exposure conditions. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position while placing concrete. Direct wire tie ends away from finished, exposed concrete surfaces.
 d. Place reinforcing steel and prestressing strand to maintain at least 3/4-inch (19-mm) minimum concrete cover. Increase cover requirements for reinforcing steel to 1-1/2 inches (38 mm) when units are exposed to corrosive environment or severe exposure conditions. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position while placing concrete. Direct wire tie ends away from finished, exposed concrete surfaces.
 e. Install welded wire fabric in lengths as long as practicable. Lap adjoining pieces at least one full mesh spacing and wire tie laps, where required by design. Offset laps of adjoining widths to prevent continuous laps in either direction.

6. Reinforce precast structural concrete units to resist handling, transportation, and erection stresses.

 a. Delay detensioning or post-tensioning of precast, prestressed structural concrete units until concrete has reached its indicated minimum design release compressive strength as established by test cylinders cured under same conditions as concrete.
 b. Detension pretensioned tendons either by gradually releasing tensioning jacks or by heat cutting tendons, using a sequence and pattern to prevent shock or unbalanced loading.
 c. If concrete has been heat cured, detension while concrete is still warm and moist to avoid dimensional changes that may cause cracking or undesirable stresses.
 d. Protect strand ends and anchorages with bituminous, zinc-rich, or epoxy paint to avoid corrosion and possible rust spots.
e. Protect strand ends and anchorages with a minimum of 1-inch- (25-mm-) thick, nonmetallic, nonshrink, grout mortar and sack rub surface. Coat or spray the inside surfaces of pocket with bonding agent before installing grout.

8. Comply with requirements in PCI MNL 116 and in this Section for measuring, mixing, transporting, and placing concrete. After concrete batching, no additional water may be added.

9. Place face mixture to a minimum thickness after consolidation of the greater of 1 inch (25 mm) or 1.5 times the maximum aggregate size, but not less than the minimum reinforcing cover specified.

10. Place concrete in a continuous operation to prevent seams or planes of weakness from forming in precast concrete units.
 a. Place backup concrete mixture to ensure bond with face-mixture concrete.

11. Thoroughly consolidate placed concrete by internal and external vibration without dislocating or damaging reinforcement and built-in items, and minimize pour lines, honeycombing, or entrapped air on surfaces. Use equipment and procedures complying with PCI MNL 116.
 a. Place self-consolidating concrete without vibration according to PCI TR-6, "Interim Guidelines for the Use of Self-Consolidating Concrete in Precast/Prestressed Concrete Institute Member Plants."

12. Comply with ACI 306.1 procedures for cold-weather concrete placement.

14. Identify pickup points of precast structural concrete units and orientation in structure with permanent markings, complying with markings indicated on Shop Drawings. Imprint or permanently mark casting date on each precast structural concrete unit on a surface that will not show in finished structure.

15. Cure concrete, according to requirements in PCI MNL 116, by moisture retention without heat or by accelerated heat curing using low-pressure live steam or radiant heat and moisture. Cure units until compressive strength is high enough to ensure that stripping does not have an effect on performance or appearance of final product.

16. Discard and replace precast structural concrete units that do not comply with requirements, including structural, manufacturing tolerance, and appearance, unless repairs meet requirements in PCI MNL 116 and meet the Owner's approval.

Q. Casting Insulated Wall Panels
1. Cast and screed wythe supported by mold.
2. Place insulation boards abutting edges and ends of adjacent boards. Insert wythe connectors through insulation, and consolidate concrete around connectors according to connector manufacturer's written instructions.
3. Cast and screed top wythe to meet required finish.

R. Fabrication Tolerances
1. Fabricate precast structural concrete units straight and true to size and shape with exposed edges and corners precise and true so each finished unit complies with PCI MNL 116 product dimension tolerances.
2. Brick-Faced Precast Structural Concrete Units: Restrict the following misalignments to 2 percent of number of bricks in a unit:
 a. Alignment of Mortar Joints:
 1) Jog in Alignment: 1/8 inch (3 mm).
 2) Alignment with Panel Centerline: Plus or minus 1/8 inch (3 mm).
 b. Variation in Width of Exposed Mortar Joints: Plus or minus 1/8 inch (3 mm).
 c. Tipping of Individual Bricks from the Panel Plane of Exposed Brick Surface: Plus 1/16 inch (1.6 mm); minus 1/4 inch (6 mm) less than or equal to depth of form-liner joint.
 d. Exposed Brick Surface Parallel to Primary Control Surface of Panel: Plus 1/4 inch (6 mm); minus 1/8 inch (3 mm).
 e. Individual Brick Step in Face from Panel Plane of Exposed Brick Surface: Plus 1/16 inch (1.6 mm); minus 1/4 inch (6 mm) less than or equal to depth of form-liner joint.
3. Stone Veneer-Faced Precast Structural Concrete Units:
 a. Variation in Cross-Sectional Dimensions: For thickness of walls from dimensions indicated: Plus or minus 1/4 inch (6 mm).
 b. Variation in Joint Width: 1/8 inch in 36 inches (3 mm in 900 mm) or a quarter of nominal joint width, whichever is less.
 c. Variation in Plane between Adjacent Stone Units (Lipping): 1/16-inch (1.6-mm) difference between planes of adjacent units.

S. Commercial Finishes
 1. Commercial Grade: Remove fins and large protrusions and fill large holes. Rub or grind ragged edges. Faces must have true, well-defined surfaces. Air holes, water marks, and color variations are permitted. Limit form joint offsets to 3/16 inch (5 mm).
 2. Standard Grade: Normal plant-run finish produced in molds that impart a smooth finish to concrete. Surface holes smaller than 1/2 inch (13 mm) caused by air bubbles, normal color variations, form joint marks, and minor chips and spalls are permitted. Fill air holes greater than 1/4 inch (6 mm) in width that occur more than once per 2 sq. in (1300 sq. mm). Major or unsightly imperfections, honeycombs, or structural defects are not permitted. Limit joint offsets to 1/8 inch (3 mm).
 3. Grade B Finish: Fill air pockets and holes larger than 1/4 inch (6 mm) in diameter with sand-cement paste matching color of adjacent surfaces. Fill air holes greater than 1/8 inch (3 mm) in width that occur more than once per 2 sq. in. (1300 sq. mm). Grind smooth form offsets or fins larger than 1/8 inch (3 mm). Repair surface blemishes due to holes or dents in molds. Discoloration at form joints is permitted.
 4. Grade A Finish: Fill surface blemishes with the exception of air holes 1/16 inch (1.6 mm) in width or smaller, and form marks where the surface deviation is less than 1/16 inch (1.6 mm). Float apply a neat cement-paste coating to exposed surfaces. Rub dried paste coat with burlap to remove loose particles. Discoloration at form joints is permitted. Grind smooth all form joints.
 5. Screed or float finish unformed surfaces. Strike off and consolidate concrete with vibrating screeds to a uniform finish. Hand screed at projections. Normal color variations, minor indentations, minor chips, and spalls are permitted. Major imperfections, honeycombing, or defects are not permitted.
 6. Smooth, steel trowel finish unformed surfaces. Consolidate concrete, bring to proper level with straightedge, float, and trowel to a smooth, uniform finish.
 7. Apply roughened surface finish according to ACI 318 (ACI 318M) to precast concrete units that will receive concrete topping after installation.

T. Commercial Architectural Finishes
 1. Manufacture member faces free of joint marks, grain, and other obvious defects with corners, including false joints, uniform, straight, and sharp. Finish exposed-face surfaces of precast concrete units to match approved design reference sample OR sample panels, as directed, and as follows:
 a. PCI's "Architectural Precast Concrete - Color and Texture Selection Guide," of plate numbers indicated.
 b. Smooth-Surface Finish: Provide surfaces free of excessive air voids, sand streaks, and honeycombs, with uniform color and texture.
 c. Textured-Surface Finish: Impart by form liners or inserts to provide surfaces free of pockets, streaks, and honeycombs, with uniform color and texture.
 d. Bushhammer Finish: Use power or hand tools to remove matrix and fracture coarse aggregates.
 e. Exposed-Aggregate Finish: Use chemical-retarding agents applied to concrete molds and washing and brushing procedures to expose aggregate and surrounding matrix surfaces after form removal.
 f. Abrasive-Blast Finish: Use abrasive grit, equipment, application techniques, and cleaning procedures to expose aggregate and surrounding matrix surfaces.
g. Acid-Etched Finish: Use acid and hot-water solution, equipment, application techniques, and cleaning procedures to expose aggregate and surrounding matrix surfaces. Protect hardware, connections, and insulation from acid attach.

h. Honed Finish: Use continuous mechanical abrasion with fine grit, followed by filling and rubbing procedures.

i. Polished Finish: Use continuous mechanical abrasion with fine grit, followed by filling and rubbing procedures.

j. Sand-Embedment Finish: Use selected stones placed in a sand bed in bottom of mold, with sand removed after curing.

U. Source Quality Control
1. Testing: Test and inspect precast structural concrete according to PCI MNL 116 requirements.
 a. Test and inspect self-consolidating concrete according to PCI TR-6.
2. Strength of precast structural concrete units will be considered deficient if units fail to comply with ACI 318 (ACI 318M) requirements for concrete strength.
3. If there is evidence that strength of precast concrete units may be deficient or may not comply with ACI 318 (ACI 318M) requirements, employ a qualified testing agency to obtain, prepare, and test cores drilled from hardened concrete to determine compressive strength according to ASTM C 42/C 42M.
 a. A minimum of three representative cores will be taken from units of suspect strength, from locations directed by the Owner.
 b. Cores will be tested in an air-dry condition or, if units will be wet under service conditions, test cores after immersion in water in a wet condition.
 c. Strength of concrete for each series of 3 cores will be considered satisfactory if average compressive strength is equal to at least 85 percent of 28-day design compressive strength and no single core is less than 75 percent of 28-day design compressive strength.
 d. Test results will be made in writing on same day that tests are performed, with copies to the Owner, Contractor, and precast concrete fabricator. Test reports will include the following:
 1) Project identification name and number.
 2) Date when tests were performed.
 3) Name of precast concrete fabricator.
 4) Name of concrete testing agency.
 5) Identification letter, name, and type of precast concrete unit(s) represented by core tests; design compressive strength; type of break; compressive strength at breaks, corrected for length-diameter ratio; and direction of applied load to core in relation to horizontal plane of concrete as placed.
4. Patching: If core test results are satisfactory and precast structural concrete units comply with requirements, clean and dampen core holes and solidly fill with same precast concrete mixture that has no coarse aggregate, and finish to match adjacent precast concrete surfaces.
5. Defective Units: Discard and replace precast structural concrete units that do not comply with requirements, including strength, manufacturing tolerances, and color and texture range. Chipped, spalled, or cracked units may be repaired, subject to the Owner's approval. the Owner reserves the right to reject precast units that do not match approved samples and sample panels.

1.3 EXECUTION

A. Installation
1. Install clips, hangers, bearing pads, and other accessories required for connecting precast structural concrete units to supporting members and backup materials.
2. Erect precast structural concrete level, plumb, and square within specified allowable tolerances. Provide temporary structural framing, supports, and bracing as required to maintain position, stability, and alignment of units until permanent connection.
a. Install temporary steel or plastic spacing shims or bearing pads as precast structural concrete units are being erected. Tack weld steel shims to each other to prevent shims from separating.
b. Maintain horizontal and vertical joint alignment and uniform joint width as erection progresses.
c. Remove projecting lifting devices and grout fill voids within recessed lifting devices flush with surface of adjacent precast surfaces when recess is exposed.
d. For hollow-core slab voids used as electrical raceways or mechanical ducts, align voids between units and tape butt joint at end of slabs.

3. Connect precast structural concrete units in position by bolting, welding, grouting, or as otherwise indicated on Shop Drawings. Remove temporary shims, wedges, and spacers as soon as practical after connecting and grouting are completed.
 a. Do not permit connections to disrupt continuity of roof flashing.

4. Field cutting of precast units is not permitted without approval of the Owner.

5. Fasteners: Do not use drilled or powder-actuated fasteners for attaching accessory items to precast, prestressed concrete units.

6. Welding: Comply with applicable AWS D1.1/D1.1M and AWS D1.4 for welding, welding electrodes, appearance, quality of welds, and methods used in correcting welding work.
 a. Protect precast structural concrete units and bearing pads from damage by field welding or cutting operations, and provide noncombustible shields as required.
 b. Clean weld-affected steel surfaces with chipping hammer followed by brushing, and apply a minimum 4.0-mil- (0.1-mm-) thick coat of galvanized repair paint to galvanized surfaces according to ASTM A 780.
 c. Clean weld-affected steel surfaces with chipping hammer followed by brushing, and reprime damaged painted surfaces.
 d. Remove, reweld, or repair incomplete and defective welds.

7. At bolted connections, use lock washers, tack welding, or other approved means to prevent loosening of nuts after final adjustment.
 a. Where slotted connections are used, verify bolt position and tightness. For sliding connections, properly secure bolt but allow bolt to move within connection slot. For friction connections, apply specified bolt torque and check 25 percent of bolts at random by calibrated torque wrench.

8. Grouting: Grout connections and joints and open spaces at keyways, connections, and joints where required or indicated on Shop Drawings. Retain grout in place until hard enough to support itself. Pack spaces with stiff grout material, tamping until voids are completely filled.
 a. Place grout to finish smooth, level, and plumb with adjacent concrete surfaces.
 b. Fill joints completely without seepage to other surfaces.
 c. Trowel top of grout joints on roofs smooth and uniform. Finish transitions between different surface levels not steeper than 1 to 12.
 d. Place grout end cap or dam in voids at ends of hollow-core slabs.
 e. Promptly remove grout material from exposed surfaces before it affects finishes or hardens.
 f. Keep grouted joints damp for not less than 24 hours after initial set.

B. Erection Tolerances
 1. Erect precast structural concrete units level, plumb, square, true, and in alignment without exceeding the noncumulative erection tolerances of PCI MNL 135.
 2. Minimize variations between adjacent slab members by jacking, loading, or other method recommended by fabricator and approved by the Owner.

C. Field Quality Control
 1. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 a. Erection of precast structural concrete members.
 2. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
3. Field welds will be visually inspected and nondestructive tested according to ASTM E 165 or ASTM E 709. High-strength bolted connections will be subject to inspections.
4. Testing agency will report test results promptly and in writing to Contractor and the Owner.
5. Repair or remove and replace work where tests and inspections indicate that it does not comply with specified requirements.
6. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
7. Prepare test and inspection reports.

D. Repairs
1. Repair precast structural concrete units if permitted by the Owner.
 a. Repairs may be permitted if structural adequacy, serviceability, durability, and appearance of units has not been impaired.
2. Mix patching materials and repair units so cured patches blend with color, texture, and uniformity of adjacent exposed surfaces and show no apparent line of demarcation between original and repaired work, when viewed in typical daylight illumination from a distance of 20 feet (6 m).
3. Prepare and repair damaged galvanized coatings with galvanizing repair paint according to ASTM A 780.
4. Wire brush, clean, and paint damaged prime-painted components with same type of shop primer.
5. Remove and replace damaged precast structural concrete units that cannot be repaired or when repairs do not comply with requirements as determined by the Owner.

E. Cleaning
1. Clean mortar, plaster, fireproofing, weld slag, and other deleterious material from concrete surfaces and adjacent materials immediately.
2. Clean exposed surfaces of precast concrete units after erection and completion of joint treatment to remove weld marks, other markings, dirt, and stains.
 a. Perform cleaning procedures, if necessary, according to precast concrete fabricator's written recommendations. Clean soiled precast concrete surfaces with detergent and water, using stiff fiber brushes and sponges, and rinse with clean water. Protect other work from staining or damage due to cleaning operations.
 b. Do not use cleaning materials or processes that could change the appearance of exposed concrete finishes or damage adjacent materials.

END OF SECTION 03 62 13 00
SECTION 03 62 13 00a - TILT-UP PRECAST CONCRETE

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for tilt-up concrete. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section specifies load-bearing, tilt-up concrete, including the following:
 a. Monolithic panels.
 b. Insulated-sandwich panels.

C. Definitions
1. Face-down Surface: Concealed surface of as-cast, tilt-up panel formed against the casting slab.
2. Face-up Surface: Exposed upper surface of as-cast, tilt-up panel.
3. Reveal: Projection of the coarse aggregate from the matrix after exposure.

D. Submittals
1. Product Data: For each type of product indicated.
2. LEED Submittals:
 a. Product Data for Credit MR 4.1 and Credit MR 4.2, as directed: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content.
 1) Include statement indicating costs for each product having recycled content.
 b. Design Mixtures for Credit ID 1.1: For each concrete mixture containing fly ash as a replacement for portland cement or other portland cement replacements and for equivalent concrete mixtures that do not contain portland cement replacements.
3. Design Mixtures: For each concrete mixture.
4. Shop Drawings: Detail fabrication and installation of tilt-up concrete units. Indicate panel locations, plans, elevations, dimensions, shapes, cross sections, and details of steel embedments.
 a. Include steel reinforcement, detailing fabrication, bending, and placing. Include material, grade, bar schedules, stirrup spacing, bent-bar diagrams, arrangement, and supports of concrete reinforcement.
 b. Include additional steel reinforcement to resist hoisting and erection stresses.
 c. Include locations and details of hoisting points and lifting devices for handling and erection.
 d. Include engineering analysis data of additional steel reinforcement and hoisting and erection details, signed and sealed by the qualified professional engineer responsible for their preparation.
 e. Indicate welded connections by AWS standard symbols. Detail cast-in inserts, connections, and joints, including accessories.
 f. Include layout of wythe connectors for sandwich panels.
5. Welding certificates.
6. Material test reports OR certificates, as directed.
7. Field quality-control test and inspection, as directed, reports.

E. Quality Assurance
1. Installer Qualifications: A qualified installer who employs a supervisor on Project who is an ACI-certified Tilt-up Supervisor.
 a. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
3. Welding: Qualify procedures and personnel according to the following:
 a. AWS D1.1, "Structural Welding Code--Steel."
 b. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
5. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.

1.2 PRODUCTS

A. Forms And Accessories
1. Forms: Metal, dressed lumber, or other approved materials that are nonreactive with concrete and that will provide continuous, true, and smooth concrete surfaces.
3. Form Liners: Units of face design, texture, arrangement, and configuration indicated. Furnish with manufacturer's recommended liquid-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent surface treatments of concrete.
4. Reveal Strips: Metal, PVC, rubber, straight dressed wood, or plywood; with sides kerfed.
5. Sealer: Penetrating, clear, polyurethane wood form sealer formulated to reduce absorption of bleedwater and prevent migration of set-retarding chemicals from wood or plywood.

B. Steel Reinforcement
1. Recycled Content of Steel Products: Provide products with an average recycled content of steel products so postconsumer recycled content plus one-half of preconsumer recycled content is not less than 25 OR 60, as directed, percent.
2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
4. Plain-Steel Wire: ASTM A 82, as drawn OR galvanized, as directed.
5. Plain-Steel Welded Wire Reinforcement: ASTM A 185, fabricated from as-drawn steel wire into flat sheets.
7. Bar Supports: Manufactured according to CRSI's "Manual of Standard Practice" of plastic or CRSI Class 1 plastic-protected steel wire or Class 2 stainless-steel wire.

C. Concrete Materials
1. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout the Project:
 a. Portland Cement: ASTM C 150, Type I OR II OR I/II OR III OR V, as directed, gray OR white, as directed. Supplement with the following, as directed:
 1) Fly Ash: ASTM C 618, Class C OR F, as directed.
 2) Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
 b. Blended Hydraulic Cement: ASTM C 595, Type IS, portland blast-furnace slag OR IP, portland-pozzolan OR I (PM), pozzolan-modified Portland OR I (SM), slag-modified portland, as directed, cement.
2. Coarse Aggregate: ASTM C 33, Class 4S OR 4M OR 1N, as directed, coarse aggregate or better, graded, 1 inch (25 mm) OR 3/4 inch (19 mm), as directed, nominal size.
3. Fine Aggregate: ASTM C 33 OR STM C 144, as directed, manufactured or natural sand, from same source for Project, free of materials with deleterious reactivity to alkali in cement.
4. Exposed Coarse Aggregate: Hard and durable; washed; free of material that reacts with cementitious material or causes staining; from a single source, as follows:
 a. Aggregate Sizes: 3/4 to 1 inch (19 to 25 mm) OR 1/2 to 3/4 inch (13 to 19 mm) OR 3/8 to 5/8 inch (10 to 16 mm), as directed, nominal.
 b. Gradation: Uniformly OR Gap, as directed, graded.
5. Water: ASTM C 94/C 94M and potable, as directed.

D. Admixtures
2. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 a. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 b. Retarding Admixture: ASTM C 494/C 494M, Type B.
 c. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 d. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 e. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 f. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
3. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, free of carbon black, as directed, nonfading, and resistant to lime and other alkalis.
 a. Color: As indicated by manufacturer's designation OR Match the Owner's sample OR As selected by the Owner from manufacturer's full range, as directed.

E. Bondbreakers
1. Solvent-Borne, Chemically Reactive Bondbreaker: Penetrating polymerized solution containing no oils, waxes, paraffins, or silicones, and compatible with casting-slab curing compound.
2. Solvent-Borne, Membrane-Forming Bondbreaker: Dissipating polymerized solution containing no oils, waxes, paraffins, or silicones, and compatible with casting-slab curing compound.
3. Waterborne, Chemically Reactive Bondbreaker: Penetrating polymerized emulsion containing no oils, waxes, paraffins, or silicones, and compatible with casting-slab curing compound.
4. Waterborne, Membrane-Forming Bondbreaker: Dissipating polymerized emulsion containing no oils, waxes, paraffins, or silicones, and compatible with casting-slab curing compound.

F. Curing Materials
1. Evaporation Retarder: Waterborne, monomolecular film forming; manufactured for application to fresh concrete.
2. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) when dry.
4. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.

G. Connection Materials
1. Embedded Metal Items and Loose Hardware: Materials for securing tilt-up concrete panels together and to supporting and adjacent construction are specified in Division 05 Section "Metal Fabrications".
2. Loose Hardware: Materials for securing tilt-up concrete panels together and to supporting and adjacent construction are specified in Division 05 Section "Metal Fabrications".
3. Carbon-Steel Shapes and Plates: ASTM A 36/A 36M.
4. Carbon-Steel Bolts and Studs: ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); carbon-steel, hex-head bolts and studs; carbon-steel nuts; and flat, unhardened steel washers.
6. Welded Headed Studs: AWS D1.1, Type B headed studs, and cold-finished, carbon-steel bars.
8. **Chord Bar Sleeves**: Tubular sheathing, plastic or moisture-resistance-treated cardboard.

10. **Hot-Dip Galvanized Finish**: Apply zinc coating to steel connections by hot-dip process, complying with ASTM A 123/A 123M or ASTM A 153/A 153M as applicable.
 a. **Zinc Repair Paint**: SSPC-Paint 20.

11. **Shop-Primed Finish**: Prepare surfaces of steel connections, except those surfaces to be embedded in concrete, according to requirements in SSPC-SP 3, and shop-apply primer according to SSPC-PA 1.
 a. **Primer**: MPI#79, "Alkyd Anti-Corrosive Metal Primer" OR MPI#76, "Quick Dry Alkyd Metal Primer," as directed.

H. **Lifting Inserts And Accessories**
1. Furnish inserts, dowels, bolts, nuts, washers, and other items to be cast in panels for tilting and lifting.
 a. Manufacture inserts with feet of plastic, galvanized steel wire, plastic-tipped steel wire, or stainless-steel-tipped steel wire.

2. Furnish brace anchors and other accessories to be cast in panels and in casting slab for attaching bracing.
 a. Manufacture wall brace anchors and accessories with feet of galvanized steel wire, plastic-tipped steel wire, or stainless-steel-tipped steel wire.
 b. Manufacture floor brace anchors that will not penetrate vapor retarder under slab-on-grade.

I. **Bearing Pads**
1. **Elastomeric Pads**: AASHTO M 251, plain, vulcanized, 100 percent polychloroprene (neoprene) elastomer, molded to size or cut from a molded sheet; Type A Shore durometer hardness of 50 to 70, ASTM D 2240; and minimum tensile strength 2250 psi (15.5 MPa), ASTM D 412.

2. **Random, Fiber-Reinforced Elastomeric Pads**: Preformed, randomly oriented synthetic fibers set in elastomer with a Type A Shore durometer hardness of 70 to 90, ASTM D 2240.

4. **High-Density Plastic Strips**: Multimonomer, nonleaching plastic.

J. **Grout**
1. **Cement Grout**: Portland cement, ASTM C 150, Type I; and clean, natural sand, ASTM C 404. Mix at ratio of 1 part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration.

2. **Nonmetallic, Nonshrink Grout**: Premixed, nonmetallic, noncorrosive, nonstaining grout containing selected silica sands, portland cement, shrinkage-compensating agents, and plasticizing and water-reducing agents; complying with ASTM C 1107, of consistency suitable for application.

K. **Sandwich-Panel Insulation**
1. **Extruded-Polystyrene Board Insulation**: ASTM C 578, Type IV, square edged.

2. **Faced Polyisocyanurate Board Insulation**: ASTM C 1289, Type I, square edged; with aluminum/polyethylene facer.

L. **Sandwich-Panel Accessories**
1. **Resin Wythe Connectors**: Manufactured thermoplastic resin connector rods, notched, with integral resin flange around shaft of connector rod; alkaline resistant; for noncomposite structural action.

2. **Fiber/Polymer Composite Wythe Connectors**: Manufactured composite glass-fiber and vinyl-ester polymer connector rods, notched, with polymer collars injection molded around shaft of connector rod; alkaline resistant; for noncomposite structural action.

3. **Stainless-Steel Wythe Connectors**: Manufactured of stainless-steel sheet, ASTM A 240/A 240M, Type 304; round tube and rectangular flat anchors; punched with round holes for anchor rods and...
oval holes for concrete bond; equipped with bright, hard-drawn steel wire anchor rods, 1/4 inch (6.4 mm) in diameter, 28 inches (710 mm) long; and L-shaped crimped connector pins manufactured of stainless-steel wire, ASTM A 580/A 580M, Type 304; for noncomposite structural action.

4. Polyethylene Sheet: ASTM D 4397, 4 mils (0.10 mm) thick.

M. Miscellaneous Materials
1. Chemical Surface Retarder: Water-soluble, liquid set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to depth of reveal or etch required of specified finish.
2. Form Retarder: Chemical liquid set retarder, for application on hardened horizontal concrete and capable of temporarily delaying final hardening of newly placed concrete to depth of reveal specified.
 a. Mold Release: Solution specially formulated by manufacturer for use under form retarder.
3. Flashing Reglets: Open type having continuous groove not less than 1-1/8 inches (28 mm) deep by 3/16 inch (5 mm) wide at opening and sloped upward to 45 degrees. Temporarily fill or cover face openings of reglets to prevent intrusion of concrete or debris.
 a. Stainless Steel: ASTM A 240/A 240M, Type 304, soft annealed, not less than 0.0187 inch (0.5 mm) thick.
 b. Copper Strip: ASTM B 370, Temper H00 or O60, not less than 16 oz./sq. ft. (0.55 mm thick).
 c. Hot-Dip Galvanized Steel Sheet: ASTM A 653/A 653M, G90 (Z275) coating, not less than 0.0217 inch (0.55 mm) thick.
4. Dovetail Anchor Slots: Hot-dip galvanized steel sheet, not less than 0.0336 inch (0.85 mm) thick, with bent tab anchors. Temporarily fill or cover face opening of slots to prevent intrusion of concrete or debris.

N. Repair Materials
1. Bonding Agent: ASTM C 1059, Type II, nonredispersible, acrylic emulsion or styrene butadiene.
2. Patching Mortar: Dry-pack mix consisting of 1 part portland cement to 2-1/2 parts fine aggregate passing No. 16 (1.18-mm) sieve, using only enough water for handling and placing.

O. Concrete Mixtures
1. Prepare design mixtures for each type and strength of concrete, proportioned on basis of laboratory trial mixture or field test data, or both, according to ACI 301.
 a. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures based on laboratory trial mixtures.
2. Proportion concrete mixture as follows:
 a. Minimum Compressive Strength: 5000 psi (34.5 MPa) OR 4500 psi (31 MPa) OR 4000 psi (27.6 MPa) OR 3500 psi (24.1 MPa) OR 3000 psi (20.7 MPa), as directed, at 28 days.
 b. Maximum Water-Cementitious Materials Ratio: 0.50 OR 0.45 OR 0.40, as directed.
 c. Slump Limit: 4 inches (100 mm) OR 5 inches (125 mm) OR 8 inches (200 mm) for concrete with verified slump of 2 to 4 inches (50 to 100 mm) before adding high-range, water-reducing admixture or plasticizing admixture, as directed, plus or minus 1 inch (25 mm).
 d. Air Content
 1) 5-1/2 percent plus or minus 1.5 percent for 1-1/2-inch (38-mm) nominal maximum aggregate size at point of delivery.
 2) 6 percent plus or minus 1.5 percent for 1-inch (25-mm) OR 3/4-inch (19-mm), as directed, nominal maximum aggregate size at point of delivery.
 e. Cementitious Materials: Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent OR Limit percentage, by weight, of cementitious materials other than portland cement in concrete according to ACI 301 requirements, as directed.
3. Limit water-soluble chloride-ion content in hardened concrete to 0.15 OR 0.30, as directed, percent by weight of cement.
4. Admixtures: Use admixtures according to manufacturer's written instructions.
 a. Use water-reducing OR high-range, water-reducing OR plasticizing, as directed, admixture in concrete, as required, for placement and workability.
 b. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
5. Color Pigment: Add color pigment to concrete mixture according to manufacturer’s written instructions and to result in hardened concrete color consistent with approved mockup.

P. Concrete Mixing
1. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information.
 a. When air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.
2. Project-Site-Produced Concrete: Measure, batch, and mix concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 a. Provide a batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mix type, mix time, quantity, and amount of water added. Record panel locations where concrete is deposited.

1.3 EXECUTION
A. Forms
1. Construct and brace formwork so tilt-up concrete panels are of size, shape, alignment, elevation, and position indicated.
 a. Construct forms on slab-on-grade or on temporary casting slab, at Contractor’s option.
 b. Provide for openings, offsets, recesses, reveals, rustications, reglets, and blockouts.
 c. Place form liners accurately to provide finished surface texture indicated. Provide solid backing and supports to maintain stability of liners during concreting. Coat form liner with form-release agent.
2. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Use kerfed inserts, such as those forming reglets, rustications, and recesses, for easy removal.
3. Set edge forms for panels to achieve required panel thickness.
4. Chamfer exposed corners and edges, unless otherwise indicated, using chamfer strips fabricated to produce uniform, smooth lines and tight edge joints.
5. Coat contact surfaces of wood forms and chamfers with sealer before placing reinforcement.

B. Bondbreakers
1. Uniformly and continuously apply two coats of bondbreaker to casting-slab surfaces by power spray or roller according to manufacturer's written instructions, before placing steel reinforcement. Reccoat areas subjected to moisture before drying. Maintain continuity of coating until concrete placement.
2. After placing steel reinforcement, touch up or recoat worn or damaged areas with bondbreaker. Do not splash or coat steel reinforcement and inserts.

C. Form Retarder
1. Uniformly and continuously apply form retarder to slab surfaces by power spray, roller, or brush according to manufacturer’s written instructions, before placing steel reinforcement. Reccoat areas subjected to moisture before drying. Maintain continuity of coating until concrete placement.
 a. Uniformly apply mold release according to manufacturer's written instructions and allow to dry before applying form retarder.
2. After placing steel reinforcement, touch up or recoat worn or damaged areas with form retarder. Do not splash or coat steel reinforcement and inserts.

D. Reinforcement And Inserts
2. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover.
 a. Field weld reinforcement according to AWS D1.4, where indicated.
 b. Do not tack-weld crossing reinforcing bars.
 c. Set wire ties so ends are directed into concrete, not toward exposed concrete surfaces.
3. Install welded wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.
4. Accurately place and securely support embedded items, anchorages, inserts, cramps, retainers, bar chords and sleeves, and other items to be built into panels. Coordinate with other trades for installing cast-in items.
5. Wythe Connectors: Accurately place and securely support stainless-steel anchors and connecting pins for sandwich panels.

E. Panel Casting, General
1. Comply with ACI 301 for handling, placing, and consolidating concrete.
2. Maintain position of steel reinforcement, inserts, and anchors during concrete placement, consolidation, and finishing.
3. Screed panel surfaces to correct level with a straightedge and strike off.
 a. Begin initial floating before excess moisture or bleedwater appears on the surface. Use bull floats or darbies to form a uniform and open-textured surface plane free of humps or hollows. Do not disturb panel surfaces before beginning finishing operations.
4. Form chamfers at top edges of panel perimeters, openings, and similar locations not formed by chamfer strips, unless otherwise indicated.
5. Surface Defects: Limit visible surface defects to those permitted by TCA's "Tilt-up Concrete Association's Guideline Specifications" for Grade A, Architectural OR Grade B, Standard OR Grade C, Utility, as directed, panel surfaces.

F. Sandwich-Panel Casting
1. Cast and screed supported wythe over casting slab.
2. Resin OR Fiber/Polymer Composite, as directed, Wythe Connectors:
 a. While concrete is still plastic, place polyethylene sheet over top surface, overlapping sheet edges 6 inches (150 mm) and extending beyond edges of panels.
 b. Immediately place insulation, abutting edges and ends between boards. Stagger end joints between rows. Stagger joints of insulation layers one-half of board apart. Insert wythe connectors through predrilled insulation, and consolidate concrete around connectors according to manufacturer's written instructions.
3. Stainless-Steel Wythe Connectors: Place insulation through projecting connectors, abutting edges and ends between boards. Stagger end joints between rows. Stagger joints of insulation layers one-half of board apart.
 a. Place polyethylene sheet over insulation, overlapping edges 6 inches (150 mm) and extending beyond edges of panels.
4. Cast, screed, and apply initial float finish to structural wythe.

G. Casting Tolerances
1. Cast tilt-up concrete panels without exceeding the following tolerances:
 a. Height and Width of Panels:
 1) For Panels up to 20 Feet (6.1 m) Tall: 1/4 inch (6 mm) wide.
2) For Panels 20 to 30 Feet (6.1 to 9.1 m) Tall: 3/8 inch (10 mm) wide.
3) Each Additional 10 Feet (3.05 m) in Excess of 30 Feet (9.1 m) Tall: 1/8 inch (3 mm) wide.

b. Thickness: 3/16 inch (5 mm).
c. Skew of Panel or Opening: Difference in length of diagonals of 1/8 inch per 72 inches (3 mm per 1830 mm) with a maximum difference of 1/2 inch (13 mm).
d. Openings Cast into Panel:
 1) Size of Opening: 1/4 inch (6 mm).
 2) Location of Centerline of Opening: 1/4 inch (6 mm).

e. Location and Placement of Embedded Items:
 1) Inserts, Bolts, and Pipe Sleeves: 3/8 inch (10 mm).
 2) Lifting and Bracing Inserts: As required by manufacturer.
 3) Lateral Placement of Weld Plate Embedments: 1 inch (25 mm).
 4) Tipping and Flushness of Weld Plate Embedments: 1/4 inch (6 mm).
f. Deviation of Steel Reinforcement Cover: Maintain minimum cover required by ACI 301.

H. Face-Up Finishes
1. Float Finish: Consolidate surface of plastic concrete with power-driven floats or by hand floating. Restraighten and cut down high spots and fill low spots. Repeat float passes and restraighten until surface is left with a uniform, smooth, granular texture.
2. Trowel Finish: After applying float finish, apply first trowel finish and consolidate plastic concrete by hand trowel or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and is uniform in texture and appearance.
3. Trowel and Fine-Broom Finish: After applying float finish, apply a partial trowel finish to plastic concrete, stopping after second troweling. Immediately after second troweling, and when concrete is still plastic, slightly scarify the surface with a fine broom.
 a. Broom surface in a top-to-bottom OR side-to-side, as directed, direction.
4. Brushed Exposed-Aggregate Finish: Produce exposed-aggregate finish to exterior surface of concrete by washing and brushing before panel erection, as follows:
 a. Immediately after floating, broadcast a single layer of aggregate uniformly onto panel surface. Tamp seeded aggregate into plastic concrete, and float to embed aggregate with mortar cover of 1/16 inch (1.6 mm).
 b. Spray chemical surface retarder on panel according to manufacturer's written instructions.
 c. Cover panel surface with plastic sheeting, sealing laps with tape, and remove when ready to continue finishing operations.
 d. Without dislodging aggregate, remove excess mortar by lightly brushing surface with stiff nylon-bristle broom.
 e. Fine spray surface with water, and brush. Repeat water flushing and brushing cycle until cement film is removed from aggregate surfaces to depth required.
5. Abrasive-Blast, Exposed-Aggregate Finish: Produce exposed-aggregate finish to exterior surface of concrete by abrasive-blast finish before panel erection, as follows:
 a. Immediately after floating, spray chemical surface retarder on panel surface according to manufacturer's written instructions.
 b. Cover with plastic sheeting, sealing laps with tape, and remove after concrete has hardened.
 c. Apply abrasive-blast finish using abrasive grit, equipment, application techniques, and cleaning procedures to expose aggregate and surrounding matrix surfaces as follows:
 1) Light Exposure: Expose fine aggregate with occasional exposure of coarse aggregate and uniform color; maximum reveal of 1/16 inch (1.6 mm).
 2) Medium Exposure: Generally expose coarse aggregate with slight reveal; maximum reveal of 1/4 inch (6 mm).
 3) Heavy Exposure: Expose and reveal coarse aggregate to a maximum projection of 1/3 of its diameter; reveal of 1/4 to 1/2 inch (6 to 13 mm).
d. Acid Cleaning: After abrasive blasting, clean surfaces with a 5 to 10 percent concentration of hydrochloric acid wash. Thoroughly neutralize and flush acid from finished surfaces with water under pressure. Protect casting slab and adjacent panels from acid wash.

I. Face-Down Finishes
1. Smooth, As-Cast Finish: Cast panel to produce a surface free of pockets, sand streaks, and honeycombs. Produce a surface appearance of uniform color and texture.
2. Form-Liner Finish: Cast panel over form liners placed, secured, and sealed over casting slab to produce a textured surface free of pockets, streaks, and honeycombs. Produce a surface appearance of uniform color and texture.
 a. Apply abrasive-blast finish using abrasive grit, equipment, application techniques, and cleaning procedures to expose aggregate and surrounding matrix surfaces as follows:
 1) Light Exposure: Expose fine aggregate with occasional exposure of coarse aggregate and uniform color; maximum reveal of 1/16 inch (1.6 mm).
 2) Medium Exposure: Generally expose coarse aggregate with slight reveal; maximum reveal of 1/4 inch (6 mm).
 3) Heavy Exposure: Expose and reveal coarse aggregate to a maximum projection of 1/3 of its diameter; reveal of 1/4 to 1/2 inch (6 to 13 mm).
 a. After panel erection and without dislodging aggregate, remove excess mortar by lightly brushing surface with stiff nylon-bristle broom.
 b. Fine spray surface with water, and brush. Repeat water flushing and brushing cycle until cement film is removed from aggregate surfaces to depth required.
5. Bushhammer Exposed-Aggregate Finish: Allow concrete to cure at least 14 days before starting bushhammer surface finish operations.
 a. Surface Continuity: Perform bushhammer finishing in as continuous an operation as possible, maintaining continuity of finish on each surface or area of Work. Maintain required patterns or variances of cut as shown on Drawings or to match mockup.
 b. Surface Cut: Maintain required depth of cut and general aggregate exposure. Use power tool with bushhammer attachments for large, flat surfaces, and use hand hammers for small areas, at corners and edges, and for restricted locations where power tools cannot reach.
6. Sand-Bed, Exposed-Aggregate Finish: Place selected exposed aggregate on a sand bed over casting slab before placing reinforcement, embedments, and concrete. After erecting panel, remove sand to expose aggregate.

J. Concrete Protecting And Curing
1. Protect freshly placed concrete from premature drying and excessive cold or hot temperatures according to ACI 301.
 a. Apply evaporation retarder in hot, dry, or windy weather to protect concrete from rapid moisture loss before and during finishing operations. Apply according to manufacturer's written instructions after screeding and bull floating concrete, but before float finishing.
2. Begin curing immediately after finishing concrete. Cure by one or a combination of the following methods according to ACI 308.1:
 a. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 1) Water.
 2) Continuous water-fog spray.
 3) Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.
 b. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least
12 inches (300 mm), and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period, using cover material and waterproof tape.

c. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recaulk areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

K. Erection
1. Use erection equipment with care to prevent damage to floor slabs and panels.
2. Lift, support, and erect panels only at designated lifting or supporting points indicated on Shop Drawings.
3. Do not erect panels until 75 percent of 28-day compressive strength of concrete has been verified.
4. Do not erect panels until verified compressive strength of concrete exceeds 2500 psi (17.2 MPa).
5. Install tilt-up concrete panels level, plumb, square, and true. Place panels on leveled grout-setting pads or shims in correct position. Maintain joint width of 1/2 inch (13 mm) OR 3/4 inch (19 mm), as directed, between panels.
6. Temporarily brace and support panels securely in position against loads comparable in intensity to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to panels are secured.
7. Anchor panels in place and, if indicated, to one another.
 a. Weld steel connectors to steel supports and embedments indicated, complying with AWS D1.1.
8. Solidly grout-fill gaps between foundation system and bottom of panels.

L. Field Quality Control
1. Testing and Inspecting: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
2. Inspections:
 a. Steel reinforcement placement.
 b. Steel reinforcement welding.
 c. Headed bolts and studs.
 d. Verification of use of required design mixture.
 e. Concrete placement, including conveying and depositing.
 f. Curing procedures and maintenance of curing temperature.
 g. Verification of concrete strength before erection of tilt-up panels.
3. Testing Services: Tests shall be performed according to ACI 301.

M. Erection Tolerances
1. Install tilt-up concrete panels without exceeding the following erection tolerances:
 a. Joint Width Variation (Exterior Face): Without decreasing or increasing more than 50 percent from specified joint width, maintain joint width as follows:
 1) For Panels up to 20 Feet (6.1 m) Tall: 1/4 inch (6 mm).
 2) Each Additional 10 Feet (3.05 m) in Excess of 20 Feet (6.1 m) Tall: 1/8 inch (3 mm).
 b. Joint Taper: Maximum 3/8 inch (10 mm) over length, but not greater than the following:
 1) For Panels up to 20 Feet (6.1 m) Tall: 1/4 inch (6 mm).
 2) Each Additional 10 Feet (3.05 m) in Excess of 20 Feet (6.1 m) Tall: 1/8 inch (3 mm).
 c. Panel Alignment:
 1) Alignment of Horizontal and Vertical Joints: 1/4 inch (6 mm).
 2) Offset in Exterior Face of Adjacent Panels: 1/4 inch (6 mm).
N. Filling And Repairs
1. Patch holes and voids left by erecting and bracing inserts on tilt-up panels and slabs-on-grade. Cut or chip edges of voids perpendicular to concrete surface. Fill blockouts where indicated.
 a. Clean, dampen with water, and brush-coat holes, voids, and blockouts with bonding agent. Fill and compact with patching mortar of a stiff consistency before bonding agent has dried.
 b. Finish surfaces of fills and repairs to the Owner's approval, with materials of same colors and textures as finishes on surrounding surfaces.
2. Repair damaged galvanized steel surfaces of connectors by cleaning and applying a coat of zinc repair paint.
3. Repair damage to tilt-up panels and slabs-on-grade resulting from tilt-up work, as directed by the Owner.
4. Remove and replace tilt-up panels that do not comply with requirements in this Section.
5. Demolish and remove temporary concrete casting slabs.

END OF SECTION 03 62 13 00a
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 62 16 00</td>
<td>03 62 13 00</td>
<td>Plant-Precast Structural Concrete</td>
</tr>
<tr>
<td>03 62 16 00</td>
<td>03 62 13 00a</td>
<td>Tilt-Up Precast Concrete</td>
</tr>
</tbody>
</table>
SECTION 05 50 10 00 - METAL FABRICATIONS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for metal fabrications. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
a. Steel framing and supports for ceiling-hung toilet compartments.
b. Steel framing and supports for operable partitions.
c. Steel framing and supports for overhead doors and grilles.
d. Steel framing and supports for countertops.
e. Steel framing and supports for mechanical and electrical equipment.
f. Steel framing and supports for applications where framing and supports are not specified in other Sections.
g. Steel framing and supports (outriggers) for window-washing equipment including mounting brackets and anchorages.

OR
Mounting brackets and anchorages for window-washing equipment.
h. Elevator machine beams, hoist beams, and divider beams.
i. Steel shapes for supporting elevator door sills.
j. Steel girders for supporting wood frame construction.
k. Steel pipe columns for supporting wood frame construction.
l. Prefabricated building columns.
m. Shelf angles.
n. Metal ladders.
o. Ladder safety cages.
p. Alternating tread devices.
q. Metal ships' ladders and pipe crossovers.
r. Metal floor plate and supports.
s. Structural-steel door frames.
t. Miscellaneous steel trim including steel angle corner guards, steel edgings, and loading-dock edge angles.
u. Metal bollards.
v. Pipe OR Downspout, as directed, guards.
w. Abrasive metal nosings, treads, and thresholds.
x. Cast-iron wheel guards.
y. Metal downspout boots.
z. Loose bearing and leveling plates for applications where they are not specified in other Sections.

2. Products furnished, but not installed, under this Section:
a. Loose steel lintels.
b. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.
c. Steel weld plates and angles for casting into concrete for applications where they are not specified in other Sections.

C. Performance Requirements
1. Delegated Design: Design ladders and alternating tread devices, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

2. Structural Performance of Aluminum Ladders: Aluminum ladders, including landings, shall withstand the effects of loads and stresses within limits and under conditions specified in ANSI A14.3.

4. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on exterior metal fabrications by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects.
 a. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

D. Submittals
1. Product Data: For the following:
 a. Nonslip aggregates and nonslip-aggregate surface finishes.
 b. Prefabricated building columns.
 c. Metal nosings and treads.
 d. Paint products.
 e. Grout.

2. LEED Submittals:
 a. Product Data for Credit MR 4.1 and Credit MR 4.2, as directed: Indicating percentages by weight of postconsumer and preconsumer recycled content for products having recycled content. Include statement indicating costs for each product having recycled content.

3. Shop Drawings: Show fabrication and installation details for metal fabrications.
 a. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items.

4. Samples: For each type and finish of extruded nosing and tread.

5. Delegated-Design Submittal: For installed products indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

6. Qualification Data: For qualified professional engineer.

7. Mill Certificates: Signed by manufacturers of stainless-steel certifying that products furnished comply with requirements.

8. Welding certificates.

9. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers certifying that shop primers are compatible with topcoats.

E. Quality Assurance

2. Welding Qualifications: Qualify procedures and personnel according to the following:
 a. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 b. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
 c. AWS D1.6, "Structural Welding Code - Stainless Steel."

F. Project Conditions
1. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

G. Coordination
1. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers’ written recommendations to ensure that shop primers and topcoats are compatible with one another.

2. Coordinate installation of anchorages and steel weld plates and angles for casting into concrete. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.2 PRODUCTS

A. Metals, General

1. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

B. Ferrous Metals

1. Recycled Content of Steel Products: Provide products with average recycled content of steel products so postconsumer recycled content plus one-half of preconsumer recycled content is not less than 25 percent.
2. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
3. Stainless-Steel Sheet, Strip, and Plate: ASTM A 240/A 240M or ASTM A 666, Type 304 OR Type 316L, as directed.
4. Stainless-Steel Bars and Shapes: ASTM A 276, Type 304 OR Type 316L, as directed.
5. Rolled-Steel Floor Plate: ASTM A 786/A 786M, rolled from plate complying with ASTM A 36/A 36M or ASTM A 283/A 283M, Grade C or D.
6. Rolled-Stainless-Steel Floor Plate: ASTM A 793.
7. Abrasive-Surface Floor Plate: Steel plate with abrasive granules rolled into surface or with abrasive material metallically bonded to steel.
8. Steel Tubing: ASTM A 500, cold-formed steel tubing.
10. Slotted Channel Framing: Cold-formed metal box channels (struts) complying with MFMA-4.
 a. Size of Channels: 1-5/8 by 1-5/8 inches (41 by 41 mm) OR As indicated, as directed.
 b. Material: Galvanized steel, ASTM A 653/A 653M, commercial steel, Type B OR structural steel, Grade 33 (Grade 230), as directed, with G90 (Z275) coating; 0.109-inch (2.8-mm) (12 gage) OR 0.079-inch (2-mm) (14 gage) OR 0.064-inch (1.6-mm) (16 gage), as directed, nominal thickness.
 OR
 Material: Cold-rolled steel, ASTM A 1008/A 1008M, commercial steel, Type B OR structural steel, Grade 33 (Grade 230), as directed; 0.0966-inch (2.5-mm) (12 gage) OR 0.0677-inch (1.7-mm) (14 gage) OR 0.0528-inch (1.35-mm) (16 gage), as directed, minimum thickness; unfinished OR coated with rust-inhibitive, baked-on, acrylic enamel OR hot-dip galvanized after fabrication, as directed.
11. Cast Iron: Either gray iron, ASTM A 48/A 48M, or malleable iron, ASTM A 47/A 47M, unless otherwise indicated.

C. Nonferrous Metals

5. Bronze Plate, Sheet, Strip, and Bars: ASTM B 36/B 36M, Alloy UNS No. C28000 (muntz metal, 60 percent copper).

D. Fasteners
1. General: Unless otherwise indicated, provide Type 304 OR Type 316, as directed, stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.
 a. Provide stainless-steel fasteners for fastening aluminum.
 b. Provide stainless-steel fasteners for fastening stainless steel.
 c. Provide stainless-steel fasteners for fastening nickel silver.
 d. Provide bronze fasteners for fastening bronze.
2. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with hex nuts, ASTM A 563 (ASTM A 563M); and, where indicated, flat washers.
3. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 325, Type 3 (ASTM A 325M, Type 3); with hex nuts, ASTM A 563, Grade C3 (ASTM A 563M, Class 8S3); and, where indicated, flat washers.
4. Stainless-Steel Bolts and Nuts: Regular hexagon-head annealed stainless-steel bolts, ASTM F 593 (ASTM F 738M); with hex nuts, ASTM F 594 (ASTM F 836M); and, where indicated, flat washers; Alloy Group 1 (A1) OR Group 2 (A4), as directed.
5. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563; and, where indicated, flat washers.
 a. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.
8. Lag Screws: ASME B18.2.1 (ASME B18.2.3.8M).
12. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency.
13. Cast-in-Place Anchors in Concrete: Either threaded type or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F 2329.
14. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors.
 a. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, unless otherwise indicated.
15. Slotted-Channel Inserts: Cold-formed, hot-dip galvanized-steel box channels (struts) complying with MFMA-4, 1-5/8 by 7/8 inches (41 by 22 mm) by length indicated with anchor straps or studs not less than 3 inches (75 mm) long at not more than 8 inches (200 mm) o.c. Provide with temporary filler and tee-head bolts, complete with washers and nuts, all zinc-plated to comply with ASTM B 633, Class Fe/Zn 5, as needed for fastening to inserts.
E. Miscellaneous Materials
1. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.
2. Shop Primers: Provide primers that comply with Division 07 OR Division 09 Section(s) "High-performance Coatings" OR Division 07 AND Division 09 Section(s) "High-performance Coatings", as directed.
3. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
 a. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.
4. Epoxy Zinc-Rich Primer: Complying with MPI#20 and compatible with topcoat.
5. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.
9. Concrete: Comply with requirements in Division 03 Section "Cast-in-place Concrete" for normal-weight, air-entrained, concrete with a minimum 28-day compressive strength of 3000 psi (20 MPa).

F. Fabrication, General
1. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.
2. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm) unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.
3. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
4. Form exposed work with accurate angles and surfaces and straight edges.
5. Weld corners and seams continuously to comply with the following:
 a. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 b. Obtain fusion without undercut or overlap.
 c. Remove welding flux immediately.
 d. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
6. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.
7. Fabricate seams and other connections that will be exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.
8. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.
9. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.
 a. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches (3.2 by 38 mm), with a minimum 6-inch (150-mm) embedment and 2-inch (50-mm) hook, not less than 8 inches (200 mm) from ends and corners of units and 24 inches (600 mm) o.c., unless otherwise indicated.

G. Miscellaneous Framing And Supports
1. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.

2. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.
 a. Fabricate units from slotted channel framing where indicated.
 b. Furnish inserts for units installed after concrete is placed.

3. Fabricate supports for operable partitions from continuous steel beams of sizes indicated OR recommended by partition manufacturer, as directed, with attached bearing plates, anchors, and braces as indicated OR recommended by partition manufacturer, as directed. Drill or punch bottom flanges of beams to receive partition track hanger rods; locate holes where indicated on operable partition Shop Drawings.

4. Fabricate steel girders for wood frame construction from continuous steel shapes of sizes indicated.
 a. Provide bearing plates welded to beams where indicated.
 b. Drill or punch girders and plates for field-bolted connections where indicated.
 c. Where wood nailers are attached to girders with bolts or lag screws, drill or punch holes at 24 inches (600 mm) o.c.

5. Fabricate steel pipe columns for supporting wood frame construction from steel pipe with steel baseplates and top plates as indicated. Drill or punch baseplates and top plates for anchor and connection bolts and weld to pipe with fillet welds all around. Make welds the same size as pipe wall thickness unless otherwise indicated.
 a. Unless otherwise indicated, fabricate from Schedule 40 steel pipe.
 b. Unless otherwise indicated, provide 1/2-inch (12.7-mm) baseplates with four 5/8-inch (16-mm) anchor bolts and 1/4-inch (6.4-mm) top plates.

6. Galvanize miscellaneous framing and supports where indicated.
 OR
 Prime miscellaneous framing and supports with zinc-rich primer OR primer specified in Division 09 Section "High-performance Coatings", as directed, where indicated.

H. Prefabricated Building Columns
1. General: Provide prefabricated building columns consisting of load-bearing structural-steel members protected by concrete fireproofing encased in an outer non-load-bearing steel shell. Fabricate connections to comply with details shown or as needed to suit type of structure indicated.

2. Fire-Resistance Ratings: Provide prefabricated building columns listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction for ratings indicated, based on testing according to ASTM E 119.
 a. Fire-Resistance Rating: 4 hours OR 3 hours OR 2 hours OR As indicated, as directed.

I. Shelf Angles
1. Fabricate shelf angles from steel angles of sizes indicated and for attachment to concrete framing. Provide horizontally slotted holes to receive 3/4-inch (19-mm) bolts, spaced not more than 6 inches (150 mm) from ends and 24 inches (600 mm) o.c., unless otherwise indicated.
 a. Provide mitered and welded units at corners.
 b. Provide open joints in shelf angles at expansion and control joints. Make open joint approximately 2 inches (50 mm) larger than expansion or control joint.

2. For cavity walls, provide vertical channel brackets to support angles from backup masonry and concrete.

 OR
 Prime shelf angles located in exterior walls with zinc-rich primer OR primer specified in Division 09 Section "High-performance Coatings", as directed.
4. Furnish wedge-type concrete inserts, complete with fasteners, to attach shelf angles to cast-in-place concrete.

J. Metal Ladders
1. General:
 a. Comply with ANSI A14.3 unless otherwise indicated.
 b. For elevator pit ladders, comply with ASME A17.1.
2. Steel Ladders:
 a. Space siderails 16 inches (406 mm) OR 18 inches (457 mm), as directed, apart unless otherwise indicated.
 b. Space siderails of elevator pit ladders 12 inches (300 mm) apart.
 c. Siderails: Continuous, 3/8-by-2-1/2-inch (9.5-by-64-mm) OR 1/2-by-2-1/2-inch (12.7-by-64-mm), as directed, steel flat bars, with eased edges.
 d. Rungs: 3/4-inch (19-mm) diameter OR 3/4-inch (19-mm) square OR 1-inch (25-mm) diameter OR 1-inch (25-mm) square, as directed, steel bars.
 e. Fit rungs in centerline of siderails; plug-weld and grind smooth on outer rail faces.
 f. Provide nonslip surfaces on top of each rung, either by coating rung with aluminum-oxide granules set in epoxy-resin adhesive or by using a type of manufactured rung filled with aluminum-oxide grout.
 g. Provide nonslip surfaces on top of each rung by coating with abrasive material metallically bonded to rung.
 h. Provide platforms as indicated fabricated from welded or pressure-locked steel bar grating, supported by steel angles. Limit openings in gratings to no more than 1/2 inch (12 mm) OR 3/4 inch (19 mm), as directed, in least dimension.
 i. Support each ladder at top and bottom and not more than 60 inches (1500 mm) o.c. with welded or bolted steel brackets.
 j. Galvanize ladders OR exterior ladders, as directed, including brackets and fasteners. OR
 Prime ladders OR exterior ladders, as directed, including brackets and fasteners, with zinc-rich primer OR primer specified in Division 09 Section "High-performance Coatings", as directed.
3. Aluminum Ladders:
 a. Space siderails 16 inches (406 mm) OR 18 inches (457 mm), as directed, apart unless otherwise indicated.
 b. Siderails: Continuous extruded-aluminum channels or tubes, not less than 2-1/2 inches (64 mm) deep, 3/4 inch (19 mm) wide, and 1/8 inch (3.2 mm) thick.
 c. Rungs: Extruded-aluminum tubes, not less than 3/4 inch (19 mm) deep and not less than 1/8 inch (3.2 mm) thick, with ribbed tread surfaces.
 d. Fit rungs in centerline of siderails; fasten by welding or with stainless-steel fasteners or brackets and aluminum rivets.
 e. Provide platforms as indicated fabricated from pressure-locked aluminum bar grating or extruded-aluminum plank grating, supported by extruded-aluminum framing. Limit openings in gratings to no more than 1/2 inch (12 mm) OR 3/4 inch (19 mm), as directed, in least dimension.
 f. Support each ladder at top and bottom and not more than 60 inches (1500 mm) o.c. with welded or bolted aluminum brackets.
 g. Provide minimum 72-inch (1830-mm) high, hinged security door with padlock hasp at foot of ladder to prevent unauthorized ladder use.

K. Ladder Safety Cages
1. General:
 a. Fabricate ladder safety cages to comply with ANSI A14.3 OR 1996 BOCA Code OR OSHA regulations, as directed. Assemble by welding or with stainless-steel fasteners.
b. Provide primary hoops at tops and bottoms of cages and spaced not more than 20 feet (6 m) o.c. Provide secondary intermediate hoops spaced not more than 48 inches (1200 mm) o.c. between primary hoops.

c. Fasten assembled safety cage to ladder rails and adjacent construction by welding or with stainless-steel fasteners unless otherwise indicated.

2. Steel Ladder Safety Cages:
 a. Primary Hoops: 1/4-by-4-inch (6.4-by-100-mm) flat bar hoops.
 c. Vertical Bars: 3/16-by-1-1/2-inch (4.8-by-38-mm) flat bars secured to each hoop.
 d. Galvanize ladder safety cages, including brackets and fasteners.

 OR

 Prime ladder safety cages, including brackets and fasteners, with zinc-rich primer OR primer specified in Division 09 Section “High-performance Coatings”, as directed.

3. Aluminum Ladder Safety Cages:
 a. Primary Hoops: 1/4-by-4-inch (6.4-by-100-mm) flat bar hoops.
 c. Vertical Bars: 1/4-by-2-inch (6.4-by-50-mm) flat bars secured to each hoop.

L. Alternating Tread Devices

1. Alternating Tread Devices: Fabricate alternating tread devices to comply with ICC’s International Building Code. Fabricate of open-type construction with channel or plate stringers and pipe and tube railings unless otherwise indicated. Provide brackets and fittings for installation.
 a. Fabricate from steel OR stainless steel OR aluminum, as directed, and assemble by welding or with stainless-steel fasteners.
 b. Comply with applicable railing requirements in Division 05 Section “Pipe And Tube Railings”.

2. Galvanize steel OR exterior steel, as directed, alternating tread devices, including treads, railings, brackets, and fasteners.

 OR

 Prime steel OR exterior steel, as directed, alternating tread devices, including treads, railings, brackets, and fasteners, with zinc-rich primer OR primer specified in Division 09 Section “High-performance Coatings”, as directed.

M. Metal Ships’ Ladders And Pipe Crossovers

1. Provide metal ships’ ladders and pipe crossovers where indicated. Fabricate of open-type construction with channel or plate stringers and pipe and tube railings unless otherwise indicated. Provide brackets and fittings for installation.
 a. Fabricate ships’ ladders and pipe crossovers, including railings from steel OR stainless steel OR aluminum, as directed.
 b. Fabricate treads OR treads and platforms, as directed, from welded or pressure-locked steel bar grating OR pressure-locked stainless-steel bar grating OR pressure-locked aluminum bar grating OR extruded-aluminum plank grating, as directed. Limit openings in gratings to no more than 1/2 inch (12 mm) OR 3/4 inch (19 mm), as directed, in least dimension.
 c. Fabricate treads OR treads and platforms, as directed, from rolled-steel floor plate OR rolled-stainless-steel floor plate OR rolled-aluminum-alloy tread plate OR abrasive-surface floor plate, as directed.
 d. Comply with applicable railing requirements in Division 5 Section “Pipe and Tube Railings.”

2. Galvanize steel OR exterior steel, as directed, ships’ ladders and pipe crossovers, including treads, railings, brackets, and fasteners.

 OR

 Prime steel OR exterior steel, as directed, ships’ ladders and pipe crossovers, including treads, railings, brackets, and fasteners, with zinc-rich primer OR primer specified in Division 09 Section “High-performance Coatings”, as directed.
N. Metal Floor Plate
1. Fabricate from rolled-steel floor OR rolled-stainless-steel floor OR rolled-aluminum-alloy tread OR abrasive-surface floor, as directed, plate of thickness indicated below:
a. Thickness: 1/8 inch (3.2 mm) OR 3/16 inch (4.8 mm) OR 1/4 inch (6.4 mm) OR 5/16 inch (8 mm) OR 3/8 inch (9.5 mm) OR As indicated, as directed.
2. Provide grating sections where indicated fabricated from welded or pressure-locked steel bar grating OR pressure-locked stainless steel bar grating OR pressure-locked aluminum bar grating OR extruded-aluminum plank grating, as directed. Limit openings in gratings to no more than 1/2 inch (12 mm) OR 3/4 inch (19 mm) OR 1 inch (25 mm), as directed, in least dimension.
3. Provide steel OR stainless-steel OR aluminum, as directed, angle supports as indicated.
4. Include steel OR stainless-steel OR aluminum, as directed, angle stiffeners, and fixed and removable sections as indicated.
5. Provide flush steel OR stainless-steel OR aluminum, as directed, bar drop handles for lifting removable sections, one at each end of each section.

O. Structural-Steel Door Frames
1. Fabricate structural-steel door frames from steel shapes, plates, and bars of size and to dimensions indicated, fully welded together, with 5/8-by-1-1/2-inch (16-by-38-mm) steel channel stops, unless otherwise indicated. Plug-weld built-up members and continuously weld exposed joints. Secure removable stops to frame with countersunk machine screws, uniformly spaced at not more than 10 inches (250 mm) o.c. Reinforce frames and drill and tap as necessary to accept finish hardware.
 a. Provide with integrally welded steel strap anchors for securing door frames into adjoining concrete or masonry.
2. Extend bottom of frames to floor elevation indicated with steel angle clips welded to frames for anchoring frame to floor with expansion shields and bolts.
3. Galvanize steel OR exterior steel, as directed, frames.
 OR Prime steel OR exterior steel, as directed, frames with zinc-rich primer OR primer specified in Division 09 Section "High-performance Coatings", as directed.

P. Miscellaneous Steel Trim
1. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.
2. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.
 a. Provide with integrally welded steel strap anchors for embedding in concrete or masonry construction.
3. Galvanize miscellaneous steel OR exterior miscellaneous steel, as directed, trim.
 OR Prime miscellaneous steel OR exterior miscellaneous steel, as directed, trim with zinc-rich primer OR primer specified in Division 09 Section "High-performance Coatings", as directed.

Q. Metal Bollards
1. Fabricate metal bollards from Schedule 40 steel pipe OR Schedule 80 steel pipe OR 1/4-inch (6.4-mm) wall-thickness rectangular steel tubing OR steel shapes, as indicated, as directed.
 a. Cap bollards with 1/4-inch- (6.4-mm-) thick steel plate (not required if bollards are concrete filled).
 b. Where bollards are indicated to receive controls for door operators, provide necessary cutouts for controls and holes for wire.
 c. Where bollards are indicated to receive light fixtures, provide necessary cutouts for fixtures and holes for wire.
2. Fabricate bollards with 3/8-inch- (9.5-mm-) thick steel baseplates for bolting to concrete slab (for mounting bollards on structural slab or on existing pavement). Drill baseplates at all four corners for 3/4-inch (19-mm) anchor bolts.
 a. Where bollards are to be anchored to sloping concrete slabs, angle baseplates for plumb alignment of bollards.
3. Fabricate sleeves for bollard anchorage from steel pipe or tubing with 1/4-inch- (6.4-mm-) thick steel plate welded to bottom of sleeve. Make sleeves not less than 8 inches (200 mm) deep and 3/4 inch (19 mm) larger than OD of bollard.
4. Fabricate internal sleeves for removable bollards from Schedule 40 steel pipe or 1/4-inch (6.4-mm) wall-thickness steel tubing with an OD approximately 1/16 inch (1.5 mm) less than ID of bollards. Match drill sleeve and bollard for 3/4 inch (19 mm) steel machine bolt.
5. Prime bollards with zinc-rich primer OR primer specified in Division 09 Section “High-performance Coatings”, as directed.

R. Pipe Or Downspout Guards
1. Fabricate pipe OR downspout, as directed, guards from 3/8-inch- (9.5-mm-) thick by 12-inch-(300-mm-) wide steel plate, bent to fit flat against the wall or column at both ends and to fit around pipe with 2-inch (50-mm) clearance between pipe and pipe guard. Drill each end for two 3/4-inch (19-mm) anchor bolts.
2. Galvanize pipe OR downspout, as directed, guards.
 OR
 Prime pipe OR downspout, as directed, guards with zinc-rich primer OR primer specified in Division 09 Section “High-performance Coatings”, as directed.

S. Abrasive Metal Nosings, Treads And Thresholds
1. Cast-Metal Units: Cast iron OR aluminum OR bronze (leaded red or semired brass) OR nickel silver (leaded nickel bronze), as directed, with an integral-abrasive, as-cast finish consisting of aluminum oxide, silicon carbide, or a combination of both. Fabricate units in lengths necessary to accurately fit openings or conditions.
 a. Nosings: Cross-hatched units, 4 inches (100 mm) wide with 1/4-inch (6-mm) OR 1-inch (25-mm), as directed, lip, for casting into concrete steps.
 OR
 Nosings: Cross-hatched units, 1-1/2 by 1-1/2 inches (38 by 38 mm), for casting into concrete curbs.
 b. Treads: Cross-hatched units, full depth of tread with 3/4-by-3/4-inch (19-by-19-mm) nosing, for application over bent plate treads or existing stairs.
 c. Thresholds: Fluted-saddle-type units, 5 inches (125 mm) wide by 1/2 inch (12 mm) high, with tapered edges.
 OR
 Thresholds: Fluted-interlocking- (hook-strip-) type units, 5 inches (125 mm) wide by 5/8 inch (16 mm) high, with tapered edge.
 OR
 Thresholds: Plain-stepped- (stop-) type units, 5 inches (125 mm) wide by 1/2 inch (12 mm) high, with 1/2-inch (12-mm) step.
2. Extruded Units: Aluminum OR Bronze, as directed, with abrasive filler consisting of aluminum oxide, silicon carbide, or a combination of both, in an epoxy-resin binder. Fabricate units in lengths necessary to accurately fit openings or conditions.
 a. Provide ribbed units, with abrasive filler strips projecting 1/16 inch (1.5 mm) above aluminum extrusion.
 OR
 Provide solid-abrasive-type units without ribs.
 b. Nosings: Square-back units, 1-7/8 inches (48 mm) OR 3 inches (75 mm) OR 4 inches (100 mm), as directed, wide, for casting into concrete steps.
 OR
Nosings: Beveled-back units, 3 inches (75 mm) OR 4 inches (100 mm), as directed, wide with 1-3/8-inch (35-mm) lip, for surface mounting on existing stairs.

OR

Nosings: Two-piece units, 3 inches (75 mm) wide, with subchannel for casting into concrete steps.

c. Treads: Square OR Beveled, as directed, -back units, full depth of tread with 1-3/8-inch (35-mm) lip, for application over existing stairs.

3. Provide anchors for embedding units in concrete, either integral or applied to units, as standard with manufacturer.

4. Drill for mechanical anchors and countersink. Locate holes not more than 4 inches (100 mm) from ends and not more than 12 inches (300 mm) o.c., evenly spaced between ends, unless otherwise indicated. Provide closer spacing if recommended by manufacturer.

a. Provide two rows of holes for units more than 5 inches (125 mm) wide, with two holes aligned at ends and intermediate holes staggered.

5. Apply bituminous paint to concealed surfaces of cast-metal units.

6. Apply clear lacquer to concealed surfaces of extruded units.

T. Cast-Iron Wheel Guards

1. Provide wheel guards made from cast iron, 3/4 inch (19 mm) thick, hollow-core construction, of size and shape indicated. Provide holes for countersunk anchor bolts and grouting.

2. Prime cast iron wheel guards with zinc-rich primer OR primer specified in Division 09 Section "High-performance Coatings", as directed.

U. Metal Downspout Boots

1. Provide downspout boots made from cast iron OR cast aluminum, as directed, in heights indicated with inlets of size and shape to suit downspouts. Provide units with flanges and holes for countersunk anchor bolts.

a. Outlet: Vertical, to discharge into pipe OR Horizontal, to discharge into pipe OR At 35 degrees from horizontal, to discharge onto splash block or pavement, as directed.

2. Prime cast iron downspout boots with zinc-rich primer OR primer specified in Division 09 Section "High-performance Coatings", as directed.

V. Loose Bearing And Leveling Plates

1. Provide loose bearing and leveling plates for steel items bearing on masonry or concrete construction. Drill plates to receive anchor bolts and for grouting.

2. Galvanize plates.

OR

Prime plates with zinc-rich primer OR primer specified in Division 09 Section "High-performance Coatings", as directed.

W. Loose Steel Lintels

1. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated. Fabricate in single lengths for each opening unless otherwise indicated. Weld adjoining members together to form a single unit where indicated.

2. Size loose lintels to provide bearing length at each side of openings equal to 1/12 of clear span but not less than 8 inches (200 mm) unless otherwise indicated.

4. Prime loose steel lintels located in exterior walls with zinc-rich primer OR primer specified in Division 09 Section "High-performance Coatings", as directed.

X. Steel Weld Plates And Angles

1. Provide steel weld plates and angles not specified in other Sections, for items supported from concrete construction as needed to complete the Work. Provide each unit with no fewer than two integrally welded steel strap anchors for embedding in concrete.
05 - Metals

Y. Finishes, General
1. Comply with NAAMM’s “Metal Finishes Manual for Architectural and Metal Products” for recommendations for applying and designating finishes.
2. Finish metal fabrications after assembly.
3. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

Z. Steel And Iron Finishes
1. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.
a. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.
2. Shop prime iron and steel items not indicated to be galvanized, as directed, unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.
a. Shop prime with universal shop primer OR primers specified in Division 07, as directed, unless zinc-rich primer is OR primers specified in Division 09 Section “High-performance Coatings” are, as directed, indicated.
3. Preparation for Shop Priming: Prepare surfaces to comply with SSPC-SP 6/NACE No. 3, “Commercial Blast Cleaning” OR SSPC-SP 3, “Power Tool Cleaning” OR requirements indicated below, as directed:
c. Items Indicated to Receive Primers Specified in Division 9 Section “High-Performance Coatings”: SSPC-SP 6/NACE No. 3, “Commercial Blast Cleaning.”
d. Other Items: SSPC-SP 3, “Power Tool Cleaning.”
a. Stripe paint corners, crevices, bolts, welds, and sharp edges.

AA. Aluminum Finishes
1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
3. Class I, Clear Anodic Finish: AA-M12C22A41 (Mechanical Finish: nonspecular as fabricated; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.

1.3 EXECUTION

A. Installation, General
1. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.
2. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
3. Field Welding: Comply with the following requirements:
a. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
b. Obtain fusion without undercut or overlap.
c. Remove welding flux immediately.
d. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

4. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.

5. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

6. Corrosion Protection: Coat concealed surfaces of aluminum that will come into contact with grout, concrete, masonry, wood, or dissimilar metals with the following:
 a. Cast Aluminum: Heavy coat of bituminous paint.
 b. Extruded Aluminum: Two coats of clear lacquer.

B. Installing Miscellaneous Framing And Supports
 1. General: Install framing and supports to comply with requirements of items being supported, including manufacturers’ written instructions and requirements indicated on Shop Drawings.
 2. Anchor supports for operable partitions securely to and rigidly brace from building structure.
 3. Support steel girders on solid grouted masonry, concrete, or steel pipe columns. Secure girders with anchor bolts embedded in grouted masonry or concrete or with bolts through top plates of pipe columns.
 a. Where grout space under bearing plates is indicated for girders supported on concrete or masonry, install as specified in “Installing Bearing and Leveling Plates” Article.
 4. Install pipe columns on concrete footings with grouted baseplates. Position and grout column baseplates as specified in “Installing Bearing and Leveling Plates” Article.
 a. Grout baseplates of columns supporting steel girders after girders are installed and leveled.

C. Installing Prefabricated Building Columns
 1. Install prefabricated building columns to comply with AISC’s “Specification for Structural Steel Buildings” and with requirements applicable to listing and labeling for fire-resistance rating indicated.

D. Installing Metal Bollards
 1. Fill metal-capped bollards solidly with concrete and allow concrete to cure seven days before installing.
 a. Do not fill removable bollards with concrete.
 2. Anchor bollards to existing construction with expansion anchors OR anchor bolts OR through bolts, as directed. Provide four 3/4-inch (19-mm) bolts at each bollard unless otherwise indicated.
 a. Embed anchor bolts at least 4 inches (100 mm) in concrete.
 3. Anchor bollards in concrete with pipe sleeves preset and anchored into concrete OR in formed or core-drilled holes not less than 8 inches (200 mm) deep and 3/4 inch (19 mm) larger than OD of bollard, as directed. Fill annular space around bollard solidly with nonshrink, nonmetallic grout; mixed and placed to comply with grout manufacturer’s written instructions. Slope grout up approximately 1/8 inch (3 mm) toward bollard.
 4. Anchor bollards in place with concrete footings. Center and align bollards in holes 3 inches (75 mm) above bottom of excavation. Place concrete and vibrate or tamp for consolidation. Support and brace bollards in position until concrete has cured.
 5. Anchor internal sleeves for removable bollards in concrete by inserting into pipe sleeves preset into concrete OR formed or core-drilled holes not less than 8 inches (200 mm) deep and 3/4 inch (19 mm) larger than OD of sleeve, as directed. Fill annular space around internal sleeves solidly with nonshrink, nonmetallic grout; mixed and placed to comply with grout manufacturer’s written instructions. Slope grout up approximately 1/8 inch (3 mm) toward internal sleeve.
6. Anchor internal sleeves for removable bollards in place with concrete footings. Center and align sleeves in holes 3 inches (75 mm) above bottom of excavation. Place concrete and vibrate or tamp for consolidation. Support and brace sleeves in position until concrete has cured.
7. Place removable bollards over internal sleeves and secure with 3/4-inch (19-mm) machine bolts and nuts. After tightening nuts, drill holes in bolts for inserting padlocks. Owner will furnish padlocks.
8. Fill bollards solidly with concrete, mounding top surface to shed water.
 a. Do not fill removable bollards with concrete.

E. Installing Pipe Guards
1. Provide pipe guards at exposed vertical pipes in parking garage where not protected by curbs or other barriers. Install by bolting to wall or column with expansion anchors. Provide four 3/4-inch (19-mm) bolts at each pipe guard. Mount pipe guards with top edge 26 inches (660 mm) above driving surface.

F. Installing Nosings, Treads, And Thresholds
1. Center nosings on tread widths unless otherwise indicated.
2. For nosings embedded in concrete steps or curbs, align nosings flush with riser faces and level with tread surfaces.
3. Seal thresholds exposed to exterior with elastomeric sealant complying with Division 07 Section “Joint Sealants” to provide a watertight installation.

G. Installing Cast-Iron Wheel Guards
1. Anchor wheel guards to concrete or masonry construction to comply with manufacturer’s written instructions. Fill cores solidly with concrete.

H. Installing Bearing And Leveling Plates
2. Set bearing and leveling plates on wedges, shims, or leveling nuts. After bearing members have been positioned and plumbed, tighten anchor bolts. Do not remove wedges or shims but, if protruding, cut off flush with edge of bearing plate before packing with grout.
 a. Use nonshrink grout, either metallic or nonmetallic, in concealed locations where not exposed to moisture; use nonshrink, nonmetallic grout in exposed locations unless otherwise indicated.
 b. Pack grout solidly between bearing surfaces and plates to ensure that no voids remain.

I. Adjusting And Cleaning
1. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 a. Apply by brush or spray to provide a minimum 2.0-mil (0.05-mm) dry film thickness.
 OR
 Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint are specified in Division 07.
2. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

END OF SECTION 05 50 10 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 50 40 00</td>
<td>05 50 10 00</td>
<td>Metal Fabrications</td>
</tr>
</tbody>
</table>
SECTION 09 91 13 00 - EXTERIOR PAINTING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for exterior painting. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes surface preparation and the application of paint systems on the following exterior substrates:
 a. Concrete.
 b. Clay masonry.
 c. Concrete masonry units (CMU).
 d. Steel.
 e. Galvanized metal.
 f. Aluminum (not anodized or otherwise coated).
 g. Wood.
 h. Plastic trim fabrications.
 i. Exterior portland cement (stucco).
 j. Exterior gypsum board.

C. Submittals
1. Product Data: For each type of product indicated.
2. Samples: For each finish and for each color and texture required.
3. Product List: Printout of current "MPI Approved Products List" for each product category specified in Part 1.2, with the proposed product highlighted.

D. Quality Assurance
1. MPI Standards:
 a. Products: Complying with MPI standards indicated and listed in "MPI Approved Products List."
 b. Preparation and Workmanship: Comply with requirements in "MPI Architectural Painting Specification Manual" for products and paint systems indicated. For renovation projects, comply with requirements of "MPI Maintenance Repainting Manual" for products and paint systems indicated.

E. Delivery, Storage, And Handling
1. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C).
 a. Maintain containers in clean condition, free of foreign materials and residue.
 b. Remove rags and waste from storage areas daily.

F. Project Conditions
1. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C).
2. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.
1.2 PRODUCTS

A. Paint, General
 1. Material Compatibility:
 a. Provide materials for use within each paint system that are compatible with one another
 and substrates indicated, under conditions of service and application as demonstrated by
 manufacturer, based on testing and field experience.
 b. For each coat in a paint system, provide products recommended in writing by
 manufacturers of topcoat for use in paint system and on substrate indicated.
 2. Colors: As selected from manufacturer’s full range.

B. Block Fillers
 1. Interior/Exterior Latex Block Filler: MPI #4.
 a. VOC Content: E Range of E2 OR E3, as directed.

C. Primers/Sealers
 1. Alkali-Resistant Primer: MPI #3.
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
 2. Bonding Primer (Water Based): MPI #17.
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
 3. Bonding Primer (Solvent Based): MPI #69.
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
 4. Wood-Knot Sealer: Sealer recommended in writing by topcoat manufacturer for use in paint
 system indicated.

D. Metal Primers
 1. Alkyd Anticorrosive Metal Primer: MPI #79.
 a. VOC Content: E Range of E1 OR E2, as directed.
 2. Quick-Drying Alkyd Metal Primer: MPI #76.
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
 a. VOC Content: E Range of E1.
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
 b. Environmental Performance Rating: EPR 1 OR EPR 2 OR EPR 3, as directed.
 5. Quick-Drying Primer for Aluminum: MPI #95.
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.

E. Wood Primers
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
 2. Exterior Alkyd Wood Primer: MPI #5.
 a. VOC Content: E Range of E2 OR E3, as directed.
 a. VOC Content: E Range of E2.

F. Exterior Latex Paints
 1. Exterior Latex (Flat): MPI #10 (Gloss Level 1).
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
 2. Exterior Latex (Semigloss): MPI #11 (Gloss Level 5).
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
 3. Exterior Latex (Gloss): MPI #119 (Gloss Level 6, except minimum gloss of 65 units at 60 deg).
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
G. Exterior Alkyd Paints
1. Exterior Alkyd Enamel (Flat): MPI #8 (Gloss Level 1).
 a. VOC Content: E Range of E1.
2. Exterior Alkyd Enamel (Semigloss): MPI #94 (Gloss Level 5).
 a. VOC Content: E Range of E1 OR E2, as directed.
3. Exterior Alkyd Enamel (Gloss): MPI #9 (Gloss Level 6).
 a. VOC Content: E Range of E1 OR E2, as directed.

H. Quick-Drying Enamels
1. Quick-Drying Enamel (Semigloss): MPI #81 (Gloss Level 5).
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
2. Quick-Drying Enamel (High Gloss): MPI #96 (Gloss Level 7).
 a. VOC Content: E Range of E1 OR E OR E3, as directed.

I. Textured And High-Build Coatings
1. Latex Stucco and Masonry Textured Coating: MPI #42.
 a. VOC Content: E Range of E2 OR E3, as directed.
2. High-Build Latex (Exterior): MPI #40.
 a. VOC Content: E Range of E1 OR E3, as directed.

J. Aluminum Paint
1. Aluminum Paint: MPI #1.
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.

K. Floor Coatings
1. Interior/Exterior Clear Concrete Floor Sealer (Water Based): MPI #99.
 a. VOC Content: E Range of E1 OR E2 OR E3, as directed.
2. Interior/Exterior Clear Concrete Floor Sealer (Solvent Based): MPI #104.
 a. VOC Content: E Range of E1 OR E2, as directed.
3. Interior/Exterior Latex Floor and Porch Paint (Low Gloss): MPI #60 (maximum Gloss Level 3).
 a. VOC Content: E Range of E2 OR E3, as directed.
 b. Environmental Performance Rating: EPR 3.
4. Exterior/Interior Alkyd Floor Enamel (Gloss): MPI #27 (Gloss Level 6).
 a. VOC Content: E Range of E1 OR E2, as directed.
 b. Additives: Manufacturer's standard additive to increase skid resistance of painted surface.

1.3 EXECUTION

A. Examination
1. Examine substrates and conditions, with Applicator present, for compliance with requirements for
 maximum moisture content and other conditions affecting performance of work.
2. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as
 follows:
 a. Concrete: 12 percent.
 b. Masonry (Clay and CMU): 12 percent.
 c. Wood: 15 percent.
 d. Plaster: 12 percent.
 e. Gypsum Board: 12 percent.
3. Verify suitability of substrates, including surface conditions and compatibility with existing finishes
 and primers.
4. Begin coating application only after unsatisfactory conditions have been corrected and surfaces
 are dry.
 a. Beginning coating application constitutes Contractor's acceptance of substrates and
 conditions.
B. Preparation And Application
1. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.
2. Clean substrates of substances that could impair bond of paints, including dirt, oil, grease, and incompatible paints and encapsulants.
 a. Remove incompatible primers and reprime substrate with compatible primers as required to produce paint systems indicated.
3. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
4. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
5. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

C. Exterior Painting Schedule
2. For a Premium Grade system, "MPI Manual" requires intermediate coat; if Custom Grade system is required or if so directed, delete intermediate coat, unless directed otherwise or as otherwise required by manufacturer's recommendations.
3. Concrete Substrates, Nontraffic Surfaces:
 a. Latex System: MPI EXT 3.1A.
 1) Prime Coat: Exterior latex matching topcoat.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. Latex Aggregate/Latex System: MPI EXT 3.1 B.
 1) Prime Coat: Latex stucco and masonry textured coating.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 c. Latex Over Alkali-Resistant Primer System: MPI EXT 3.1K.
 1) Prime Coat: Alkali-resistant primer.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 d. High-Build Latex System: MPI EXT 3.1L, applied to form dry film thickness of not less than 10 mils (0.25 mm).
 1) Prime Coat: As recommended in writing by topcoat manufacturer.
 2) Intermediate Coat: As recommended in writing by topcoat manufacturer.
 3) Topcoat: High-build latex (exterior).
 e. Latex Aggregate System: MPI EXT 3.1N.
 1) Prime Coat: As recommended in writing by topcoat manufacturer.
 2) Intermediate Coat: As recommended in writing by topcoat manufacturer.
 3) Topcoat: Latex stucco and masonry textured coating.
4. Concrete Substrates, Traffic Surfaces:
 a. Latex Floor Paint System: MPI EXT 3.2A.
 1) Prime Coat: Interior/exterior latex floor and porch paint (low gloss).
 2) Intermediate Coat: Interior/exterior latex floor and porch paint (low gloss).
 3) Topcoat: Interior/exterior latex floor and porch paint (low gloss).
 b. Alkyd Floor Enamel System: MPI EXT 3.2D.
c. Clear Sealer System: MPI EXT 3.2G.
 3) Topcoat: Interior/exterior clear concrete floor sealer (solvent based).

d. Water-Based Clear Sealer System: MPI EXT 3.2H.

5. Clay-Masonry Substrates:
 a. Latex System: MPI EXT 4.1A.
 1) Prime Coat: Exterior latex matching topcoat.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. High-Build Latex System: MPI EXT 4.1H, applied to form dry film thickness of not less than 10 mils (0.25 mm).
 1) Prime Coat: As recommended in writing by topcoat manufacturer.
 2) Intermediate Coat: As recommended in writing by topcoat manufacturer.
 3) Topcoat: High-build latex (exterior).
 c. Latex Aggregate System: MPI EXT 4.1B.
 1) Prime Coat: As recommended in writing by topcoat manufacturer.
 2) Intermediate Coat: As recommended in writing by topcoat manufacturer.
 3) Topcoat: Latex stucco and masonry textured coating.

6. CMU Substrates:
 a. Latex System: MPI EXT 4.2A.
 1) Prime Coat: Interior/exterior latex block filler.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. Latex Over Alkali-Resistant Primer System: MPI EXT 4.2L.
 1) Prime Coat: Alkali-resistant primer.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 c. High-Build Latex System: MPI EXT 4.2K, applied to form dry film thickness of not less than 10 mils (0.25 mm).
 1) Prime Coat: As recommended in writing by topcoat manufacturer.
 2) Intermediate Coat: As recommended in writing by topcoat manufacturer.
 3) Topcoat: High-build latex (exterior).
 d. Latex Aggregate System: MPI EXT 4.2B.
 1) Prime Coat: As recommended in writing by topcoat manufacturer.
 2) Intermediate Coat: As recommended in writing by topcoat manufacturer.
 3) Topcoat: Latex stucco and masonry textured coating.

7. Steel Substrates:
 a. Quick-Drying Enamel System: MPI EXT 5.1A.
 1) Prime Coat: Quick-drying alkyd metal primer.
 3) Topcoat: Quick-drying enamel (semigloss) OR (high gloss), as directed.
 b. Alkyd System: MPI EXT 5.1D.
 1) Prime Coat: Alkyd anticorrosive metal primer.
 3) Topcoat: Exterior alkyd enamel (flat) OR (semigloss) OR (gloss), as directed.
 c. Aluminum Paint System: MPI EXT 5.1K.
 1) Prime Coat: Alkyd anticorrosive metal primer.
 2) Intermediate Coat: Aluminum paint.
 3) Topcoat: Aluminum paint.
8. **Galvanized-Metal Substrates:** Galvanized-metal substrates should not be chromate passivated (commercially known as "bonderized") if primer is field applied. If galvanized metal is chromate passivated, consult manufacturers for appropriate surface preparation and primers.
 a. **Latex System:** MPI EXT 5.3A.
 1) **Prime Coat:** Cementitious galvanized-metal primer.
 2) **Intermediate Coat:** Exterior latex matching topcoat.
 3) **Topcoat:** Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. **Latex Over Water-Based Primer System:** MPI EXT 5.3H. "MPI Manual" recommends latex over water-based primer system for low-contact/traffic areas.
 1) **Prime Coat:** Waterborne galvanized-metal primer.
 2) **Intermediate Coat:** Exterior latex matching topcoat.
 3) **Topcoat:** Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 c. **Alkyd System:** MPI EXT 5.3B.
 1) **Prime Coat:** Cementitious galvanized-metal primer.
 2) **Intermediate Coat:** Exterior alkyd enamel matching topcoat.
 3) **Topcoat:** Exterior alkyd enamel (flat) OR (semigloss) OR (gloss), as directed.

9. **Aluminum Substrates:**
 a. **Latex System:** MPI EXT 5.4H.
 1) **Prime Coat:** Quick-drying primer for aluminum.
 2) **Intermediate Coat:** Exterior latex matching topcoat.
 3) **Topcoat:** Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. **Alkyd System:** MPI EXT 5.4F.
 1) **Prime Coat:** Quick-drying primer for aluminum.
 2) **Intermediate Coat:** Exterior alkyd enamel matching topcoat.
 3) **Topcoat:** Exterior alkyd enamel (flat) OR (semigloss) OR (gloss), as directed.

10. **Glue-Laminated Beam and Column Substrates:**
 a. **Latex System:** MPI EXT 6.1L.
 1) **Prime Coat:** Exterior latex wood primer.
 2) **Intermediate Coat:** Exterior latex matching topcoat.
 3) **Topcoat:** Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. **Latex Over Alkyd Primer System:** MPI EXT 6.1A.
 1) **Prime Coat:** Exterior alkyd OR oil, as directed, wood primer.
 2) **Intermediate Coat:** Exterior latex matching topcoat.
 3) **Topcoat:** Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 c. **Alkyd System:** MPI EXT 6.1B.
 1) **Prime Coat:** Exterior alkyd OR oil, as directed, wood primer.
 2) **Intermediate Coat:** Exterior alkyd enamel matching topcoat.
 3) **Topcoat:** Exterior alkyd enamel (flat) OR (semigloss) OR (gloss), as directed.

11. **Dressed Lumber Substrates:** Including architectural woodwork OR doors, as directed.
 a. **Latex System:** MPI EXT 6.3L.
 1) **Prime Coat:** Exterior latex wood primer.
 2) **Intermediate Coat:** Exterior latex matching topcoat.
 3) **Topcoat:** Exterior latex (flat) OR (semigloss) OR (gloss), as directed. Flat paint is not recommended for use on doors.
 b. **Latex Over Alkyd Primer System:** MPI EXT 6.3A.
 1) **Prime Coat:** Exterior alkyd OR oil, as directed, wood primer.
 2) **Intermediate Coat:** Exterior latex matching topcoat.
 3) **Topcoat:** Exterior latex (flat) OR (semigloss) OR (gloss), as directed. Flat paint is not recommended for use on doors.
 c. **Alkyd System:** MPI EXT 6.3B.
 1) **Prime Coat:** Exterior alkyd OR oil, as directed, wood primer.
 2) **Intermediate Coat:** Exterior alkyd enamel matching topcoat.
 3) **Topcoat:** Exterior alkyd enamel (flat) OR (semigloss) OR (gloss), as directed. Flat paint is not recommended for use on doors.
12. Wood Panel Substrates: Including plywood siding OR fascias OR soffits, as directed.
 a. Latex System: MPI EXT 6.4K.
 1) Prime Coat: Exterior latex wood primer.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. Latex Over Alkyd Primer System: MPI EXT 6.4G.
 1) Prime Coat: Exterior alkyd wood primer.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 c. Alkyd System: MPI EXT 6.4B.
 1) Prime Coat: Exterior alkyd OR oil, as directed, wood primer.
 3) Topcoat: Exterior alkyd enamel (flat) OR (semigloss) OR (gloss), as directed.

13. Wood Shingle and Shake Substrates (Excluding Roofs):
 a. Latex System: MPI EXT 6.6E.
 1) Prime Coat: Exterior latex wood primer.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. Latex Over Alkyd Primer System: MPI EXT 6.6A.
 1) Prime Coat: Exterior alkyd OR oil, as directed, wood primer.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 c. Alkyd System: MPI EXT 6.6B.
 1) Prime Coat: Exterior alkyd OR oil, as directed, wood primer.
 3) Topcoat: Exterior alkyd enamel (flat) OR (semigloss) OR (gloss), as directed.

14. Dimension Lumber Substrates, Nontraffic Surfaces: Including board siding OR fencing OR undersides of decking, as directed.
 a. Latex System: MPI EXT 6.2M.
 1) Prime Coat: Exterior latex wood primer.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. Latex Over Alkyd Primer System: MPI EXT 6.2A.
 1) Prime Coat: Exterior alkyd OR oil, as directed, wood primer.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 c. Alkyd System: MPI EXT 6.2C.
 1) Prime Coat: Exterior alkyd OR oil, as directed, wood primer.
 3) Topcoat: Exterior alkyd enamel (flat) OR (semigloss) OR (gloss), as directed.

15. Dimension Lumber Substrates, Traffic Surfaces: Including lumber decking OR stairs, as directed.
 a. Latex System: MPI EXT 6.5E.
 1) Prime Coat: Exterior latex wood primer.
 2) Intermediate Coat: Interior/exterior latex floor and porch (low gloss).
 3) Topcoat: Interior/exterior latex floor and porch (low gloss).
 a) With additive to increase skid resistance of painted surface.
 b. Latex Over Alkyd Primer System: MPI EXT 6.5A.
 1) Prime Coat: Exterior alkyd wood primer.
 2) Intermediate Coat: Interior/exterior latex floor and porch (low gloss).
 3) Topcoat: Interior/exterior latex floor and porch (low gloss).
 a) With additive to increase skid resistance of painted surface.
 c. Alkyd Floor Enamel System: MPI EXT 6.5B.
 a) With additive to increase skid resistance of painted surface.

16. Plastic Trim Fabrication Substrates:
 a. Latex System: MPI EXT 6.8A.
 1) Prime Coat: Bonding primer (water based) OR (solvent based), as directed.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. Alkyd System: MPI EXT 6.8B.
 1) Prime Coat: Bonding primer (water based) OR (solvent based), as directed.
 3) Topcoat: Exterior alkyd enamel (flat) OR (semigloss) OR (gloss), as directed.

17. Stucco Substrates:
 a. Latex System: MPI EXT 9.1A.
 1) Prime Coat: Exterior latex matching topcoat.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 b. Latex Over Alkali-Resistant Primer System: MPI EXT 9.1J.
 1) Prime Coat: Alkali-resistant primer.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
 c. High-Build Latex System: MPI EXT 9.1H, applied to form dry film thickness of not less than 10 mils (0.25 mm).
 1) Prime Coat: As recommended in writing by topcoat manufacturer.
 2) Intermediate Coat: As recommended in writing by topcoat manufacturer.
 3) Topcoat: High-build latex (exterior).

18. Exterior Gypsum Board Substrates:
 a. Latex System: MPI EXT 9.2A.
 1) Prime Coat: Exterior latex matching topcoat.
 3) Topcoat: Exterior latex (flat) OR (semigloss) OR (gloss), as directed.
SECTION 10 14 53 00 - TRAFFIC SIGNS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of traffic signs. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

1.2 PRODUCT

A. Sign Foundations:
1. Replacement Foundation Footing Concrete shall be a mixture of cement complying with ASTM C 150 and aggregate complying with ASTM C 33. Compressive strength shall be 2,800 psi at 28 days.
2. Sulfur Mortar shall comply with ASTM C 287.
3. Reinforcing Steel shall comply with ASTM A 615.

B. Sign Supports shall be of the “break-away” type. Supports shall be strong enough to resist applicable wind forces without damage, but shall be designed to experience a brittle rupture type failure or a “quick separation” type joint.
1. Sign Support, Aluminum:
 a. Replacement Castings shall be Alloy A356.0-T6 in compliance with ASTM B 108.
 b. Replacement Structural Members shall comply with ASTM B 308.
 c. Replacement Bars, Rods, Shapes, and Tubes shall comply with ASTM B 221, alloy 6061-T6.
 d. Replacement Bolts, Nuts, and Screws shall match items being replaced and shall be alloy 2024-T4 with anodic coating complying with ASTM B 580, or 6061-T6 in compliance with ASTM B 211. Bolt heads shall be hexagon. Bolt threads shall be Class 2, 2A, or 2B in compliance with ANSI B18.2.1. Nuts shall be hexagon shaped in compliance with ANSI B18.2.2.
 e. Replacement washers shall be furnished from sheet metal complying with ASTM B 209, alloy Alclad 2024-T3 or T4.
2. Sign Support, Steel:
 a. Replacement Structural Members shall comply with ASTM A 36.
 b. Replacement Bars shall comply with ASTM A 108.
 c. Replacement Pipe shall comply with ASTM A 53 standard weight.
 d. Replacement Fasteners shall comply with ASTM A 307 and ASTM A 325.
 e. Replacement Anchor Bolts for anchoring base plates to concrete bases and nuts and washers shall be galvanized in compliance with ASTM A 153.
3. Sign Support, Wood:
 a. Replacement Wood Sign Post shall be of the species listed in AASHTO M168, dressed four sides and having a pyramidal top cut before being treated.
 b. Replacement Sign Post shall be pressure treated with creosote or creosote-tar solution complying with AWPB LP-55.

C. Sign Face:
1. Replacement Plywood Sign Face shall be grade HDOAB G-1 EXTERIOR, in compliance with DOC PS 1. Material shall be cut to size in compliance with ANSI D6.1E.
2. Replacement Galvanizing Steel Sign Face shall comply with USDOT FHA MUTCD.
D. Reflective Sheeting shall be enclosed lens unless otherwise directed by the Owner.
3. Color shall be matched visually and within the limits shown on the Color Tolerance Charts issued by the Federal Highway Administration. The diffuse day color of the reflective sheeting shall be determined in compliance with ASTM E 97.
4. Film:
 a. General: Reflective sheeting shall be sufficiently flexible to be easily cut to shape and permit application over, and conformance to, moderate shallow embossing characteristic of certain sign borders and symbols.
 b. Surface: Sheeting surface shall be smooth and flat, shall facilitate cleaning and wet performance, and shall exhibit 85 degrees glossmeter rating of not less than 40, as specified in ASTM D 523. The sheeting surface shall withstand cleaning with gasoline, VM&P Naphtha, mineral spirits, turpentine, methanol, and xylol.

E. Demountable Sign Face Materials:
1. Acrylic Plastic Reflectors: Replacement demountable sign letters, digits, arrows, borders, and alphabet accessories shall be reflectorized and shall consist of acrylic plastic reflectors supported by embossed aluminum frames. They shall comply with the Standard Alphabet for Highway Signs, of the Federal Highway Administration, Series E.
2. Design and Fabrication: The letters shall be modified as necessary to accommodate the required reflectors. All items except border strips shall be fabricated from 0.040-inch minimum sheet aluminum. Border strips shall be of 0.032-inch minimum sheet aluminum. Mounting holes shall be provided within the frames to permit the use of screws, rivets or other acceptable fasteners. The size and spacing of the reflector holes shall provide maximum night legibility and visibility of the finished cutout figure.
3. General Requirements: The reflectors shall be of acrylic plastic meeting the requirements of Fed. Spec. L-P-380, Type I, Class 3. The reflectors shall be yellow or colorless. The lens shall consist of a smooth front surface, free from projections or indentations other than for identification, and a rear surface bearing a prismatic configuration that will effect total internal reflection of light.
4. Reflective Sheeting:
 a. Demountable Sign Letters, Digits, Arrows, Borders, and Alphabet Accessories, when so specified, shall be reflectorized with reflective sheeting supported by flat aluminum backing and shall comply with the Standard Alphabet Highway Signs of the Federal Highway Administration.
 b. Design and Fabrication: Letter design shall be Series E, modified for legibility. All items except border strips shall be fabricated from 0.040-inch sheet aluminum, 6061-T6 alloy, with mounting holes to permit use of screws, rivets, or other acceptable fasteners.

F. Highway Delineators, Enclosed Lens Type: Replacement reflectors shall be of acrylic plastic and a minimum of 3 inches in diameter. They shall be mounted in a heavy-duty housing with a back plate. The reflector shall consist of a clear and transparent plastic lens, which shall be colorless, and a plastic back of the same material, fused to the lens under heat and pressure around the entire perimeter to form a homogeneous unit, permanently sealed against dust, water, and water vapor. The acrylic plastic shall comply with Fed. Spec. L-P-380, Type I, Class 3.

G. Highway Delineators, High Intensity Type:
1. Replacement Reflectorized Delineators shall consist of a reflective sheeting compound of glass spheres, embedded in a weatherproof, synthetic, noncellulose material. The overall size of the plastic reflectors shall be 4 inches by 5 inches, with a reflective area of at least 17.5 square inches.
2. Delineators shall be silver-white when viewed with reflected light.
H. Highway Delineators Including Posts and Attachments:

1. Reflective Sheeting: Replacement reflective sheeting for delineators shall match delineators being replaced.
2. Delineator Posts and Accessories shall be of steel or aluminum. They shall have the necessary holes for attachment of the delineator housing. The assembly shall be furnished with the necessary bolts, nuts, and washers for attaching to the posts.
3. Insulating Materials: Neoprene, for separation of aluminum and steel parts, shall contain at least 60 percent, by volume, of pure neoprene. Other material may be used, subject to the approval of the Owner as to pliability and ability to withstand wear caused by stretching or distortion.
4. Reflector Units for guardrail installation shall match existing reflector being replaced in size and color.
5. Highway Delineators shall be supplemented with directional guidance signs as directed by the Owner. Signs shall be the chevron alignment type and shall comply with ANSI D6.1E, Type W 1-8.

I. Painting Panels for Nonreflectorized Background:

1. Replacement Metal Panels for sign categories not required to be reflectorized shall have a nonreflectorized background composed of one spray coat of primer and two finish coats of baked enamel.
2. Finish Coats shall be baked alkyd resin enamels meeting Fed. Spec. TT-E-529, Class B, of a composition that affects the finished background surface. When thoroughly dry, the colors shall match those described in the current Highway Blue Color Tolerance Chart, PR Color No. 3, or in Highway Green Color Tolerance Chart, PR Color No. 4, of the Federal Highway Administration.
3. Wood Signs shall have two coats of oil paint complying with Fed. Spec. TT-P-52. Message paint shall be a single coat of oil paint. All colors shall comply with ANSI D6.1E.

J. Sign Wash Detergent shall comply with ASTM D 3399.

K. Street, Wayside, Utility Location, And Parking Lot Signs; Decals:

1. Blanks: aluminum of type, size, and shape indicated.
2. Reflective sheeting: Type 1 sheeting having Level A reflective intensity.
3. Silk screen lettering paint and transparent process colors: as directed by the Owner.
4. Posts
 a. Drive type: as directed by the Owner.
 b. Pipe type: Two-inch inside diameter.
5. Hardware: as directed by the Owner.
6. Fabrication
 a. Dimensions, colors, and reflectorizing: As indicated, and in accordance with MUTCD.
 b. Size, style, and spacing of letters, numerals, symbols, and borders: As indicated, and the Owner; as supplemented by DOT/FHA's publication entitled Standard Highway Signs as specified in MUTCD 1978.
 c. Workmanship: as directed by the Owner.

1.3 EXECUTION

A. Footings for Signs, Posts, and Supports:

1. Backfill Material shall be at or near optimum moisture and neither dry nor saturated. It shall be tamped thoroughly in place.
2. Concrete Footings may be cast in place or precast. Hand mixing of concrete will be permitted where the quantity does not exceed one-half cubic yard.

B. Erection of Signs and Sign Supports: Sign posts shall be erected vertically. Posts erected in sleeves shall be anchored with sulphur mortar. Mortar shall comply with ASTM C 287. Sign faces shall be
positioned to be generally perpendicular to the line-of-sight for the observer. Reflectorized signs shall be inspected at night. If specular reflection is apparent on any sign, its position shall be adjusted by the Contractor to eliminate the condition.

C. Delineators and Hazard Markers: Delineator posts shall be driven to a depth of 30 inches.

D. Removal of Existing Signs and Posts:
 1. Damaged, Obsolete, or Change of Purpose Signs and Posts shall be removed and delivered to a storage area designated by the Owner. Post hole shall be backfilled, tamped, and made level with the adjacent surface. Disturbed paving, sidewalks, and grassed areas shall be replaced with matching material of same quality and quantity as existing.
 2. Signs and Posts to be Replaced shall be removed and replaced by new signs and posts in identical locations. Backfill around post shall be thoroughly compacted to hold posts securely in a vertical position.

E. Installation: Install in accordance with manufacturer’s recommendations and as directed by the Owner. Unless otherwise indicated, install not more than one sign on each post.

END OF SECTION 10 14 53 00
Task Specification

<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 01 20 00</td>
<td>01 51 13 00</td>
<td>Electrical Renovation</td>
</tr>
</tbody>
</table>
SECTION 26 05 19 16 - CONDUCTORS AND CABLES

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of conductors and cables. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
 1. This Section includes the following:
 a. Building wires and cables rated 600 V and less.
 b. Connectors, splices, and terminations rated 600 V and less.
 c. Sleeves and sleeve seals for cables.

C. Definitions
 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 2. NBR: Acrylonitrile-butadiene rubber.

D. Submittals
 1. Product Data: For each type of product indicated.
 2. Field quality-control test reports.

E. Quality Assurance
 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 2. Comply with NFPA 70.

1.2 PRODUCTS

A. Conductors And Cables
 1. Aluminum and Copper, as directed, Conductors: Comply with NEMA WC 70.
 2. Conductor Insulation: Comply with NEMA WC 70 for Types THW OR THHN-THWN OR XHHW OR UF OR USE OR SO, as directed.
 3. Multiconductor Cable: Comply with NEMA WC 70 for armored cable, Type AC OR metal-clad cable, Type MC OR mineral-insulated, metal-sheathed cable, Type MI OR nonmetallic-sheathed cable, Type NM OR Type SO OR Type USE, as directed, with ground wire.

B. Connectors And Splices
 1. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

C. Sleeves For Cables
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
 3. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
4. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section “Penetration Firestopping”.

D. Sleeve Seals
1. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 a. Sealing Elements: EPDM OR NBR, as directed, interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 b. Pressure Plates: Plastic OR Carbon steel OR Stainless steel, as directed. Include two for each sealing element.
 c. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating OR Stainless steel, as directed, of length required to secure pressure plates to sealing elements. Include one for each sealing element.

1.3 EXECUTION

A. Conductor Material Applications
1. Feeders: Copper OR Copper for feeders smaller than No. 4 AWG; copper or aluminum for feeders No. 4 AWG and larger, as directed. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
2. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Conductor Insulation And Multiconductor Cable Applications And Wiring Methods
1. Service Entrance: Type THHN-THWN, single conductors in raceway OR Type XHHW, single conductors in raceway OR Mineral-insulated, metal-sheathed cable, Type MI OR Type SE or USE multiconductor cable, as directed.
2. Exposed Feeders: Type THHN-THWN, single conductors in raceway OR Armored cable, Type AC OR Metal-clad cable, Type MC OR Mineral-insulated, metal-sheathed cable, Type MI OR Nonmetallic-sheathed cable, Type NM, as directed.
3. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-THWN, single conductors in raceway OR Armored cable, Type AC OR Metal-clad cable, Type MC OR Mineral-insulated, metal-sheathed cable, Type MI OR Nonmetallic-sheathed cable, Type NM, as directed.
4. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway OR Underground feeder cable, Type UF, as directed.
5. Feeders Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway OR Armored cable, Type AC OR Metal-clad cable, Type MC OR Mineral-insulated, metal-sheathed cable, Type MI, as directed.
6. Feeders in Cable Tray: Type THHN-THWN, single conductors in raceway OR Armored cable, Type AC OR Metal-clad cable, Type MC OR Mineral-insulated, metal-sheathed cable, Type MI OR Nonmetallic-sheathed cable, Type NM, as directed.
7. Exposed Branch Circuits, Including in Crawlspace: Type THHN-THWN, single conductors in raceway OR Armored cable, Type AC OR Metal-clad cable, Type MC OR Mineral-insulated, metal-sheathed cable, Type MI OR Nonmetallic-sheathed cable, Type NM, as directed.
8. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway OR Armored cable, Type AC OR Metal-clad cable, Type MC OR Mineral-insulated, metal-sheathed cable, Type MI OR Nonmetallic-sheathed cable, Type NM, as directed.
9. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway OR Underground branch-circuit cable, Type UF, as directed.
10. Branch Circuits Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway OR Armored cable, Type AC OR Metal-clad cable, Type MC OR Mineral-insulated, metal-sheathed cable, Type MI, as directed.

11. Branch Circuits in Cable Tray: Type THHN-THWN, single conductors in raceway OR Armored cable, Type AC OR Metal-clad cable, Type MC OR Mineral-insulated, metal-sheathed cable, Type MI, as directed.

12. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

13. Class 1 Control Circuits: Type THHN-THWN, in raceway.

14. Class 2 Control Circuits: Type THHN-THWN, in raceway OR Power-limited cable, concealed in building finishes OR Power-limited tray cable, in cable tray, as directed.

C. Installation Of Conductors And Cables

1. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

2. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

3. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

4. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

5. Support cables according to Division 26 Section "Hangers And Supports For Electrical Systems".

6. Identify and color-code conductors and cables according to Division 26 Section "Identification For Electrical Systems".

7. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

8. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 a. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

9. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) OR 12 inches (300 mm), as directed, of slack.

D. Sleeve Installation For Electrical Penetrations

1. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping".

2. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

3. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

4. Rectangular Sleeve Minimum Metal Thickness:
 a. For sleeve rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 b. For sleeve rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

5. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

6. Cut sleeves to length for mounting flush with both wall surfaces.

7. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.

8. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and cable unless sleeve seal is to be installed or unless seismic criteria require different clearance, as directed.

9. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies, as directed.
10. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants".

11. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping".

12. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

13. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

14. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between cable and sleeve for installing mechanical sleeve seals.

E. Sleeve-Seal Installation
 1. Install to seal underground exterior-wall penetrations.
 2. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

F. Firestopping
 1. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping".

G. Field Quality Control
 1. Perform tests and inspections and prepare test reports.
 2. Tests and Inspections:
 a. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors, and conductors feeding the following critical equipment and services, as directed, for compliance with requirements.
 b. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 c. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.
 1) Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 2) Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 3) Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
 3. Test Reports: Prepare a written report to record the following:
 a. Test procedures used.
 b. Test results that comply with requirements.
 c. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
 4. Remove and replace malfunctioning units and retest as specified above.
END OF SECTION 26 05 19 16
SECTION 26 05 19 16a - UNDERCARPET CABLES

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of undercarpet cables. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
 1. This Section includes the following:
 a. Undercarpet cable and service fittings for branch circuits.
 b. Undercarpet cable and service fittings for communication and data transmission.

C. Submittals
 1. Product Data: For each type of product indicated.
 2. Shop Drawings: Include plans, elevations, sections, details of components, and attachments to other work.
 a. Indicate cable types, accessories, and transition boxes.
 b. Indicate proposed layering of cables, cable dimensions, and installation requirements.
 3. Field quality-control test reports.
 4. Operation and maintenance data.

D. Quality Assurance
 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 2. Comply with NEMA UC 2, "Undercarpet Power Distribution Systems" and with NFPA 70.

1.2 PRODUCTS

A. Power Distribution Cable
 1. Cable: Factory laminated and complying with NEMA UC 2; three-piece assembly including bottom shield, conductor assembly, and top shield.
 a. Bottom Shield: Abrasion resistant, nonmetallic OR Metallic, as directed.
 b. Conductor Assembly: Two OR Three OR Four, as directed, -wire branch circuit with insulated ground, as directed.
 c. Top Shield: Copper or copper alloy.
 2. Current Rating: 20 OR 30 OR 20 and 30, as directed, A.

B. Communication And Data Cable
 1. Category 5e Communication and Data Cable: Extruded-vinyl jacket over 4 unshielded, twisted pairs, No. 24 AWG, copper; complying with TIA/EIA 568-B; and tested to 300-lb (136-kg) rollover test.

C. Pedestals
 1. Description: Manufacturer's standard low OR regular, as directed, -profile type, single OR two OR three, as directed, gang with single OR duplex, as directed, receptacles and Category 5e modular connectors, as directed.
 a. Pedestal Colors: As selected from manufacturer's full range.
D. Power Cable Transition Unit
 1. Description: Interface transition unit, with junction box, for connecting three-, four-, or five-conductor, flat-conductor cable to building wiring system.

E. Communication And Data Cable Transition Unit
 1. Description: Category 5 transition termination circuit board in wall-mounted box to convert round incoming cable to outgoing flat-undercarpet cable.

1.3 EXECUTION

A. Installation
 1. Do not begin installation until heavy construction is completed and wheeled traffic is no longer a threat.
 2. Do not stack cables in circulation routes.
 3. Limit total installed height to 0.09 inch (2.29 mm).
 4. Install cables in proper order with power-transmission cable first, followed by telephone cable and then data cable. Cross cables at 90-degree angles.
 5. Install undercarpet cables and accessories using special tools as recommended by undercarpet cable manufacturer.

B. Connections
 1. Ground equipment according to Division 26 Section "Grounding And Bonding For Electrical Systems".
 2. Connect undercarpet cable and components to branch circuits and to ground as indicated and instructed by manufacturer.

C. Field Quality Control
 1. Perform tests and inspections and prepare test reports.
 2. Tests and Inspections:
 a. Branch-Circuit Cables: After cables have been installed and energized, perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 b. Communication and Data Cables: After cables have been installed and connected between telecommunications outlet and system cross-connect panel, test each cable according to TIA/EIA TSB67. Certify compliance with test parameters.
 3. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 26 05 19 16a
SECTION 26 05 19 16b - MEDIUM-VOLTAGE CABLES

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of medium-voltage cables. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes cables and related splices, terminations, and accessories for medium-voltage electrical distribution systems.

C. Definitions

D. Submittals
1. Product Data: For each type of cable indicated. Include splices and terminations for cables and cable accessories.
2. Field quality-control test reports.

E. Quality Assurance
1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
2. Comply with IEEE C2 and NFPA 70.

1.2 PRODUCTS

A. Cables
1. Cable Type: MV90 OR MV105, as directed.
2. Comply with UL 1072, AEIC CS 8, ICEA S-93-639, and ICEA S-97-682, OR ICEA S-94-649, as directed.
3. Conductor: Copper OR Aluminum, as directed.
4. Conductor Stranding: Compact round, concentric lay, Class B) OR Concentric lay, Class B, as directed.
5. Strand Filling: Conductor interstices are filled with impermeable compound.
6. Conductor Insulation: Crosslinked polyethylene OR Ethylene-propylene rubber, as directed.
 a. Voltage Rating: 5 OR 8 OR 15 OR 25 OR 35, as directed, kV.
 b. Insulation Thickness: 100 OR 133, as directed, percent insulation level.
7. Shielding: Copper tape OR Solid copper wires, as directed, helically applied over semiconducting insulation shield.
8. Shielding and Jacket: Corrugated copper drain wires embedded in extruded, chlorinated, polyethylene jacket.
9. Three-Conductor Cable Assembly: Three insulated, shielded conductors cabled together with ground conductors, as directed.
 a. Circuit Identification: Color-coded tape (black, red, blue) under the metallic shielding.
10. Cable Armor: Interlocked aluminum OR Interlocked galvanized steel OR Corrugated aluminum tube, as directed, applied over cable.
11. Cable Jacket: Sunlight-resistant PVC OR Chlorosulfonated polyethylene, CPE, as directed.
B. Splice Kits

1. Connectors and Splice Kits: Comply with IEEE 404; type as recommended by cable or splicing kit manufacturer for the application.

2. Splicing Products: As recommended, in writing, by splicing kit manufacturer for specific sizes, ratings, and configurations of cable conductors. Include all components required for complete splice, with detailed instructions.
 a. Combination tape and cold-shrink-rubber sleeve kit with rejacketing by cast-epoxy-resin encasement or other waterproof, abrasion-resistant material.
 b. Heat-shrink splicing kit of uniform, cross-section, polymeric construction with outer heat-shrink jacket.
 c. Premolded, cold-shrink-rubber, in-line splicing kit.
 d. Premolded EPDM splicing body kit with cable joint sealed by interference fit of mating parts and cable.

C. Solid Terminations

1. Multiconductor Cable Sheath Seals: Type recommended by seal manufacturer for type of cable and installation conditions, including orientation.
 a. Compound-filled, cast-metal body, metal-clad cable terminator for metal-clad cable with OR without, as directed, external plastic jacket.
 b. Cold-shrink sheath seal kit with preformed sleeve openings sized for cable and insulated conductors.
 c. Heat-shrink sheath seal kit with phase- and ground-conductor rejacketing tubes, cable-end sealing boot, and sealing plugs for unused ground-wire openings in boot.
 d. Cast-epoxy-resin sheath seal kit with wraparound mold and packaged, two-part, epoxy-resin casting material.

2. Shielded-Cable Terminations: Comply with the following classes of IEEE 48. Insulation class is equivalent to that of cable. Include shield ground strap for shielded cable terminations.
 a. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief tube; multiple, molded-silicone rubber, insulator modules; shield ground strap; and compression-type connector.
 b. Class 1 Terminations: Heat-shrink type with heat-shrink inner stress control and outer nontracking tubes; multiple, molded, nontracking skirt modules; and compression-type connector.
 c. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief shield terminator; multiple-wet-process, porcelain, insulator modules; shield ground strap; and compression-type connector.
 d. Class 1 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, compression-type connector, and end seal.
 e. Class 2 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, and compression-type connector. Include silicone-rubber tape, cold-shrink-rubber sleeve, or heat-shrink plastic-sleeve moisture seal for end of insulation whether or not supplied with kits.
 f. Class 3 Terminations: Kit with stress cone and compression-type connector.

3. Nonshielded-Cable Terminations: Kit with compression-type connector. Include silicone-rubber tape, cold-shrink-rubber sleeve, or heat-shrink plastic-sleeve moisture seal for end of insulation whether or not supplied with kits.

D. Separable Insulated Connectors

1. Description: Modular system, complying with IEEE 386, with disconnecting, single-pole, cable terminators and with matching, stationary, plug-in, dead-front terminals designed for cable voltage and for sealing against moisture.

2. Terminations at Distribution Points: Modular type, consisting of terminators installed on cables and modular, dead-front, terminal junctions for interconnecting cables.
3. Load-Break Cable Terminators: Elbow-type units with 200-A load make/break and continuous-current rating; coordinated with insulation diameter, conductor size, and material of cable being terminated. Include test point on terminator body that is capacitance coupled.

4. Dead-Break Cable Terminators: Elbow-type unit with 600-A continuous-current rating; designed for de-energized disconnecting and connecting; coordinated with insulation diameter, conductor size, and material of cable being terminated. Include test point on terminator body that is capacitance coupled.

5. Dead-Front Terminal Junctions: Modular bracket-mounted groups of dead-front stationary terminals that mate and match with above cable terminators. Two-, three-, or four-terminal units as indicated, with fully rated, insulated, watertight conductor connection between terminals and complete with grounding lug, manufacturer's standard accessory stands, stainless-steel mounting brackets, and attaching hardware.
 b. Portable Feed-Through Accessory: Two-terminal, dead-front junction arranged for removable mounting on accessory stand of stationary terminal junction.
 c. Grounding Kit: Jumpered elbows, portable feed-through accessory units, protective caps, test rods suitable for concurrently grounding three phases of feeders, and carrying case.

6. Test-Point Fault Indicators: Applicable current-trip ratings and arranged for installation in test points of load-break separable connectors, and complete with self-resetting indicators capable of being installed with shotgun hot stick and tested with test tool.

7. Tool Set: Shotgun hot stick with energized terminal indicator, fault-indicator test tool, and carrying case.

E. Arc-Proofing Materials
 1. Tape for First Course on Metal Objects: 10-mil- (250-micrometer-) thick, corrosion-protective, moisture-resistant, PVC pipe-wrapping tape.
 2. Arc-Proofing Tape: Fireproof tape, flexible, conformable, intumescent to 0.3 inch (8 mm) thick, compatible with cable jacket.
 3. Glass-Cloth Tape: Pressure-sensitive adhesive type, 1/2 inch (13 mm) wide.

F. Fault Indicators
 1. Indicators: Automatically OR Manually, as directed, reset fault indicator with inrush restraint feature, arranged to clamp to cable sheath and provide a display after a fault has occurred in cable. Instrument shall not be affected by heat, moisture, and corrosive conditions and shall be recommended by manufacturer for installation conditions.
 2. Resetting Tool: Designed for use with fault indicators, with moisture-resistant storage and carrying case.

G. Source Quality Control
 1. Test and inspect cables according to ICEA S-97-682 OR ICEA S-94-649, as directed, before shipping.
 2. Test strand-filled cables for water-penetration resistance according to ICEA T-31-610, using a test pressure of 5 psig (35 kPa).

1.3 EXECUTION

A. Installation
 1. Install cables according to IEEE 576.
 2. Pull Conductors: Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
a. Where necessary, use manufacturer-approved pulling compound or lubricant that will not deteriorate conductor or insulation.
b. Use pulling means, including fish tape, cable, rope, and basket-weave cable grips that will not damage cables and raceways. Do not use rope hitches for pulling attachment to cable.

3. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.

4. Support cables according to Division 26 Section "Common Work Results For Electrical".

5. Install direct-buried cables on leveled and tamped bed of 3-inch- (75-mm-) thick, clean sand. Separate cables crossing other cables or piping by a minimum of 4 inches (100 mm) of tamped earth. Install permanent markers at ends of cable runs, changes in direction, and buried splices.

6. Install "buried-cable" warning tape 12 inches (305 mm) above cables.

7. In manholes, handholes, pull boxes, junction boxes, and cable vaults, train cables around walls by the longest route from entry to exit and support cables at intervals adequate to prevent sag.

8. Install cable splices at pull points and elsewhere as indicated; use standard kits.

9. Install terminations at ends of conductors and seal multiconductor cable ends with standard kits.

10. Install separable insulated-connector components as follows:
 a. Protective Cap: At each terminal junction, with one on each terminal to which no feeder is indicated to be connected.
 b. Portable Feed-Through Accessory: Three.
 c. Standoff Insulator: Three.

11. Arc Proofing: Unless otherwise indicated, arc proof medium-voltage cable at locations not protected by conduit, cable tray, direct burial, or termination materials. In addition to arc-proofing tape manufacturer's written instructions, apply arc proofing as follows:
 a. Clean cable sheath.
 b. Wrap metallic cable components with 10-mil (250-micrometer) pipe-wrapping tape.
 c. Smooth surface contours with electrical insulation putty.
 d. Apply arc-proofing tape in one half-lapped layer with coated side toward cable.
 e. Band arc-proofing tape with 1-inch- (25-mm-) wide bands of half-lapped, adhesive, glass-cloth tape 2 inches (50 mm) o.c.

12. Seal around cables passing through fire-rated elements according to Division 07 Section "Penetration Firestopping".

13. Install fault indicators on each phase where indicated.

14. Ground shields of shielded cable at terminations, splices, and separable insulated connectors. Ground metal bodies of terminators, splices, cable and separable insulated-connector fittings, and hardware.

15. Identify cables according to Division 26 Section "Identification For Electrical Systems".

B. Field Quality Control

1. Perform the following field tests and inspections and prepare test reports:
 a. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters.
 b. After installing medium-voltage cables and before electrical circuitry has been energized, test for compliance with requirements.

2. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 26 05 19 16b
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 05 19 16</td>
<td>01 51 13 00</td>
<td>Electrical Renovation</td>
</tr>
</tbody>
</table>
SECTION 26 05 26 00 - LIGHTNING PROTECTION

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for lightning protection. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section includes lightning protection for structures, structure elements and building site components.

C. Submittals
1. Product Data: For each type of product indicated.
2. Shop Drawings: For air terminals and mounting accessories.
 a. Layout of the lightning protection system, along with details of the components to be used in the installation.
 b. Include indications for use of raceway, data on how concealment requirements will be met, and calculations required by NFPA 780 for bonding of grounded and isolated metal bodies.
3. Qualification Data: For qualified Installer and manufacturer. Include data on listing or certification by UL.
4. Certification, signed by Contractor, that roof adhesive is approved by manufacturer of roofing material.
5. Field quality-control reports.
7. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features, including the following:
 a. Ground rods.
 b. Ground loop conductor.

D. Quality Assurance
1. Installer Qualifications: Certified by UL or LPI as a Master Installer/Designer, trained and approved for installation of units required for this Project.
2. System Certificate:
 a. UL Master Label.
 OR
 LPI System Certificate.
 OR
 UL Master Label Recertification.
3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 780, "Definitions" Article.

E. Coordination
1. Coordinate installation of lightning protection with installation of other building systems and components, including electrical wiring, supporting structures and building materials, metal bodies requiring bonding to lightning protection components, and building finishes.
2. Coordinate installation of air terminals attached to roof systems with roofing manufacturer and Installer.
3. Flashings of through-roof assemblies shall comply with roofing manufacturers’ specifications.
1.2 PRODUCTS

A. Lightning Protection System Components
 1. Comply with UL 96 and NFPA 780, as directed.
 2. Roof-Mounted Air Terminals: NFPA 780, Class I OR Class II, as directed, aluminum OR copper, as directed, unless otherwise indicated.
 a. Air Terminals More than 24 Inches (600 mm) Long: With brace attached to the terminal at not less than half the height of the terminal.
 3. Main and Bonding Conductors: Copper OR Aluminum, as directed.
 4. Ground Loop Conductor: The same size and type as the main conductor except tinned.
 5. Ground Rods: Copper-clad OR Zinc-coated OR Stainless, as directed, steel, sectional type, as directed; 3/4 inch (19 mm) in diameter by 10 feet (3 m) OR 5/8 inch (16 mm) in diameter by 96 inches (2400 mm), as directed, long.
 6. Heavy-Duty, Stack-Mounted, Lightning Protection Components: Stainless steel OR Solid copper OR Monel metal OR Lead sheathed, as directed.

1.3 EXECUTION

A. Installation
 1. Install lightning protection components and systems according to UL 96A and NFPA 780.
 2. Install conductors with direct paths from air terminals to ground connections. Avoid sharp bends.
 3. Conceal the following conductors:
 a. System conductors.
 b. Down conductors.
 c. Interior conductors.
 d. Conductors within normal view of exterior locations at grade within 200 feet (60 m) of building.
 4. Cable Connections: Use crimped or bolted connections for all conductor splices and connections between conductors and other components. Use exothermic-welded connections in underground portions of the system.
 OR
 Cable Connections: Use exothermic-welded connections for all conductor splices and connections between conductors and other components.
 a. Exception: In single-ply membrane roofing, exothermic-welded connections may be used only below the roof level.
 5. Air Terminals on Single-Ply Membrane Roofing: Comply with roofing membrane and adhesive manufacturer's written instructions.
 6. Bond extremities of vertical metal bodies exceeding 60 feet (18 m) in length to lightning protection components.
 7. Ground Loop: Install ground-level, potential equalization conductor and extend around the perimeter of structure OR area or item indicated, as directed.
 a. Bury ground ring not less than 24 inches (600 mm) from building foundation.
 b. Bond ground terminals to the ground loop.
 c. Bond grounded building systems to the ground loop conductor within 12 feet (3.6 m) of grade level.
 8. Bond lightning protection components with intermediate-level interconnection loop conductors to grounded metal bodies of building at 60-foot (18-m) intervals.

B. Corrosion Protection
 1. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.
2. Use conductors with protective coatings where conditions cause deterioration or corrosion of conductors.

C. Field Quality Control
 1. Notify the Owner at least 48 hours in advance of inspection before concealing lightning protection components.
 2. UL Inspection: Meet requirements to obtain a UL Master Label for system.
 OR
 LPI System Inspection: Meet requirements to obtain an LPI System Certificate.

END OF SECTION 26 05 26 00
SECTION 26 05 26 00a - GROUNDING AND BONDING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for grounding and bonding. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes methods and materials for grounding systems and equipment, plus the following special applications, as directed:
 a. Overhead-lines grounding.
 b. Underground distribution grounding.
 c. Common ground bonding with lightning protection system.

C. Submittals
1. Product Data: For each type of product indicated.
2. Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in “Field Quality Control” Article, including the following:
 a. Test wells.
 b. Ground rods.
 c. Ground rings.
 d. Grounding arrangements and connections for separately derived systems.
 e. Grounding for sensitive electronic equipment.
3. Qualification Data: For qualified testing agency and testing agency's field supervisor.
4. Field quality-control test reports.
5. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation And Maintenance Data", include the following:
 a. Instructions for periodic testing and inspection of grounding features at test wells OR ground rings OR grounding connections for separately derived systems, as directed based on NETA MTS OR NFPA 70B, as directed.
 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 2) Include recommended testing intervals.

D. Quality Assurance
1. Testing Agency Qualifications: Member company of NETA or an NRTL.
 a. Testing Agency’s Field Supervisor: Currently certified by NETA to supervise on-site testing.
2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
3. Comply with UL 467 for grounding and bonding materials and equipment.

1.2 PRODUCTS

A. Conductors
1. Insulated Conductors: Copper OR Tinned-copper, as directed, wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
2. Bare Copper Conductors:
 c. Tinned Conductors: ASTM B 33.
 d. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
 e. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 f. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
 g. Tinned Bonding Jumper: Tinned-copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
3. Bare Grounding Conductor and Conductor Protector for Wood Poles:
 a. No. 4 AWG minimum, soft-drawn copper.
 b. Conductor Protector: Half-round PVC or wood molding. If wood, use pressure-treated fir or cypress or cedar.
4. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 2 inches (6 by 50 mm), as directed, in cross section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

B. Connectors
1. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
2. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 a. Pipe Connectors: Clamp type, sized for pipe.
3. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
4. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression OR exothermic-type wire terminals, as directed, and long-barrel, two-bolt connection to ground bus bar.

C. Grounding Electrodes
1. Ground Rods: Copper-clad OR Zinc-coated OR Stainless, as directed, steel, sectional type, as directed; 3/4 inch by 10 feet (19 mm by 3 m) OR 5/8 by 96 inches (16 by 2400 mm), as directed, in diameter.
2. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.
 a. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches (1200 mm) long.
 b. Backfill Material: Electrode manufacturer's recommended material.

1.3 EXECUTION

A. Applications
1. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.
2. Underground Grounding Conductors: Install bare copper OR tinned-copper, as directed, conductor, No. 2/0 AWG minimum. Bury at least 24 inches (600 mm) below grade.
 a. Bury at least 24 inches (600 mm) below grade.
 b. Duct-Bank Grounding Conductor: Bury 12 inches (300 mm) above duct bank when indicated as part of duct-bank installation.
3. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

4. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 a. Install bus on insulated spacers 1 inch (25 mm), minimum, from wall 6 inches (150 mm) above finished floor, unless otherwise indicated.
 b. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, down to specified height above floor, and connect to horizontal bus.

5. Conductor Terminations and Connections:
 b. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 c. Connections to Ground Rods at Test Wells: Bolted connectors.
 d. Connections to Structural Steel: Welded connectors.

B. Grounding Overhead Lines
1. Comply with IEEE C2 grounding requirements.
2. Install 2 parallel ground rods if resistance to ground by a single, ground-rod electrode exceeds 25 ohms.
3. Drive ground rods until tops are 12 inches (300 mm) below finished grade in undisturbed earth.
4. Ground-Rod Connections: Install bolted connectors for underground connections and connections to rods.
5. Lightning Arrester Grounding Conductors: Separate from other grounding conductors.
7. Protect grounding conductors running on surface of wood poles with molding extended from grade level up to and through communication service and transformer spaces.

C. Grounding Underground Distribution System Components
1. Comply with IEEE C2 grounding requirements.
2. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.
3. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields as recommended by manufacturer of splicing and termination kits.
4. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches (150 mm) from the foundation.

D. Equipment Grounding
1. Install insulated equipment grounding conductors with all feeders and branch circuits.
2. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
a. Feeders and branch circuits.
b. Lighting circuits.
c. Receptacle circuits.
d. Single-phase motor and appliance branch circuits.
e. Three-phase motor and appliance branch circuits.
f. Flexible raceway runs.
g. Armored and metal-clad cable runs.
h. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
i. Computer and Rack-Mounted Electronic Equipment Circuits: Install insulated equipment grounding conductor in branch-circuit runs from equipment-area power panels and power-distribution units.
j. X-Ray Equipment Circuits: Install insulated equipment grounding conductor in circuits supplying x-ray equipment.

3. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

4. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

5. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

6. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

7. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.

b. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

8. Metal and Wood Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

E. Installation

1. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

2. Common Ground Bonding with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

3. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade, unless otherwise indicated.
a. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any.

b. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

4. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Division 26 Section "Underground Ducts And Raceways For Electrical Systems" and shall be at least 12 inches (300 mm) deep, with cover.

 a. Test Wells: Install at least one test well for each service, unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

5. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.

 a. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.

 b. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.

 c. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

6. Grounding and Bonding for Piping:

 a. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.

 b. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

 c. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

7. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

8. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart.

9. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column OR indicated item, as directed, extending around the perimeter of building OR area or item indicated, as directed.

 a. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.

 b. Bury ground ring not less than 24 inches (600 mm) from building foundation.

10. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70, using a minimum of 20 feet (6 m) of bare copper conductor not smaller than No. 4 AWG.

 a. If concrete foundation is less than 20 feet (6 m) long, coil excess conductor within base of foundation.

 b. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building grounding grid or to grounding electrode external to concrete.

F. Labeling

1. Comply with requirements in Division 26 Section "Identification For Electrical Systems" for instruction signs. The label or its text shall be green.

2. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
a. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

G. Field Quality Control
1. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
2. Tests and Inspections:
 a. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 b. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at ground test wells.
 1) Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 2) Perform tests by fall-of-potential method according to IEEE 81.
 c. Prepare dimensioned drawings locating each test well, ground rod and ground rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
3. Report measured ground resistances that exceed the following values:
 a. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 10 ohms.
 b. Power and Lighting Equipment or System with Capacity 500 to 1000 kVA: 5 ohms.
 c. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 d. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 OR 3, as directed, ohm(s).
 e. Substations and Pad-Mounted Equipment: 5 ohms.
 f. Manhole Grounds: 10 ohms.
4. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify the Owner promptly and include recommendations to reduce ground resistance.

END OF SECTION 26 05 26 00a
SECTION 26 05 26 00b - OVERHEAD ELECTRICAL DISTRIBUTION

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for overhead electrical distribution. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Conductors, connectors, and splices.
 b. Poles and crossarms.
 c. Hardware and accessories.
 d. Surge arresters.
 e. Cutouts, switches, and fuses.
 f. Pole-mounted distribution transformers.
 g. Primary metering equipment.

C. Definitions
1. BIL: Basic impulse level, stated in kilovolts.
2. RUS: Department of Agriculture, Rural Utilities Service.
3. Sag: The distance measured vertically from a conductor to the straight line joining its two points of support, measured at the midpoint of the span, unless otherwise indicated.
 a. Final Sag: The sag of a conductor under specified conditions of loading and temperature applied after it has been subjected, for an appreciable period, to the loading prescribed for the loading district in which it is situated, or equivalent loading, and the loading removed. Final sag includes the effect of inelastic deformation (creep).
 b. Initial Unloaded Sag: The sag of a conductor before the application of an external load.
4. Secondary: Conductors and components for circuits operating at the utilization voltage of 600 V or less.
5. Service: Set of insulated conductors extending from a pole to the metering point or service entrance connection at the location of utilization of electricity.

D. Submittals
1. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Qualification Data: For qualified manufacturer OR testing agency, as directed.
3. Material Certificates: For the following items, from manufacturers:
 a. Wood poles.
 b. Concrete poles.
 c. Wood crossarms.
4. Listing Documentation: Indicate that products comply with RUS listing requirements specified in “Quality Assurance” Article.
 a. Time-Current Coordination Curves: Illustrate optimum coordination of protective devices involved in the Work of this Section.
 b. Source quality-control test reports.
5. Field quality-control reports.
6. Operation and Maintenance Data: For switches OR transformers, as directed, to include in emergency, operation, and maintenance manuals.
7. Survey records for locations of pole, anchors, and other features for inclusion in Project Record Documents.
E. Quality Assurance

1. Concrete Pole Manufacturer Qualifications: Certified by PCI as a qualified manufacturer of concrete utility poles of type and size indicated for this Project.
2. Inspection Agency Qualifications for Pole and Crossarm Inspection: An independent agency, acceptable to authorities having jurisdiction, qualified to conduct inspections indicated.
3. Testing Agency Qualifications: Member company of NETA or an NRTL.
4. Testing Agency's Field Supervisor: Currently certified by NETA or an NRTL.
5. Treatment Technician Qualifications for Field Treatment of Wood Poles and Crossarms: Certified by authorities having jurisdiction over environmental protection at the location of Project for field application of chemicals required.
6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
7. Overhead-Line Components, Devices, and Accessories: Currently listed in RUS Informational Publication 202-1 without restriction for the intended application.
8. Comply with IEEE C2 OR CPUC General Order 95, as directed, except where stricter requirements are indicated or where local requirements that are stricter apply.
9. Strength of Line and Line Components Selected by Contractor: Provide grades of construction and strength required by IEEE C2 for conditions encountered at Project site for heavy OR medium OR light, as directed, line loading unless otherwise indicated.

F. Delivery, Storage, And Handling

1. Wood Pole Storage and Handling: Comply with ATIS O5.1. Do not use pointed handling tools capable of producing indentations greater than 1 inch (25 mm).

G. Project Conditions

1. Interruption of Existing Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 a. Notify Owner no fewer than two days in advance of proposed interruption of service.
 b. Do not proceed with interruption of service without Owner's written permission.

H. Coordination

1. Coordinate with utility supplying electricity to lines specified in this Section, and make final connections OR arrangements for final connections by utility, as directed.
2. Coordinate with those responsible for voice OR data OR video, as directed, systems that will have cables supported by poles installed according to this Section.

1.2 PRODUCTS

A. Conductors, Connectors, And Splices

1. Conductor Type AAC: Bare OR Bare and covered, as directed, all-aluminum, Alloy 1350-H19, complying with ASTM B 230/B 230M and ASTM B 231/B 231M.
 OR
 Conductor Type AAAC: Bare OR Bare and covered, as directed, all-aluminum-alloy, Alloy 6201-T81, complying with ASTM B 398/B 398M and ASTM B 399/B 399M.
 OR
 Conductor Type ACSR: Bare OR Bare and covered, as directed, aluminum conductor, steel reinforced, complying with ASTM B 232/B 232M.
 OR
 Conductor Type CU: Bare OR Bare and covered, as directed, hard-drawn copper, complying with ASTM B 1 and ASTM B 8.
2. Conductor Covering: UV resistant, complying with ICEA-S-70-547. HDPE OR XLP, as directed, 150 mils (3.81 mm) thick.
3. Self-Supported, Multiconductor, Insulated Medium-Voltage Wiring: Factory-assembled, messenger-supported type, listed under UL 1072 as sunlight-resistant Type MV cable for cable tray use.
 b. Conductor Insulation: XLP, complying with NEMA WC 70/ICEA S-95-658 OR EPR, complying with NEMA WC 70/ICEA S-95-658, as directed.
 c. Insulation Level: 100 OR 133, as directed, percent of rated circuit line-to-line voltage.
 d. Conductor Shield: Extruded, nonconducting, thermoset material, complying with NEMA WC 70/ICEA S-95-658; 18-mil (0.046-mm) minimum thickness.
 e. Insulation Shield: Include the following two components:
 1) Nonmetallic conducting, material complying with NEMA WC 70/ICEA S-95-658 and UL 1072, extruded over, and free stripping from the insulation.
 2) Metallic Tape Shield: Bare copper, 5-mil (0.127-mm) minimum thickness, helically applied with a 15 percent minimum overlap.
 g. Messenger: Copper OR Composite copper and copper, as directed;-clad steel.
 h. Conductor Support Strap: Copper strap, wound around conductors and messenger the full length of the cable.

4. Secondary-Voltage Line Conductors: Aluminum conductor, steel reinforced, complying with ASTM B 232/B 232M OR Covered aluminum conductor, steel reinforced, complying with ICEA S-70-547, with HDPE or XLP covering, as directed, 60 mils (1.52 mm) thick. OR Secondary-Voltage Line Conductors: Bare hard-drawn copper, complying with ASTM B 1 and ASTM B 8 OR Covered hard-drawn copper, complying with ICEA S-70-547, with HDPE or XLP covering, as directed, 60 mils (1.52 mm) thick. Neutral-supported, secondary service-drop cable, as directed.

5. Neutral-Supported, Secondary Service-Drop Cable, 600 V and Less: Insulated conductors with bare neutral, complying with ICEA S-76-474, and using the following combination of materials:
 a. Conductors and Neutral: Copper with copper-clad-steel neutral OR Aluminum with bare Alloy 1350 aluminum neutral OR Aluminum with ACSR neutral, as directed.
 b. Insulation: XLP, complying with NEMA WC 70/ICEA S-95-658 OR High-modular-weight, low-density polyethylene OR Weather-resistant polyolefin, complying with ICEA S-70-547, as directed.

6. Connectors, Splices, and Conductor Securing and Protecting Components: Items include wire clamps, ties, conductor armor, fittings, connectors, and terminals. Listed for the specific applications and conductor types and combinations of materials used. Descriptions as follows for various applications:
 a. Copper to Copper: Copper alloy, complying with UL 486A-486B.
 b. Aluminum Composition to Aluminum Composition: Aluminum alloy, complying with UL 486A-486B.
 c. Copper to Aluminum Composition: Type suitable for this purpose, complying with UL 486A-486B.
 d. Connectors and Splices for Secondary Conductors: Listed and labeled for the conditions and materials involved in each application.
 e. Taps for Medium-Voltage Line Conductors: Hot-line clamps, screw type, with concealed threads and bare, hard-drawn copper stirrups. Listed for the combination of materials being connected.
 f. Splices under Tension: Compression type with strength exceeding the conductors spliced.
g. Splices and Terminations for Covered Conductors: As recommended by conductor manufacturer for conductor and covering combination and for specific materials and physical arrangement of each splice.

h. Splices and Terminations for Insulated Medium-Voltage Conductors: Comply with requirements in Division 26 Section "Medium-voltage Cables".

B. Wood Poles
1. Comply with ATIS O5.1 and RUS Bulletin 1728F-700, for wood poles pressure treated with creosote OR pentachlorophenol, as directed, OR ammoniacal copper arsenate, OR ammoniacal copper zinc arsenate OR chromated copper arsenate, as directed.
2. Wood Species: Douglas fir OR Lodgepole pine OR Western larch OR Southern yellow pine, as directed.
3. Pole Marking:
 a. Manufacturer's Mark: Comply with ATIS O5.1; locate 10 feet (3 m) from the pole butt for poles 50 feet (15 m) long or less.
 b. Pole Number: Machine-embossed aluminum, alphanumeric characters not less than 2-1/2 inches (65 mm) high, with aluminum nails.

B. Wood Poles
1. Comply with ATIS O5.1 and RUS Bulletin 1728F-700, for wood poles pressure treated with creosote OR pentachlorophenol, as directed, OR ammoniacal copper arsenate, OR ammoniacal copper zinc arsenate OR chromated copper arsenate, as directed.
2. Wood Species: Douglas fir OR Lodgepole pine OR Western larch OR Southern yellow pine, as directed.
3. Pole Marking:
 a. Manufacturer's Mark: Comply with ATIS O5.1; locate 10 feet (3 m) from the pole butt for poles 50 feet (15 m) long or less.
 b. Pole Number: Machine-embossed aluminum, alphanumeric characters not less than 2-1/2 inches (65 mm) high, with aluminum nails.

C. Concrete Poles
1. Description: Spuncast prestressed concrete, complying with requirements of ASTM C 1089.
 a. Comply with requirements of RUS Bulletin 1724E-216.
2. Design: Base design on calculation of strength required by IEEE C2 or indicated on Drawings, whichever is greater. Design shall be suitable for installation at a location where annual temperature range is between minus 4 deg F and plus 100 deg F (minus 20 deg C and plus 38 deg C). Include pole design for embedded attachments matching fittings, brackets, and other items installed in the field.
3. Shaft: Hollow, for poles at overhead-to-underground connections. Provide 3-1/2-inch- (89-mm-) minimum cable raceway capacity, with conduit elbow OR cable entry port, as directed, at base.
4. Water Absorption: Not more than 3 percent.
5. Surface: Smooth, hard, nonporous, and resistant to soil acids OR road salts OR frost and freezing damage, as directed.
6. Pole Marking:
 a. Manufacturer's Mark: Comply with ATIS O5.1;locate 10 feet (3 m) from the pole butt for poles 50 feet (15 m) long or less.
 b. Pole Number: Machine-embossed aluminum, alphanumeric characters not less than 2-1/2 inches (65 mm) high.

D. Crossarms
1. Description: Solid-wood distribution type, complying with RUS Bulletin 1728H-701 for specified construction grade OR Galvanized, steel angles, as directed, and complying with IEEE C2 for required climbing space and wire clearances.
2. Braces: Galvanized, flat, ferrous-metal units; 1/4 inch (6 mm) thick by 1-1/4 inches (30 mm) wide, minimum, with length to suit crossarm dimensions.

E. Guys And Anchors
1. Guy Strand Assemblies: Cable and attachment assemblies shall have uniform minimum breaking strength of the cable.
2. Cable: Seven strands. Zinc-coated steel, complying with ASTM A 475 OR Aluminum-clad steel, complying with ASTM B 416 OR Copper-clad steel, complying with ASTM B 228, as directed. Breaking strength shall be not less than 10,000 lb (45 kN).
3. Cable Termination:
 1) Thimble eye.
OR
Hooks and guy strain plates, complying with IEEE C135.1.

2) Preformed galvanized-steel guy grips, matching material, galvanizing, and strength of the guy strand assembly.

 a. Power-installed screw-type anchors.
 1) 15-inch (380-mm) screw; with rod 96 inches (2400 mm) long by 1-1/2 inches (38 mm) in diameter. Rated at 10,000 lb (45 kN) when installed.
 2) Guy anchors shall have strength and holding area as required for anchor load and soil conditions at location of that anchor.

5. Strain Insulators: Epoxy-bonded fiberglass of length to meet clearance requirements specified in "Guy Installation" Article.

6. Guy Markers: Round, of vinyl or PVC material, white OR yellow, as directed, color, 96 inches (2440 mm) long. Shatter resistant at temperatures below 0 deg F (minus 18 deg C).

F. Hardware And Accessories
1. Description: Ferrous-metal items include, but are not limited to, bolts, nuts, washers, crossarm gains and braces, insulator pins, anchor rods, anchors, eyebolts, staples, and transformer brackets.
 a. Comply with IEEE C135.1, IEEE C135.2, ANSI C135.4, ANSI C135.22, and RUS Informational Publication 202-1 listings with the exception that base material shall be malleable iron or ductile iron, and finish shall be hot-dip galvanized, as directed.

2. Insulator Brackets: Hot-dip galvanized steel, style as indicated, designed to hold vertical-post-type or pin-type insulators, with one OR two, as directed, bolt attachment to pole.

3. Secondary Insulator Racks: Hot-dip galvanized steel, style as indicated, with smooth, rounded 12-gage struts designed to support two OR three OR four, as directed, spool insulators for attachment of secondary drop conductors. Spool spacing of 4 inches (100 mm) OR 8 inches (200 mm) OR 12 inches (300 mm), as directed.

4. Pole Riser Shields: Galvanized steel with boot OR backplate OR vent, as directed.

 a. Class: PO1 OR PO2, as directed.
 b. Grade: 1 OR 2 OR 3 OR 4 OR 5 OR 6, as directed.
 c. Option: A OR B OR C OR D OR E OR F OR G, as directed.

6. Insulators: Units rated 6 kV and above shall be free from radio interference.
 a. Porcelain insulators shall be wet-process type, complying with the following:
 1) Pin: ANSI C29.5.
 2) Line Post: ANSI C29.7. Include mounting stud of length suitable for each mounting arrangement used.
 3) Suspension: ANSI C29.2.
 4) Guy Strain: ANSI C29.4.
 b. Polymer-composite, fiberglass-reinforced insulators shall comply with the following:
 1) Line Post: CEA LWIWG-02.
 2) Dead End/Suspension: CEA LWIWG-01.

7. Grounding Materials: Comply with Division 26 Section "Grounding And Bonding For Electrical Systems", using materials listed by RUS for the intended purpose without restriction.
 a. Conductors: No. 4 AWG, minimum; bare, solid, annealed copper, complying with ASTM B 8 unless otherwise indicated.
 b. Ground Conductor Protectors: PVC or half-round wood molding, fir, pressure treated according to AWPA C25 OR cypress OR cedar, as directed.

G. Surge Arresters
1. Distribution-Class Surge Arresters: Porcelain OR Polymer, as directed, -enclosed, gapless, metal-oxide type with automatic-indicating type, ground-lead disconnection feature, as directed, complying with IEEE C62.11 and NEMA LA 1.

2. Intermediate-Class Surge Arresters: Porcelain OR Polymer, as directed, -enclosed, gapless, metal-oxide type, complying with IEEE C62.11 and NEMA LA 1.
 a. Voltage Rating: 3 OR 6 OR 9 OR 10 OR 12 OR 15 OR 27 OR 30 OR 36, as directed, kV, at the altitude of Project, unless otherwise indicated.

H. Cutouts, Switches, And Fuses
1. Description: Medium-voltage disconnect, protective, and bypass, as directed, units shall be rated for the line-to-line voltage of the systems in which installed, unless higher ratings are indicated. BIL ratings are 45 OR 60 OR 75 OR 95 OR 150 OR 200, as directed, kV.
 a. Momentary Current Rating of Switching Devices: 20 OR 40, as directed, kA, asymmetrical at nominal system operating voltage.
 b. Fuse Characteristics: Time-current characteristics for each set of fuses selected according to written recommendations of manufacturer of component protected by the fuses and coordinated with upstream and downstream protective devices. Prepare time-current coordination curves according to IEEE 242 that illustrate optimum coordination of devices in this Project.
 c. Interrupting Rating of Fuses: <Insert value> symmetrical A at nominal system operating voltage.

2. Fuse Cutouts: Open OR enclosed, as directed, type, rated 100 OR 200, as directed, A, continuous, complying with ANSI C37.42.
 a. Fuses: Enclosed link, Type K OR Type T, as directed, complying with ANSI C37.42.
 b. Fuse Current Rating: 150 percent of the transformer full-load current unless otherwise indicated.
 c. Switching Application: Include switch link instead of fuse.
 d. Switch Current Interrupting Rating: Transformer magnetizing current.

 a. Switch Rating: 400 OR 600, as directed, -A rms continuous and load-current interrupting.
 b. Fuses: Dropout-type power fuses.

4. Nonfused Switches: Single-pole, manual units, rated 100 OR 200 OR 400 OR 600, as directed, -A rms continuous.

5. Group-Operated, Load-Interrupter Switches: Fused OR Nonfused, as directed, three-pole, single-throw units, manually operated by handle through insulated mechanical linkage.
 a. High-pressure contact type, complying with ANSI C37.32.
 b. Factory assembled to suit specific configuration and mounting conditions for this Project.
 c. Operating Handle: Padlock equipped.
 d. Current Interrupting Rating: Equal to continuous current rating of switch.
 e. Fuses: Nondropout power type.

 a. Comply with ANSI C37.32.
 b. Factory assembled to suit specific configuration and mounting conditions for this Project.
 c. Operating Handle: Padlock equipped.
 d. Suitable for field conversion to load-interrupter switch by adding interrupter modules.

I. Distribution Transformers
1. Description: Single-phase, two-winding, single OR two, as directed, -bushing, liquid-filled, self-cooled, pole-mounting distribution type, suitable for external fuse and surge suppressor protection; complying with IEEE C 57.12.00, and tested according to IEEE C 57.12.90 and with the following additional requirements, as directed:
 a. Cooling Class: OA.
 b. Temperature Rise: 65 deg C.
c. Insulating Liquid: Mineral oil, ASTM D 3487, Type II.
 OR
 Insulating Liquid: High molecular weight, mineral oil based, and UL listed as less-flammable type.
 OR
 Insulating Liquid: Biodegradable insulating and cooling liquid, UL listed as less flammable type.

 d. Identification: Label the transformer as "non-PCB" and place manufacturer's name and type of fluid on the nameplate.

2. BIL: 95 **OR** 75 **OR** 60, *as directed*, kV.

3. Taps: Two, 2.5 percent above and below **OR** Four, 2.5 percent below, *as directed*, high-voltage and full-load rated. Tap changer shall have an external operating handle, *as directed*.

4. Mounting Brackets: Single **OR** Double, *as directed*, integral; suitable for pole mounting, individually or in cluster, or on crossarm.

5. Minimum Efficiency: Class 1, as defined by NEMA TP 1, based on test results that comply with requirements of NEMA TP 2.

6. Bushings: Creepage distance shall exceed nominal value standard for unit rating by at least 75 percent.

8. Tank and Cover: Stainless steel, complying with ASTM A 167, Type 304 or 304L, with paint coating exterior finish system complying with IEEE C57.12.28, including manufacturer's standard color finish coat.

9. Show transformer kiloampere capacity using 2-1/2-inch (65-mm) numerals placed near the low-voltage bushings.

J. Primary Metering Equipment

1. Metering Transformers: Outdoor current and potential transformers, designed for crossarm mounting, complying with IEEE C57.13, and having the following features:
 a. BIL: 45 **OR** 60 **OR** 75 **OR** 95 **OR** 150 **OR** 200, *as directed*, kV.
 b. Secondary connection box arranged for conduit connection.
 c. Potential-Transformer Voltage Rating: 2.4 **OR** 4.16 **OR** 7.2 **OR** 12.0 **OR** 12.47, *as directed*, kV to 120-V ac, 60 Hz.
 d. Potential-Transformer Accuracy Class: Minimum 0.3 at 75-VA burden.
 e. Voltage Rating: 2.4 **OR** 4.16 **OR** 7.2 **OR** 12.0 **OR** 12.47, *as directed*, kV.
 f. Current Rating: *<Insert value>* to 5 A.
 g. Accuracy Class: Minimum 0.2 at 50-VA burden.

2. Watt-Hour Meter: Outdoor solid-state unit, with demand register, **OR** arranged for pulse initiation, *as directed*, complying with ANSI C12.10, and including the following ratings and features:
 a. Form: 8S **OR** 9S, *as directed*.
 b. Element: 2 **OR** 2-1/2 **OR** 3, *as directed*.
 c. Voltage: 120 V.
 d. Current: 2-1/2 A.
 e. Frequency: 60 Hz.
 f. Kilowatt-Hour Register: Five-digit type.
 g. Demand-Register Multiplier: A quantity in even hundreds, indicated on meter face.
 h. Demand-Register Interval: 15 **OR** 30, *as directed*, minutes.
 j. Meter Test Block: Matched to meter, and furnished and equipped with open knife switches designed to isolate each metering component for test.
 k. Meter Cabinet: Galvanized steel; weatherproof enclosure with pole-mounting bracket and the following features:
 1) Hinged Door: Arranged for padlocking in closed position.
 2) Size: Adequate to house meter and other equipment indicated, but not less than 20 by 30 by 11 inches (510 by 760 by 280 mm) deep.
K. Source Quality Control
 1. Factory Tests: Conduct routine tests of transformers OR medium-voltage switches OR metering equipment, as directed, according to referenced standards.
 2. Testing Agency: Engage a qualified testing agency to inspect poles and crossarms before and after preservative treatment for compliance of wood poles and crossarms with requirements indicated. RUS quality mark "WQC" on each item is acceptable in place of inspection as evidence of compliance.
 3. Poles and crossarms will be considered defective if they do not pass tests and inspections.
 4. Prepare test and inspection reports.

1.3 EXECUTION

A. Right-Of-Way Clearance And Tree Trimming
 1. Clear right of way according to Division 01 Section(s) "Temporary Tree And Plant Protection" AND Division 31 Section(s) "Site Clearing".
 2. Clear right of way to maintain minimum clearances required by IEEE C2, unless Drawings indicate greater clearances or greater clearances are required by state or local codes or regulations. If no minimum requirements are mandated, maintain a minimum of 15 feet (4.5 m) on both sides horizontally and below medium-voltage conductors and 60 inches (1500 mm) on both sides horizontally and below secondary-voltage conductors. Remove overhanging branches.

B. General Installation Requirements
 1. Install underground power and metering circuits and those circuits indicated to be in raceways according to Division 26 Section "Underground Ducts And Raceways For Electrical Systems" and Division 26 Section "Medium-voltage Cables", and make splices and terminations for those circuits according to the applicable Sections.
 2. Engage the services of a licensed surveyor to verify dimensions by field measurement, to identify locations of poles, anchors, and other features, and to verify all clearances. The survey document shall also identify locations of connections to new and existing supply lines and to primary and secondary services. Notify the Owner of discrepancies and field conditions that are not indicated and that will affect installation.
 3. Ground equipment according to Division 26 Section "Grounding And Bonding For Electrical Systems".
 4. Apply warning signs and equipment labels according to Division 26 Section "Identification For Electrical Systems".

C. Conductor Installation, General
 1. Handle and string conductors to prevent cuts, gouges, scratches, kinks, flattening, or deformation. Remove damaged sections and splice conductors.
 a. String new conductors to "initial" sag values recommended by manufacturer for type and size of conductor except as otherwise indicated.
 b. Conductors Reinstalled or Resagged: String to "final" sag values recommended by manufacturer for type and size of conductor except as otherwise indicated.
 2. Connections, Splices, and Terminations: Use kits listed for the specific type of connection and combination of materials in the connection or recommended for the specific use by manufacturer of material on which applied.
 a. Splice Location: Do not install within 10 feet (3 m) of a support.
 b. Line Conductors and Service Drops: Install so strength exceeds ultimate rated strength of conductor.
 c. Splices and Terminations of Covered Conductors: Comply with manufacturer's written instructions.
d. Splices and Terminations of Insulated Conductors of Self-Supported, Medium-Voltage Cable: Comply with manufacturer's written instructions.

D. Medium-Voltage Line Conductor Installation
 1. Application: Install bare conductors unless otherwise indicated.
 2. Armor Rod: Install to protect conductors if line conductors are supported by insulators.
 3. Flat Aluminum Armor Wire: Install to protect conductors if they are supported by, or attached to, galvanized or coated iron or steel clamps or fittings.
 4. Support line conductors and taps as follows:
 a. Use wire ties for conductor attachment to pin and vertical post insulators unless otherwise indicated.
 b. Install wire ties tight against conductor and insulator, and turn ends back and flat against conductor, to eliminate exposed wire ends.
 c. Use wire clamps on horizontal post, dead end, and suspension insulators unless otherwise indicated.

E. Pole And Crossarm Installation
 1. Pole Orientation: Align curve of curved wood poles with straight-line runs of three or more poles. Align gained surfaces perpendicular to runs.
 2. Elevation of Line above Grade: Install poles with top at same elevation, unless grade changes dictate elevation change in poles, and according to the following:
 a. On level ground, set poles so tops of consecutive poles vary not more than 60 inches (1500 mm) in elevation.
 b. Shorten wood poles by cutting off the top and make cuts to shed water. Apply preservative to cuts.
 3. Set poles according to the following:
 a. Make pole holes vertical, uniform in diameter, and large enough to permit effective use of tamping bars all around. Bore or excavate holes with an average diameter at grade less than twice the diameter of the pole at the same grade.
 b. Use minimum depths indicated, except at locations where hole is partly or entirely in rock and if hole is not vertical or has a diameter at grade more than two times the pole diameter at the same level; in these conditions, increase the depth of the hole by the following increments before setting the pole:
 1) Poles up to 35 Feet (10.6 m) Long: 24 inches (600 mm).
 2) Poles 36 to 60 Feet (11 to 18.3 m) Long: 30 inches (760 mm).
 3) Poles 61 to 75 Feet (18.6 to 22.9 m) Long: 36 inches (900 mm).
 c. For poles on slopes, indicated hole depth is from finished grade at lowest side of hole.
 d. Set poles in alignment and plumb except at dead ends, angles, and points of extra strain; rake poles against conductor strain 1 inch (25 mm) minimum, 2 inches (51 mm) maximum, (after conductors are installed at required tension) for each 10 feet (3 m) of pole length. Rake poles so they will not lean or bend in direction of strain when loaded.
 e. Backfill holes in 6-inch (150-mm) maximum lifts, and thoroughly tamp each layer before starting the next.
 f. Place surplus earth around pole in a conical shape, and tamp thoroughly to provide drainage away from pole.
 g. Set poles so alternate crossarm gains face in alternate directions, except at terminals and dead ends; place gains on last two poles on side facing terminal or dead end.
 h. Poles Set in Concrete Paved Areas: Install poles with minimum of 6-inch (150-mm-) wide, unpaved gap between the pole and the edge of adjacent concrete slab. Fill unpaved ring with pea gravel to a level 1 inch (25 mm) below top of concrete slab.
 4. Field treat factory-treated poles and crossarms as follows:
 a. Poles Treated More Than One Year before Installation: Treat portion from 24 inches (600 mm) above ground line to butt.
 b. Field-Bored Holes and Field-Cut Gains and Pole Tops: Treat cut portions.
d. Engage the services of a technician certified according to "Quality Assurance" Article to apply treatment. Comply with requirements in AWPA standards that govern original factory treatment for field-applied treatment and application of chemicals.

5. Crossarm Installation: Set line crossarms at right angle to line for straight runs and for angles 45 degrees and more. Bisect angles less than 45 degrees.
 a. Buck Arms: Install at corners and junction poles unless otherwise indicated.
 b. Double Crossarms: Install at dead ends, corners, angles, and line crossings.
 c. Equipment Arms: Locate below lines and set parallel or at right angles to them, whichever provides best climbing space.
 d. Gains: Install factory-cut or metal-pole gains only. Do not cut gains in field without specific written approval.

6. Locate pole numbers to provide maximum visibility from the road or patrol route.

F. Guy Installation
 1. Install guys to resist unbalanced loads, including those developed at angles, corners, and dead ends. Install two or more guys if a single guy will not provide adequate strength. Install separate guys if unbalanced loads are separated by 36 inches (900 mm) or more. Comply with IEEE C2.
 a. Unless a thimble eye is used, at the pole end, install a minimum of two guy hooks and two guy strain plates.
 b. At the anchor end, attach guy strand assembly with preformed grips.
 2. Protect guy strands from damage. Replace damaged guy strands. Install guy insulators where required to comply with IEEE C2 clearance requirements.
 3. Install guys with a lead-to-height ratio of 1 to 1 unless otherwise indicated. The minimum lead-to-height ratio shall be 1/2 to 1. When less than 1 to 1, increase guy strength by the ratio of the sine of the lead angle indicated to the sine of the lead angle provided.
 4. Install screw-type guy anchors aligned in soil with guy. Set with anchor rod pointing at guy attachment on pole and rod projecting 6 to 9 inches (150 to 230 mm) from ground.
 5. Install strain insulators to provide a minimum of 12 inches (300 mm) of clearance between the nearest energized surface and the strain insulator fitting farthest from the pole. When loaded to the tension indicated, fiberglass strain insulators shall be loaded to not more than two-thirds of manufacturer's published rating.
 6. Guy Markers: Install at anchor end of guys to visually mark the guy wire at all accessible locations. Clamp to guy strand or anchor at top and bottom of marker.

G. Hardware And Accessories Installation
 1. Install washers against wood and under nuts, including eyenuts and locknuts.
 2. Install nuts and locknuts wrench-tight on threaded connections.

H. Insulator Installation
 1. Medium-Voltage Line Application: Install pin OR post, as directed, type, except install suspension type at corners, angles, dead ends, and other locations where horizontal forces exceed rated values for pin or line-post-type units.
 a. Install suspension insulators and hardware that have mechanical strength exceeding rated breaking strength of attached conductors.
 b. Install horizontal line-post insulators for armless construction.
 2. Post-Insulator Conductor Support: Where installed horizontally and for line angles more than 15 degrees, install clamp-top conductor clamps.
 3. Install spool-type insulators for secondary lines mounted on clevis attachments or secondary racks.
 4. Guy Strain Type: Install porcelain OR fiberglass-reinforced, as directed, units.

I. Surge Arresters
1. Install surge arresters to protect distribution OR metering equipment OR reclosers, as directed, group-operated, load-interrupter switches, as directed, aerial-to-underground transitions, as directed, and other items indicated.
 a. Units Installed 6000 Feet (1800 m) or More above Sea Level: Use arresters specifically rated for this service.

J. Cutout, Switch, And Fuse Installation
1. Hook-Stick-Operated Switches: Install to maximize safe operating access.
2. Group-Operated, Load-Interrupter Switches and Air-Break Switches: Install operating handle 42 inches (1067 mm) above finished grade.

K. Metering Component Installation
1. Current and Voltage Transformers: Install secondary conductors between transformers and cabinet in sleeves made of galvanized rigid steel OR intermediate metal OR PVC, as directed, conduit. Install to prevent collection of moisture in raceway and cabinet system.
2. Meter Cabinet: Mount on pole, 72 inches (1825 mm) above finished grade to center of cabinet.
 a. Make conduit connections with raintight hubs.
 b. Install metering transformer secondary leads without splices. Train leads at sides and bottom of enclosure, and secure with wire ties.
 c. Install meter and meter test block within cabinet.
 d. Install identical phase sequence, and color-code for both potential and current leads.
 e. Identify leads using designations consistent with marking on transformer terminals.

L. Field Quality Control
1. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
2. Perform tests and inspections.
3. Tests and Inspections:
 a. Furnish instruments and equipment required for tests that comply with NETA Acceptance Testing Specification.
 b. Guy Anchors: Test one of each type and capacity installed, plus additional units specifically indicated for testing, as directed. Apply rated pull-out force in the same pull direction applied by the guy at the test location.
 1) Acceptable Test Results: Denoted by movement of less than 3/8 inch (10 mm) by the holding component of the anchor in the earth or other medium in which it is installed.
 2) Replace or reinstall, at the Owner’s option, all anchors of same type and capacity as anchor type that fails this test.
 c. Ground Resistance: Comply with Division 26 Section “Grounding And Bonding For Electrical Systems”. Measure resistance of each separate grounding electrode, including pole grounds. Also measure resistance of separate grounding electrode systems before bonding together.
 1) Perform tests and obtain acceptable results before energizing any portion of overhead electrical distribution system.
 2) Results and Follow-up: If ground resistance for a single ground electrode or pole ground, tested individually, exceeds 25 ohms, add a ground electrode not less than 10 feet (3 m) away and interconnect with No. 2 AWG, minimum, bare conductor buried at least 12 inches (300 mm) below furnished grade.
 d. Aerial Conductor Sag and Tension: Observe procedures used by Contractor to verify that initial stringing sags and tensions comply with IEEE C2 and conductor manufacturer’s product data and written recommendations.
 e. Self-Supported, Medium-Voltage Cable: After installation, while cable is isolated, and after terminations are installed and before connecting or energizing, apply dc voltage between each phase conductor and grounding connections of sheath or metallic shield. Comply with NEMA WC 70/ICEA S-95-658 for method, voltage, duration, pass-fail performance,
and other test criteria. Perform other field inspections and tests recommended by manufacturer.

f. Neutral-Supported, Secondary Service-Drop Cable: Test for insulation resistance while cable is isolated, before connecting or energizing. Minimum acceptable resistance is 100 megohms.

g. Existing Surge Arresters: Disconnect and measure resistance between line and ground terminals with a megger test rated 600 V or more. Acceptable resistance values are 300 megohms and more.

h. New Surge Arresters, Cutouts, and Switches: Inspect after installation and connection to wiring. Verify that ratings and characteristics match approved submittals and comply with system requirements. Verify that installation complies with requirements and that clearances of units and connecting wiring comply with IEEE C2 requirements.
 1) Verify proper grounding of metallic equipment parts.
 2) Fuses and Disconnect Links: Verify that ratings and characteristics match submittals and comply with system requirements.
 3) Switches:
 a) Manually operate each cutout and switch at least three times, to verify proper operation.
 b) Verify correct contact alignment, blade penetration, travel stops, and arc interrupter operation.
 4) Group-Operated, Load-Interrupter Switches and Air-Break Switches:
 a) Perform mechanical operator tests according to manufacturer's written instructions.
 b) Test resistance to ground of parts to be energized. Acceptable value is 200,000 megohms.
 c) Perform contact-resistance test across all switch blade contacts. Refer to manufacturer's data for acceptable contact resistance.
 5) Verify that clearances of energized parts and connecting wires comply with IEEE C2 requirements.

i. Distribution Transformers: Inspect after installation and connection to wiring and verify that ratings and characteristics match approved submittals and comply with system requirements. Verify the integrity and good condition of unit.
 1) Inspect for physical damage, cracked insulators, leaks, tightness of connections, and overall mechanical and electrical integrity.
 2) Perform preenergizing inspections and tests recommended by manufacturer.
 3) Verify proper equipment grounding.
 4) Verify that clearances of terminals and connecting wires comply with IEEE C2.

j. Metering Transformers: Inspect after installation and connection to wires, and verify that ratings and characteristics match approved submittals and comply with system requirements. Verify the integrity and good condition of unit.
 1) Verify proper connections, tightness of bolted connections, and integrity of mounting provisions.
 2) Verify that required grounding and shorting connections provide good contact.
 3) Verify that clearances of terminals and connecting wires comply with IEEE C2.
 4) Perform electrical tests according to manufacturer's written instructions, including insulation-resistance tests, polarity tests, and turns-ratio and ratio-verification tests.

k. Meters: Inspect after installation and connection to wiring and verify that ratings and characteristics match approved submittals and comply with system requirements. Verify the integrity and good condition of unit.
 1) Verify tightness of electrical connections.
 2) Verify accuracy at 25, 50, 75, and 100 percent of full-rated load and verify all instrument multipliers according to manufacturer's written instructions.

4. Prepare test and inspection reports.
M. Adjusting
1. Distribution Transformers: Set voltage taps as directed by the Owner.

N. Cleaning
1. After completing equipment installation, inspect equipment. Remove spots, dirt, and debris. Repair damaged finish to match original finish. For distribution transformer, use tank touchup paint provided by manufacturer.
 a. Clean enclosures internally, on completion of installation, according to manufacturer's written instructions.

O. Demonstration
1. Train Owner's maintenance personnel to adjust, operate, and maintain overhead electrical distribution.

END OF SECTION 26 05 26 00b
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 05 26 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
</tbody>
</table>
SECTION 26 05 33 13 - COMMON WORK RESULTS FOR ELECTRICAL

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for common work results for electrical. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Electrical equipment coordination and installation.
 b. Sleeves for raceways and cables.
 c. Sleeve seals.
 d. Grout.
 e. Common electrical installation requirements.

C. Definitions
1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

D. Submittals
1. Product Data: For sleeve seals.

1.2 PRODUCTS

A. Sleeves For Raceways And Cables
2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
 a. Minimum Metal Thickness:
 1) For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 2) For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

B. Sleeve Seals
1. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 a. Sealing Elements: EPDM OR NBR, as directed, interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 b. Pressure Plates: Plastic OR Carbon steel OR Stainless steel, as directed. Include two for each sealing element.
 c. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating OR Stainless steel, as directed, of length required to secure pressure plates to sealing elements. Include one for each sealing element.
C. Grout
1. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

1.3 EXECUTION

A. Common Requirements For Electrical Installation
1. Comply with NECA 1.
2. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
3. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
4. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
5. Right of Way: Give to piping systems installed at a required slope.

B. Sleeve Installation For Electrical Penetrations
1. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
2. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
3. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
4. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
5. Cut sleeves to length for mounting flush with both surfaces of walls.
6. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
7. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise.
8. Seal space outside of sleeves with grout for penetrations of concrete and masonry.
 a. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
9. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants".
10. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping".
11. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
12. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel OR cast-iron, as directed, pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
13. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

C. Sleeve-Seal Installation
1. Install to seal exterior wall penetrations.
2. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

D. Firestopping
1. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping".

END OF SECTION 26 05 33 13
SECTION 26 05 33 13a - COMMON WORK RESULTS FOR COMMUNICATIONS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for common work results for communications. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Communications equipment coordination and installation.
 b. Sleeves for pathways and cables.
 c. Sleeve seals.
 d. Grout.
 e. Common communications installation requirements.

C. Definitions
1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

D. Submittals
1. Product Data: For sleeve seals.

1.2 PRODUCTS

A. Sleeves For Pathways And Cables
2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
 a. Minimum Metal Thickness:
 1) For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 2) For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

B. Sleeve Seals
1. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.
 a. Sealing Elements: EPDM OR NBR, as directed, interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of pathway or cable.
 b. Pressure Plates: Plastic OR Carbon steel OR Stainless steel, as directed. Include two for each sealing element.
 c. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating OR Stainless steel, as directed, of length required to secure pressure plates to sealing elements. Include one for each sealing element.
C. Grout
1. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

1.3 EXECUTION

A. Common Requirements For Communications Installation
1. Comply with NECA 1.
2. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
3. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
4. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both communications equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
5. Right of Way: Give to piping systems installed at a required slope.

B. Sleeve Installation For Communications Penetrations
1. Communications penetrations occur when pathways, cables, wireways, or cable trays penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
2. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
3. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
4. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
5. Cut sleeves to length for mounting flush with both surfaces of walls.
6. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
7. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pathway or cable, unless indicated otherwise.
8. Seal space outside of sleeves with grout for penetrations of concrete and masonry a. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
9. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants".
10. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pathway and cable penetrations. Install sleeves and seal pathway and cable penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping".
11. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.
12. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel OR cast-iron, as directed, pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
13. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between pathway or cable and sleeve for installing mechanical sleeve seals.

C. Sleeve-Seal Installation
1. Install to seal exterior wall penetrations.
2. Use type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

D. Firestopping
1. Apply firestopping to penetrations of fire-rated floor and wall assemblies for communications installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping".

END OF SECTION 26 05 33 13a
SECTION 26 05 33 13b - COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for common work results for electronic safety and security. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Electronic safety and security equipment coordination and installation.
 b. Sleeves for raceways and cables.
 c. Sleeve seals.
 d. Grout.
 e. Common electronic safety and security installation requirements.

C. Definitions
1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

D. Submittals
1. Product Data: For sleeve seals.

1.2 PRODUCTS

A. Sleeves For Raceways And Cables
2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe,” equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
 a. Minimum Metal Thickness:
 1) For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 2) For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

B. Sleeve Seals
1. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 a. Sealing Elements: EPDM OR NBR, as directed, interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 b. Pressure Plates: Plastic OR Carbon steel OR Stainless steel, as directed. Include two for each sealing element.
 c. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating OR Stainless steel, as directed, of length required to secure pressure plates to sealing elements. Include one for each sealing element.
C. Grout
1. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

1.3 EXECUTION

A. Common Requirements For Electronic Safety And Security Installation
1. Comply with NECA 1.
2. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
3. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
4. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
5. Right of Way: Give to piping systems installed at a required slope.

B. Sleeve Installation For Electronic Safety And Security Penetrations
1. Electronic safety and security penetrations occur when raceways, pathways, cables, wireways, or cable trays penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
2. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
3. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
4. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
5. Cut sleeves to length for mounting flush with both surfaces of walls.
6. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
7. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise.
8. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 a. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
9. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants".
10. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping".
11. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
12. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel OR cast-iron, as directed, pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
13. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.
C. Sleeve-Seal Installation
 1. Install to seal exterior wall penetrations.
 2. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

D. Firestopping
 1. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section “Penetration Firestopping”.

END OF SECTION 26 05 33 13b
SECTION 26 05 33 13c - COMMUNICATIONS EQUIPMENT ROOM FITTINGS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for communications equipment room fittings. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Telecommunications mounting elements.
 b. Backboards.
 c. Telecommunications equipment racks and cabinets.
 d. Telecommunications service entrance pathways.
 e. Grounding.

C. Definitions
1. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
3. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel not exceeding 6 inches (152 mm) in width.
4. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
5. LAN: Local area network.
6. RCDD: Registered Communications Distribution Designer.
7. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of a bottom without ventilation openings within integral or separate longitudinal side rails.
8. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

D. Performance Requirements
1. Seismic Performance: Floor-mounted cabinets and cable pathways shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

E. Submittals
1. Product Data: For each type of product indicated.
2. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.
 a. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 b. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
 c. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.
3. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
4. Seismic Qualification Certificates: For floor-mounted cabinets, accessories, and components, from manufacturer.
 a. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 b. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
 c. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

F. Quality Assurance
1. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 a. Layout Responsibility: Preparation of Shop Drawings shall be under the direct supervision of RCDD OR RCDD/NTS OR Commercial Installer, Level 2, as directed.
 b. Installation Supervision: Installation shall be under the direct supervision of Registered Technician OR Level 2 Installer, as directed, who shall be present at all times when Work of this Section is performed at Project site.
 c. Field Inspector: Currently registered by BICSI as RCDD OR Commercial Installer, Level 2, as directed, to perform the on-site inspection.
2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
3. Telecommunications Pathways and Spaces: Comply with TIA/EIA-569-A.

G. Project Conditions
1. Environmental Limitations: Do not deliver or install equipment frames and cable trays until spaces are enclosed and weathertight, wet work in spaces is complete and dry, and work above ceilings is complete.

H. Coordination
1. Coordinate layout and installation of communications equipment with Owner's telecommunications and LAN equipment and service suppliers. Coordinate service entrance arrangement with local exchange carrier.
 a. Meet jointly with telecommunications and LAN equipment suppliers, local exchange carrier representatives, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.
 b. Record agreements reached in meetings and distribute them to other participants.
 c. Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of telephone switch and LAN equipment.
 d. Adjust arrangements and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in the equipment room.
2. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

1.2 PRODUCTS

A. Pathways
1. General Requirements: Comply with TIA/EIA-569-A.
2. Cable Support: NRTL labeled. Cable support brackets shall be designed to prevent degradation of cable performance and pinch points that could damage cable. Cable tie slots fasten cable ties to brackets.
 a. Comply with NFPA 70 and UL 2043 for fire-resistant and low-smoke-producing characteristics.
 b. Support brackets with cable tie slots for fastening cable ties to brackets.
 c. Lacing bars, spools, J-hooks, and D-rings.
 d. Straps and other devices.

3. Cable Trays:
 a. Cable Tray Materials: Metal, suitable for indoors and protected against corrosion by electrophated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch (0.012 mm) thick OR hot-dip galvanizing, complying with ASTM A 123/A 123M, Grade 0.55, not less than 0.002165 inch (0.055 mm) thick, as directed.
 1) Basket Cable Trays: 6 inches (150 mm) wide and 2 inches (50 mm) deep. Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
 2) Trough Cable Trays: Nominally 6 inches (150 mm) wide.
 3) Ladder Cable Trays: Nominally 18 inches (455 mm) wide, and a rung spacing of 12 inches (305 mm).
 4) Channel Cable Trays: One-piece construction, nominally 4 inches (100 mm) wide. Slot spacing shall not exceed 4-1/2 inches (115 mm) o.c.
 5) Solid-Bottom Cable Trays: One-piece construction, nominally 12 inches (305 mm) wide. Provide with OR without, as directed, solid covers.

4. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway And Boxes For Electrical Systems". Flexible metal conduit shall not be used.
 a. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

B. Backboards
 1. Backboards: Plywood, fire-retardant treated, as directed, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels specified in Division 06 Section "Rough Carpentry".

C. Equipment Frames
 1. General Frame Requirements:
 a. Distribution Frames: Freestanding and wall-mounting, modular-steel units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.
 b. Module Dimension: Width compatible with EIA 310 standard, 19-inch (480-mm) panel mounting.
 c. Finish: Manufacturer's standard, baked-polyester powder coat.
 2. Floor-Mounted Racks: Modular-type, steel OR aluminum, as directed, construction.
 a. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug, and a power strip, as directed.
 b. Baked-polyester powder coat finish.
 3. Modular Freestanding Cabinets:
 a. Removable and lockable side panels.
 b. Hinged and lockable front and rear doors.
 c. Adjustable feet for leveling.
 d. Screened ventilation openings in the roof and rear door.
 e. Cable access provisions in the roof and base.
 f. Grounding bus bar.
 g. Rack OR Roof, as directed,-mounted, 550-cfm (260-L/s) fan with filter.
 h. Power strip.
 i. Baked-polyester powder coat finish.
j. All cabinets keyed alike.

4. Modular Wall Cabinets:
 a. Wall mounting.
 b. Steel OR Aluminum, as directed, construction.
 c. Treated to resist corrosion.
 d. Lockable front and rear doors.
 e. Louvered side panels.
 f. Cable access provisions top and bottom.
 g. Grounding lug.
 h. Rack OR Roof, as directed, mounted, 250-cfm (118-L/s) fan.
 i. Power strip.
 j. All cabinets keyed alike.

5. Cable Management for Equipment Frames:
 a. Metal, with integral wire retaining fingers.
 b. Baked-polyester powder coat finish.
 c. Vertical cable management panels shall have front and rear channels, with covers.
 d. Provide horizontal crossover cable manager at the top of each relay rack, with a minimum height of two rack units each.

D. Power Strips
 1. Power Strips: Comply with UL 1363.
 a. Rack mounting.
 b. Six, 15-A, 120-V ac, NEMA WD 6, Configuration 5-15R OR 20-A, 120-V ac, NEMA WD 6, Configuration 5-20R, as directed, receptacles.
 c. LED indicator lights for power and protection status.
 d. LED indicator lights for reverse polarity and open outlet ground.
 e. Circuit Breaker and Thermal Fusing:
 1) When protection is lost, circuit opens and cannot be reset.
 OR
 Unit continues to supply power if protection is lost.
 f. Close-coupled, direct plug-in OR Cord connected with 15-foot (4.5-m), as directed, line cord.
 g. Rocker-type on-off switch, illuminated when in on position.
 h. Peak Single-Impulse Surge Current Rating: 33 OR 26 OR 13, as directed, kA per phase.
 i. Protection modes shall be line to neutral, line to ground, and neutral to ground. UL 1449 clamping voltage for all 3 modes shall be not more than 330 V.

E. Grounding
 1. Comply with requirements in Division 26 Section "Grounding And Bonding For Electrical Systems" for grounding conductors and connectors.
 2. Telecommunications Main Bus Bar:
 a. Connectors: Mechanical type, cast silicon bronze, solderless compression OR exothermic, as directed, type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
 b. Ground Bus Bar: Copper, minimum 1/4 inch thick by 4 inches wide (6 mm thick by 100 mm wide) with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart.
 c. Stand-Off Insulators: Comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

F. Labeling
 1. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
1.3 EXECUTION

A. Entrance Facilities
 1. Contact telecommunications service provider and arrange for installation of demarcation point, protected entrance terminals, and a housing when so directed by service provider.
 2. Install underground OR buried OR aerial, **as directed**, pathways complying with recommendations in TIA/EIA-569-A, "Entrance Facilities" Article.
 a. Install underground OR buried, **as directed**, entrance pathway complying with Division 26 Section "Raceway And Boxes For Electrical Systems".

B. Installation
 1. Comply with NECA 1.
 2. Comply with BICSI TDMM for layout and installation of communications equipment rooms.
 4. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer’s limitations on bending radii. Install lacing bars and distribution spools.

C. Firestopping
 1. Comply with requirements in Division 07 Section "Penetration Firestopping".

D. Grounding
 1. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
 3. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
 4. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.
 a. Bond the shield of shielded cable to the grounding bus bar in communications rooms and spaces.

E. Identification
 1. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements in Division 26 Section "Identification For Electrical Systems".
 2. Comply with requirements in Division 09 Section "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer’s label.
 3. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2 OR Class 3 OR Class 4, **as directed**, level of administration including optional identification requirements of this standard, **as directed**.
 4. Labels shall be preprinted or computer-printed type.

END OF SECTION 26 05 33 13c
SECTION 26 05 33 13d - COMMUNICATIONS BACKBONE CABLING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for communications backbone cabling. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Pathways.
 b. UTP cable.
 c. 50/125 and 62.5/125-micrometer, optical fiber cabling.
 d. Coaxial cable.
 e. Cable connecting hardware, patch panels, and cross-connects.
 f. Cabling identification products.

C. Definitions
2. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
3. EMI: Electromagnetic interference.
4. IDC: Insulation displacement connector.
5. LAN: Local area network.
6. RCDD: Registered Communications Distribution Designer.
7. UTP: Unshielded twisted pair.

D. Backbone Cabling Description
1. Backbone cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.
2. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

E. Performance Requirements
1. General Performance: Backbone cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.

F. Submittals
1. Product Data: For each type of product indicated.
2. Shop Drawings:
 a. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 b. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 c. Cabling administration drawings and printouts.
 d. Wiring diagrams to show typical wiring schematics including the following:
 1) Cross-connects.
 2) Patch panels.
3) Patch cords.
e. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
f. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements.

3. Qualification Data: For Installer, as directed, qualified layout technician, installation supervisor, and field inspector.

4. Source quality-control reports.
5. Field quality-control reports.

7. Software and Firmware Operational Documentation:
 a. Software operating and upgrade manuals.
 b. Program Software Backup: On magnetic media or compact disk, complete with data files.
 c. Device address list.
 d. Printout of software application and graphic screens.

G. Quality Assurance
1. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 a. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
 b. Installation Supervision: Installation shall be under the direct supervision of Registered Technician OR Level 2 Installer, as directed, who shall be present at all times when Work of this Section is performed at Project site.

2. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 a. Flame-Spread Index: 25 or less.
 b. Smoke-Developed Index: 50 OR 450, as directed, or less.

3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

4. Telecommunications Pathways and Spaces: Comply with TIA/EIA-569-A.

H. Delivery, Storage, And Handling
1. Test cables upon receipt at Project site.
 a. Test optical fiber cable to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
 b. Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in maintenance data.
 c. Test each pair of UTP cable for open and short circuits.

I. Software Service Agreement
1. Technical Support: Beginning with Substantial Completion, provide software support for two years.

2. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
 a. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.
1.2 PRODUCTS

A. Pathways

1. General Requirements: Comply with TIA/EIA-569-A.

2. Cable Support: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 a. Support brackets with cable tie slots for fastening cable ties to brackets.
 b. Lacing bars, spools, J-hooks, and D-rings.
 c. Straps and other devices.

3. Cable Trays:
 a. Cable Tray Material: Metal, suitable for indoors, and protected against corrosion by electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inches (0.012 mm) thick OR hot-dip galvanizing, complying with ASTM A 123/A 123M, Grade 0.55, not less than 0.002165 inches (0.055 mm) thick, as directed.
 1) Basket Cable Trays: 6 inches (150 mm) wide and 2 inches (50 mm) deep. Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
 2) Trough Cable Trays: Nominally 6 inches (150 mm) wide.
 3) Ladder Cable Trays: Nominally 18 inches (455 mm) wide, and a rung spacing of 12 inches (305 mm).
 4) Channel Cable Trays: One-piece construction, nominally 4 inches (100 mm) wide. Slot spacing shall not exceed 4-1/2 inches (115 mm) o.c.
 5) Solid-Bottom Cable Trays: One-piece construction, nominally 12 inches (305 mm) wide. Provide with OR without, as directed, solid covers.

 4. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway And Boxes For Electrical Systems". Flexible metal conduit shall not be used.
 a. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

B. Backboards

1. Backboards: Plywood, fire-retardant treated, as directed, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements in Division 06 Section "Rough Carpentry" for plywood backing panels.

C. UTP Cable

1. Description: 100-ohm, 100-pair UTP, formed into 25-pair binder groups covered with a gray thermoplastic jacket and overall metallic shield.
 a. Comply with ICEA S-90-661 for mechanical properties.
 b. Comply with TIA/EIA-568-B.1 for performance specifications.
 c. Comply with TIA/EIA-568-B.2, Category 5e OR Category 6, OR Category 6e as directed.
 d. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 1) Communications, General Purpose: Type CM or CMG; or MPP, CMP, MPR, CMR, MP, or MPG, as directed.
 2) Communications, Plenum Rated: Type CMP or MPP, as directed, complying with NFPA 262.
 3) Communications, Riser Rated: Type CMR; or MPP, CMP, or MPR, as directed, complying with UL 1666.
 4) Communications, Limited Purpose: Type CMX; or MPP, CMP, MPR, CMR, MP, MPG, CM, or CMG, as directed.
 5) Multipurpose: Type MP or MPG; or MPP or MPR, as directed.
 6) Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 7) Multipurpose, Riser Rated: Type MPR or MPP, as directed, complying with UL 1666.
D. UTP Cable Hardware
1. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.
2. Connecting Blocks: 110-style IDC for Category 5e OR 110-style IDC for Category 6 OR 66-style IDC for Category 5e, OR 110-style IDC for Category 6 as directed. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.
3. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 a. Number of Terminals per Field: One for each conductor in assigned cables.
4. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 a. Number of Jacks per Field: One for each four-pair UTP cable indicated OR conductor group of indicated cables, plus spares and blank positions adequate to suit specified expansion criteria, as directed.
5. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.
6. Patch Cords: Factory-made, 4-pair cables in 36-inch (900-mm) OR 48-inch (1200-mm), as directed, lengths; terminated with 8-position modular plug at each end.
 a. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
 b. Patch cords shall have color-coded boots for circuit identification.

E. Optical Fiber Cable
1. Description: Multimode, 50/125 OR 62.5/125, as directed,-micrometer, 24-fiber, nonconductive, as directed, tight buffer, optical fiber cable.
 a. Comply with ICEA S-83-596 for mechanical properties.
 b. Comply with TIA/EIA-568-B.3 for performance specifications.
 c. Comply with TIA/EIA-492AAAA-B OR TIA/EIA-492AAAA-A, as directed, for detailed specifications.
 d. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 1) General Purpose, Nonconductive: Type OFN or OFNG, or OFNR, OFNP, as directed.
 2) Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 3) Riser Rated, Nonconductive: Type OFNR or OFNP, as directed, complying with UL 1666.
 4) General Purpose, Conductive: Type OFC or OFCG; or OFNG, OFN, OFCR, OFNR, OFCP, or OFNP, as directed.
 5) Plenum Rated, Conductive: Type OFCP or OFNP, as directed, complying with NFPA 262.
 6) Riser Rated, Conductive: Type OFCR; or OFNR, OFCP, or OFNP, as directed, complying with UL 1666.
 e. Conductive cable shall be steel OR aluminum, as directed, armored type.
 f. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 g. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
2. Jacket:
 b. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
 c. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).
F. Optical Fiber Cable Hardware
 a. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.
2. Patch Cords: Factory-made, dual-fiber cables in 36-inch (900-mm) lengths.
3. Cable Connecting Hardware:
 b. Quick-connect, simplex and duplex, Type SC OR Type ST OR Type LC OR Type MT-RJ, as directed, connectors. Insertion loss not more than 0.75 dB.
 c. Type SFF connectors may be used in termination racks, panels, and equipment packages.

G. Coaxial Cable
1. General Coaxial Cable Requirements: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.
2. RG-11/U: NFPA 70, Type CATV.
 a. No. 14 AWG, solid, copper-covered steel conductor.
 b. Gas-injected, foam-PE insulation.
 c. Double shielded with 100 percent aluminum polyester tape and 60 percent aluminum braid.
 d. Jacketed with sunlight-resistant, black PVC or PE.
 e. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.
3. RG59/U: NFPA 70, Type CATVR.
 a. No. 20 AWG, solid, silver-plated, copper-covered steel conductor.
 b. Gas-injected, foam-PE insulation.
 c. Triple shielded with 100 percent aluminum polyester tape and 95 percent aluminum braid; covered by aluminum foil with grounding strip.
 d. Color-coded PVC jacket.
4. RG-6/U: NFPA 70, Type CATV or CM.
 a. No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 b. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.
 c. Jacketed with black PVC or PE.
 d. Suitable for indoor installations.
5. RG59/U (Plenum Rated): NFPA 70, Type CMP.
 a. No. 20 AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.
 b. Double shielded with 100 percent aluminum-foil shield and 65 percent aluminum braid.
 c. Copolymer jacket.
6. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655 and with NFPA 70, "Radio and Television Equipment" and "Community Antenna Television and Radio Distribution" Articles. Types are as follows:
 a. CATV Cable: Type CATV, or CATVP or CATVR, as directed.
 b. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
 c. CATV Riser Rated: Type CATVR; or CATVP, CATVR, or CATV, as directed, complying with UL 1666.
 d. CATV Limited Rating: Type CATVX.

H. Coaxial Cable Hardware
1. Coaxial-Cable Connectors: Type BNC, 75 ohms.
I. Grounding
 1. Comply with requirements in Division 26 Section "Grounding And Bonding For Electrical Systems" for grounding conductors and connectors.

J. Identification Products
 1. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

K. Source Quality Control
 1. Testing Agency: Engage a qualified testing agency to evaluate cables.
 2. Factory test cables on reels according to TIA/EIA-568-B.1.
 3. Factory test UTP cables according to TIA/EIA-568-B.2.
 5. Cable will be considered defective if it does not pass tests and inspections.
 6. Prepare test and inspection reports.

1.3 EXECUTION

A. Entrance Facilities
 1. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

B. Wiring Methods
 1. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, in attics, and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
 a. Install plenum cable in environmental air spaces, including plenum ceilings.
 b. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway And Boxes For Electrical Systems".
 2. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
 3. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

C. Installation Of Pathways
 1. Cable Trays: Comply with NEMA VE 2 and TIA/EIA-569-A.
 2. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings". Drawings indicate general arrangement of pathways and fittings.
 3. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.
 4. Comply with requirements in Division 26 Section "Raceway And Boxes For Electrical Systems" for installation of conduits and wireways.
 5. Install manufactured conduit sweeps and long-radius elbows whenever possible.
 6. Pathway Installation in Communications Equipment Rooms:
 a. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 b. Install cable trays to route cables if conduits cannot be located in these positions.
 c. Secure conduits to backboard when entering room from overhead.
d. Extend conduits 3 inches (76 mm) above finished floor.
e. Install metal conduits with grounding bushings and connect with grounding conductor to
grounding system.

7. Backboards: Install backboards with 96-inch (2440-mm) dimension vertical. Butt adjacent sheets
tightly, and form smooth gap-free corners and joints.

D. Installation Of Cables
1. Comply with NECA 1.
2. General Requirements for Cabling:
 b. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 c. Install 110-style IDC termination hardware unless otherwise indicated.
 d. Terminate all conductors; no cable shall contain unterminated elements. Make
 terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 e. Cables may not be spliced. Secure and support cables at intervals not exceeding 30
 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings,
 outlets, racks, frames, and terminals.
 f. Install lacing bars to restrain cables, to prevent straining connections, and to prevent
 bending cables to smaller radii than minimums recommended by manufacturer.
 g. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's
 limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling
 Termination Practices" Chapter. Use lacing bars and distribution spools.
 h. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable
 between termination, tap, or junction points. Remove and discard cable if damaged during
 installation and replace it with new cable.
 i. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps
 shall not be used for heating.
 j. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each
 end of cable.
 k. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull
 tensions.

3. UTP Cable Installation:
 b. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to
 maintain cable geometry.

4. Optical Fiber Cable Installation:
 b. Cable may be terminated on connecting hardware that is rack or cabinet mounted.

5. Open-Cable Installation:
 a. Install cabling with horizontal and vertical cable guides in telecommunications spaces with
 terminating hardware and interconnection equipment.
 b. Suspend UTP cable not in a wireway or pathway, a minimum of 8 inches (200 mm) above
 ceilings by cable supports not more than 60 inches (1524 mm) apart.
 c. Cable shall not be run through structural members or in contact with pipes, ducts, or other
 potentially damaging items.

6. Installation of Cable Routed Exposed under Raised Floors:
 a. Install plenum-rated cable only.
 b. Install cabling after the flooring system has been installed in raised floor areas.
 c. Coil cable 6 feet (1800 mm) long not less than 12 inches (300 mm) in diameter below each
 feed point.

7. Outdoor Coaxial Cable Installation:
 a. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install
 corrosion-resistant connectors with properly designed O-rings to keep out moisture.
 b. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915
 mm).
8. Group connecting hardware for cables into separate logical fields.

9. Separation from EMI Sources:
 a. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 b. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).
 c. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
 d. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 1) Electrical Equipment Rating Less Than 2 kVA: No requirement.
 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
 e. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
 f. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

E. Firestopping
 1. Comply with requirements in Division 07 Section "Penetration Firestopping".

F. Grounding
 1. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
 3. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
 4. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

G. Identification
 1. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification For Electrical Systems".
 a. Administration Class: 1 OR 2 OR 3 OR 4, as directed.
 b. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.
 2. Comply with requirements in Division 09 Section "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
3. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2 OR Class 3 OR Class 4, as directed, level of administration including optional identification requirements of this standard.

4. Comply with requirements in Division 27 Section "Communications Horizontal Cabling" for cable and asset management software.

5. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

6. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.

7. Cable and Wire Identification:
 a. Label each cable within 4 inches (100 mm) of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 b. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
 c. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).
 d. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 1) Individually number wiring conductors connected to terminal strips and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device with name and number of particular device as shown.
 2) Label each unit and field within distribution racks and frames.
 e. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

8. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA 606-A, for the following:
 a. Cables use flexible vinyl or polyester that flexes as cables are bent.

H. Field Quality Control

1. Tests and Inspections:
 a. Visually inspect UTP and optical fiber jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA/EIA-568-B.1.
 b. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 c. Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 1) Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 d. Optical Fiber Cable Tests:
1) Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

2) Link End-to-End Attenuation Tests:
 a) Horizontal and multimode backbone link measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 b) Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.

2. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

3. Remove and replace cabling where test results indicate that they do not comply with specified requirements.

4. End-to-end cabling will be considered defective if it does not pass tests and inspections.

5. Prepare test and inspection reports.

END OF SECTION 26 05 33 13d
SECTION 26 05 33 13e - COMMUNICATIONS HORIZONTAL CABLING

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of materials for communications horizontal cabling. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
 1. Section Includes:
 a. Pathways.
 b. UTP cabling.
 c. 50/125 and 62.5/125-micrometer, optical fiber cabling.
 d. Coaxial cable.
 e. Multiuser telecommunications outlet assemblies.
 f. Cable connecting hardware, patch panels, and cross-connects.
 g. Telecommunications outlet/connectors.
 h. Cabling system identification products.
 i. Cable management system.

C. Definitions
 1. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
 3. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel.
 4. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.
 5. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
 6. EMI: Electromagnetic interference.
 7. IDC: Insulation displacement connector.
 8. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
 9. LAN: Local area network.
 10. MUTOA: Multiuser telecommunications outlet assembly, a grouping in one location of several telecommunications outlet/connectors.
 11. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.
 12. RCDD: Registered Communications Distribution Designer.
 13. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom without ventilation openings.
 14. Trough or Ventilated Cable Tray: A fabricated structure consisting of longitudinal side rails and a bottom having openings for the passage of air.
 15. UTP: Unshielded twisted pair.

D. Horizontal Cabling Description
 1. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called "permanent link," a term that is used in the testing protocols.
a. TIA/EIA-568-B.1 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.
b. Horizontal cabling shall contain no more that one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
c. Bridged taps and splices shall not be installed in the horizontal cabling.
d. Splitters shall not be installed as part of the optical fiber cabling.

2. A work area is approximately 100 sq. ft. (9.3 sq. m), and includes the components that extend from the telecommunications outlet/connectors to the station equipment.

3. The maximum allowable horizontal cable length is 295 feet (90 m). This maximum allowable length does not include an allowance for the length of 16 feet (4.9 m) to the workstation equipment. The maximum allowable length does not include an allowance for the length of 16 feet (4.9 m) in the horizontal cross-connect.

E. Performance Requirements
1. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1, when tested according to test procedures of this standard.

F. Submittals
1. Product Data: For each type of product indicated.
2. Shop Drawings:
 a. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 b. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 c. Cabling administration drawings and printouts.
 d. Wiring diagrams to show typical wiring schematics, including the following:
 1) Cross-connects.
 2) Patch panels.
 3) Patch cords.
 e. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
 f. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements.
3. Samples: For workstation outlets, jacks, jack assemblies, in specified finish, one for each size and outlet configuration and faceplates for color selection and evaluation of technical features.
4. Qualification Data: For Installer, as directed, qualified layout technician, installation supervisor, and field inspector.
5. Source quality-control reports.
6. Field quality-control reports.
7. Maintenance Data.
8. Software and Firmware Operational Documentation:
 a. Software operating and upgrade manuals.
 b. Program Software Backup: On magnetic media or compact disk, complete with data files.
 c. Device address list.
 d. Printout of software application and graphic screens.

G. Quality Assurance
1. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 a. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
 b. Installation Supervision: Installation shall be under the direct supervision of Registered Technician OR Level 2 Installer, as directed, who shall be present at all times when Work of this Section is performed at Project site.
2. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 a. Flame-Spread Index: 25 or less.
 b. Smoke-Developed Index: 50 OR 450, as directions, or less.

3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

4. Telecommunications Pathways and Spaces: Comply with TIA/EIA-569-A.

H. Delivery, Storage, And Handling
1. Test cables upon receipt at Project site.
 a. Test optical fiber cables to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
 b. Test optical fiber cables while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; including the loss value of each. Retain test data and include the record in maintenance data.
 c. Test each pair of UTP cable for open and short circuits.

I. Software Service Agreement
1. Technical Support: Beginning with Substantial Completion, provide software support for two years.
2. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
 a. Provide 30 days’ notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

1.2 PRODUCTS

A. Pathways
1. General Requirements: Comply with TIA/EIA-569-A.
2. Cable Support: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 a. Support brackets with cable tie slots for fastening cable ties to brackets.
 b. Lacing bars, spools, J-hooks, and D-rings.
 c. Straps and other devices.
3. Cable Trays:
 a. Cable Tray Materials: Metal, suitable for indoors, and protected against corrosion by electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch (0.012 mm) thick OR hot-dip galvanizing, complying with ASTM A 123/A 123M, Grade 0.55, not less than 0.002165 inch (0.055 mm) thick, as directed.
 1) Basket Cable Trays: 6 inches (150 mm) wide and 2 inches (50 mm) deep. Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
 2) Trough Cable Trays: Nominally 6 inches (150 mm) wide.
 3) Ladder Cable Trays: Nominally 18 inches (455 mm) wide, and a rung spacing of 12 inches (305 mm).
 4) Channel Cable Trays: One-piece construction, nominally 4 inches (100 mm) wide. Slot spacing shall not exceed 4-1/2 inches (115 mm) o.c.
 5) Solid-Bottom Cable Trays: One-piece construction, nominally 12 inches (305 mm) wide. Provide with OR without, as directed, solid covers.
4. Conduit and Boxes: Comply with requirements in Division 26 Section “Raceway And Boxes For Electrical Systems”. Flexible metal conduit shall not be used.
 a. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

B. Backboards
 1. Backboards: Plywood, fire-retardant treated, as directed, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements in Division 06 Section “Rough Carpentry” for plywood backing panels.

C. UTP Cable
 1. Description: 100-ohm, 4-pair UTP, formed into 25-pair, binder groups covered with a blue thermoplastic jacket.
 a. Comply with ICEA S-90-661 for mechanical properties.
 b. Comply with TIA/EIA-568-B.1 for performance specifications.
 c. Comply with TIA/EIA-568-B.2, Category 5e OR Category 6, OR Category 6e as directed.
 d. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 1) Communications, General Purpose: Type CM or CMG; or MPP, CMP, MPR, CMR, MP, or MPG, as directed.
 2) Communications, Plenum Rated: Type CMP or MPP, as directed, complying with NFPA 262.
 3) Communications, Riser Rated: Type CMR; or MPP, CMP, or MPR, as directed, complying with UL 1666.
 4) Communications, Limited Purpose: Type CMX; or MPP, CMP, MPR, CMR, MP, MPG, CM, or CMG, as directed.
 5) Multipurpose: Type MP or MPG; or MPP or MPR, as directed.
 6) Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 7) Multipurpose, Riser Rated: Type MPR or MPP, as directed, complying with UL 1666.

D. UTP Cable Hardware
 1. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.
 2. Connecting Blocks: 110-style IDC for Category 5e OR 110-style IDC for Category 6 OR 66-style IDC for Category 5e, OR 110-style IDC for Category 6e as directed. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.
 3. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 a. Number of Terminals per Field: One for each conductor in assigned cables.
 4. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 a. Number of Jacks per Field: One for each four-pair UTP cable indicated OR conductor group of indicated cables, plus spares and blank positions adequate to suit specified expansion criteria, as directed.
 5. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.
 6. Patch Cords: Factory-made, four-pair cables in 36-inch (900 mm) OR 48-inch (1200-mm), as directed, lengths; terminated with eight-position modular plug at each end.
 a. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
 b. Patch cords shall have color-coded boots for circuit identification.
E. Optical Fiber Cable

1. Description: Multimode, 50/125 OR 62.5/125, as directed, micrometer, 24-fiber, nonconductive, as directed, tight buffer, optical fiber cable.
 a. Comply with ICEA S-83-596 for mechanical properties.
 b. Comply with TIA/EIA-568-B.3 for performance specifications.
 c. Comply with TIA/EIA-492AAAA-B OR TIA/EIA-492AAAA-A, as directed, for detailed specifications.
 d. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 1) General Purpose, Nonconductive: Type OFN or OFNG, or OFNR, OFNP, as directed.
 2) Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 3) Riser Rated, Nonconductive: Type OFNR or OFNP, as directed, complying with UL 1666.
 4) General Purpose, Conductive: Type OFC or OFCG, or OFNG, OFN, OFCR, OFNR, OFCP, or OFNP, as directed.
 5) Plenum Rated, Conductive: Type OFCP or OFNP, as directed, complying with NFPA 262.
 6) Riser Rated, Conductive: Type OFCR; or OFNR, OFCP, or OFNP, as directed, complying with UL 1666.
 e. Conductive cable shall be steel OR aluminum, as directed, armored type.
 f. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 g. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

2. Jacket:
 b. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
 c. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

F. Optical Fiber Cable Hardware

 a. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.

2. Patch Cords: Factory-made, dual-fiber cables in 36-inch (900-mm) lengths.

3. Cable Connecting Hardware:
 b. Quick-connect, simplex and duplex, Type SC OR Type ST OR Type LC OR Type MT-RJ, as directed, connectors. Insertion loss not more than 0.75 dB.
 c. Type SFF connectors may be used in termination racks, panels, and equipment packages.

G. Coaxial Cable

1. Cable Characteristics: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.

2. RG-11/U: NFPA 70, Type CATV.
 a. No. 14 AWG, solid, copper-covered steel conductor.
 b. Gas-injected, foam-PE insulation.
 c. Double shielded with 100 percent aluminum polyester tape and 60 percent aluminum braid.
 d. Jacketed with sunlight-resistant, black PVC or PE.
 e. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.

3. RG59/U: NFPA 70, Type CATVR.
a. No. 20 AWG, solid, silver-plated, copper-covered steel conductor.
b. Gas-injected, foam-PE insulation.
c. Triple shielded with 100 percent aluminum polyester tape and 95 percent aluminum braid; covered by aluminum foil with grounding strip.
d. Color-coded PVC jacket.

4. RG-6/U: NFPA 70, Type CATV or CM.
 a. No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 b. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.
 c. Jacketed with black PVC or PE.
 d. Suitable for indoor installations.

5. RG59/U: NFPA 70, Type CATV.
 a. No. 20 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 b. Double shielded with 100 percent aluminum polyester tape and 40 percent aluminum braid.
 c. PVC jacket.

6. RG59/U (Plenum Rated): NFPA 70, Type CMP.
 a. No. 20 AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.
 b. Double shielded with 100 percent aluminum-foil shield and 65 percent aluminum braid.
 c. Copolymer jacket.

7. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655 and with NFPA 70 "Radio and Television Equipment" and "Community Antenna Television and Radio Distribution" Articles. Types are as follows:
 a. CATV Cable: Type CATV or CATVP or CATVR, as directed.
 b. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
 c. CATV Riser Rated: Type CATVR; or CATVP, CATVR, or CATV, as directed, complying with UL 1666.
 d. CATV Limited Rating: Type CATVX.

H. Coaxial Cable Hardware
 1. Coaxial-Cable Connectors: Type BNC, 75 ohms.

I. Consolidation Points
 1. Description: Consolidation points shall comply with requirements for cable connecting hardware.
 a. Number of Terminals per Field: One for each conductor in assigned cables.
 b. Number of Connectors per Field:
 1) One for each four-pair UTP cable indicated.
 2) One for each four-pair conductor group of indicated cables, plus 25 percent spare positions.
 c. Mounting: Recessed in ceiling OR Wall OR Desk OR Furniture, as directed.
 d. NRTL listed as complying with UL 50 and UL 1863.
 e. When installed in plenums used for environmental air, NRTL listed as complying with UL 2043.

J. Multiuser Telecommunications Outlet Assembly (MUTOA)
 1. Description: MUTOAs shall meet the requirements for cable connecting hardware.
 a. Number of Terminals per Field: One for each conductor in assigned cables.
 b. Number of Connectors per Field:
 1) One for each four-pair UTP cable indicated.
 2) One for each four-pair conductor group of indicated cables, plus 25 percent spare positions.
 c. Mounting: Recessed in ceiling OR Wall OR Desk OR Furniture, as directed.
 d. NRTL listed as complying with UL 50 and UL 1863.
 e. Label shall include maximum length of work area cords, based on TIA/EIA-568-B.1.
f. When installed in plenums used for environmental air, NRTL listed as complying with UL 2043.

K. Telecommunications Outlet/Connectors
2. Workstation Outlets: Two OR Four, as directed, port-connector assemblies mounted in single or multigang faceplate.
 a. Plastic Faceplate: High-impact plastic. Coordinate color with Division 26 Section "Wiring Devices".
 b. Metal Faceplate: Stainless steel OR Brass, as directed, complying with requirements in Division 26 Section "Wiring Devices".
 c. For use with snap-in jacks accommodating any combination of UTP, optical fiber, and coaxial work area cords.
 1) Flush mounting jacks, positioning the cord at a 45-degree angle.
 d. Legend:
 1) Factory labeled by silk-screening or engraving for stainless steel OR brass, as directed, faceplates.
 OR
 Machine printed, in the field, using adhesive-tape label.
 OR
 Snap-in, clear-label covers and machine-printed paper inserts.

L. Grounding
1. Comply with requirements in Division 26 Section "Grounding And Bonding For Electrical Systems" for grounding conductors and connectors.

M. Identification Products
1. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
2. Comply with requirements in Division 26 Section "Identification For Electrical Systems".

N. Cable Management System
1. Description: Computer-based cable management system, with integrated database and graphic, as directed, capabilities.
2. Document physical characteristics by recording the network, TIA/EIA details, and connections between equipment and cable.
3. Information shall be presented in database view, schematic plans, or technical drawings.
 a. Microsoft Visio Professional or AutoCAD drawing software shall be used as drawing and schematic plans software.
4. System shall interface with the following testing and recording devices:
 a. Direct upload tests from circuit testing instrument into the personal computer.
 b. Direct download circuit labeling into labeling printer.

O. Source Quality Control
1. Testing Agency: Engage a qualified testing agency to evaluate cables.
2. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
3. Factory test UTP cables according to TIA/EIA-568-B.2.
5. Factory-sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
6. Cable will be considered defective if it does not pass tests and inspections.
7. Prepare test and inspection reports.
1.3 EXECUTION

A. Entrance Facilities
 1. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

B. Wiring Methods
 1. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, in attics, and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
 a. Install plenum cable in environmental air spaces, including plenum ceilings.
 b. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway And Boxes For Electrical Systems".
 2. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
 3. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

C. Installation Of Pathways
 2. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Division 27 Section "Communications Equipment Room Fittings". Drawings indicate general arrangement of pathways and fittings.
 3. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.
 4. Comply with requirements in Division 26 Section "Raceway And Boxes For Electrical Systems" for installation of conduits and wireways.
 5. Install manufactured conduit sweeps and long-radius elbows whenever possible.
 6. Pathway Installation in Communications Equipment Rooms:
 a. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 b. Install cable trays to route cables if conduits cannot be located in these positions.
 c. Secure conduits to backboard when entering room from overhead.
 d. Extend conduits 3 inches (76 mm) above finished floor.
 e. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.
 7. Backboards: Install backboards with 96-inch (2440-mm) dimension vertical. Butt adjacent sheets tightly, and form smooth gap-free corners and joints.

D. Installation Of Cables
 1. Comply with NECA 1.
 2. General Requirements for Cabling:
 b. Comply with BICS1 ITSIM, Ch. 6, "Cable Termination Practices."
 c. Install 110-style IDC termination hardware unless otherwise indicated.
 d. MUTOA shall not be used as a cross-connect point.
 e. Consolidation points may be used only for making a direct connection to telecommunications outlet/connectors:
 1) Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
2) Locate consolidation points for UTP at least 49 feet (15 m) from communications equipment room.

f. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.

g. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.

h. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.

i. Bundle, lace, and train conductors to terminal points without exceeding manufacturer’s limitations on bending radii, but not less than radii specified in BICSI ITSIM, “Cabling Termination Practices” Chapter. Install lacing bars and distribution spools.

j. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.

k. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.

l. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each end of cable.

m. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

3. UTP Cable Installation:

b. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.

4. Optical Fiber Cable Installation:

b. Cable may be terminated on connecting hardware that is rack or cabinet mounted.

5. Open-Cable Installation:

a. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.

b. Suspend UTP cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1524 mm) apart.

c. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

6. Installation of Cable Routed Exposed under Raised Floors:

a. Install plenum-rated cable only.

b. Install cabling after the flooring system has been installed in raised floor areas.

c. Coil cable 6 feet (1800 mm) long not less than 12 inches (300 mm) in diameter below each feed point.

7. Outdoor Coaxial Cable Installation:

a. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.

b. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).

8. Group connecting hardware for cables into separate logical fields.

9. Separation from EMI Sources:

a. Comply with BICSI TDMM and TIA/EIA-569-A for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.

b. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:

1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).

2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
3) Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).

c. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
3) Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).

d. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
1) Electrical Equipment Rating Less Than 2 kVA: No requirement.
2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
3) Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).

e. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
f. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

E. Firestopping
1. Comply with requirements in Division 07 Section "Penetration Firestopping".

F. Grounding
1. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
3. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
4. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

G. Identification
1. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification For Electrical Systems".
 a. Administration Class: 1 OR 2 OR 3 OR 4, as directed.
 b. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.
2. Using cable management system software specified in Part 2, develop Cabling Administration Drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable and label cable, jacks, connectors, and terminals to which it connects with same designation. At completion, cable and asset management software shall reflect as-built conditions.
3. Comply with requirements in Division 09 Section "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
4. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2 OR Class 3 OR Class 4, as directed, level of administration, including optional identification requirements of this standard.
5. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid
frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

6. **Cabling Administration Drawings:** Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIA/EIA-606-A. Furnish electronic record of all drawings, in software and format selected by Owner.

7. **Cable and Wire Identification:**
 a. Label each cable within 4 inches (100 mm) of each termination and tap, where it is accessible in a cabinet or outlet box, and elsewhere as indicated.
 b. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
 c. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).
 d. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 1) Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.
 2) Label each unit and field within distribution racks and frames.
 e. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
 f. Uniquely identify and label work area cables extending from the MUTOA to the work area. These cables may not exceed the length stated on the MUTOA label.

8. **Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.**
 a. Cables use flexible vinyl or polyester that flex as cables are bent.

H. **Field Quality Control**

1. **Tests and Inspections:**
 a. Visually inspect UTP and optical fiber cable jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA/EIA-568-B.1.
 b. Visually confirm Category 5e OR Category 6, OR Category 6e as directed, marking of outlets, cover plates, outlet/connectors, and patch panels.
 c. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 d. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 1) Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 e. **Optical Fiber Cable Tests:**
 1) Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 2) **Link End-to-End Attenuation Tests:**
a) Horizontal and multimode backbone link measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.

b) Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.

c) UTP Performance Tests:

1) Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:
 a) Wire map.
 b) Length (physical vs. electrical, and length requirements).
 c) Insertion loss.
 d) Near-end crosstalk (NEXT) loss.
 e) Power sum near-end crosstalk (PSNEXT) loss.
 f) Equal-level far-end crosstalk (ELFEXT).
 g) Power sum equal-level far-end crosstalk (PSELFEXT).
 h) Return loss.
 i) Propagation delay.
 j) Delay skew.

g) Optical Fiber Cable Performance Tests: Perform optical fiber end-to-end link tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.3.

h) Coaxial Cable Tests: Conduct tests according to Division 27 Section "Master Antenna Television System".

i) Final Verification Tests: Perform verification tests for UTP and optical fiber systems after the complete communications cabling and workstation outlet/connectors are installed.

1) Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.

2) Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.

2. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

3. End-to-end cabling will be considered defective if it does not pass tests and inspections.

4. Prepare test and inspection reports.

END OF SECTION 26 05 33 13e
1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of materials for conductors and cables for electronic safety and security. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
 1. Section Includes:
 a. UTP cabling.
 b. 50/125 and 62.5/125-micrometer, multimode optical fiber cabling.
 c. Coaxial cabling.
 d. RS-232 cabling.
 e. RS-485 cabling.
 f. Low-voltage control cabling.
 g. Control-circuit conductors.
 h. Fire alarm wire and cable.
 i. Identification products.

C. Definitions
 2. EMI: Electromagnetic interference.
 3. IDC: Insulation displacement connector.
 4. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
 5. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
 6. RCDD: Registered Communications Distribution Designer.

D. Performance Requirements
 1. Seismic Performance: Pathways shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

E. Submittals
 1. Product Data: For each type of product indicated.
 a. For coaxial cable, include the following installation data for each type used:
 1) Nominal OD.
 2) Minimum bending radius.
 3) Maximum pulling tension.
 2. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 a. Vertical and horizontal offsets and transitions.
 b. Clearances for access above and to side of cable trays.
 c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 3. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.
 4. Seismic Qualification Certificates: For pathways, accessories, and components, from manufacturer.
a. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

b. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

c. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

5. Source quality-control reports.

6. Field quality-control reports.

7. Operation and Maintenance Data: For wire and cable to include in operation and maintenance manuals. Include the following:
 a. Allowable pulling tension of cable.
 b. Cable connectors and terminations recommended by the manufacturer.

F. Quality Assurance

1. Testing Agency Qualifications: An NRTL.
 a. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

2. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 a. Flame-Spread Index: 25 or less.
 b. Smoke-Developed Index: 50 OR 450, as directed, or less.

3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Delivery, Storage, And Handling

1. Test cables upon receipt at Project site.
 a. Test optical fiber cable to determine the continuity of the strand end to end. Use optical-fiber flashlight or optical loss test set.
 b. Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
 c. Test each pair of UTP cable for open and short circuits.

H. Project Conditions

1. Do not install conductors and cables that are wet, moisture damaged, or mold damaged.
 a. Indications that wire and cables are wet or moisture damaged include, but are not limited to, discoloration and sagging of factory packing materials.

2. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.2 PRODUCTS

A. Pathways

1. Support of Open Cabling: NRTL labeled for support of Category 5e OR Category 6, OR Category 6e as directed, cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 a. Support brackets with cable tie slots for fastening cable ties to brackets.
 b. Lacing bars, spools, J-hooks, and D-rings.
 c. Straps and other devices.
2. Cable Trays:
 a. Cable Tray Materials: Metal, suitable for indoors, and protected against corrosion by electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch (0.012 mm) thick OR hot-dip galvanizing, complying with ASTM A 123/A 123M Grade 0.55, not less than 0.002165 inch (0.055 mm) thick, as directed.
 1) Basket Cable Trays: 6 inches (150 mm) wide and 2 inches (50 mm) deep, as directed. Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
 2) Trough Cable Trays: Nominally 6 inches (150 mm), as directed, wide.
 3) Ladder Cable Trays: Nominally 18 inches (455 mm), as directed, wide, and a rung spacing of 12 inches (305 mm), as directed.
 4) Channel Cable Trays: One-piece construction, nominally 4 inches (100 mm), as directed, wide. Slot spacing shall not exceed 4-1/2 inches (115 mm) o.c.
 5) Solid-Bottom Cable Trays: One-piece construction, nominally 12 inches (305 mm), as directed, wide. Provide with OR without, as directed, solid covers.
 b. Conduit and Boxes: Comply with requirements in Division 16 Section “Raceways and Boxes.” Flexible metal conduit shall not be used, as directed.
 c. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

B. Backboards
 1. Backboards: Plywood, fire-retardant treated, as directed, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels in Division 06 Section "Rough Carpentry".

C. UTP Cable
 1. Description: 100-ohm, 4-pair UTP, covered with a blue thermoplastic jacket.
 a. Comply with ICEA S-90-661 for mechanical properties.
 b. Comply with TIA/EIA-568-B.1 for performance specifications.
 c. Comply with TIA/EIA-568-B.2, Category 5e OR Category 6, OR Category 6e as directed.
 d. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 1) Communications, General Purpose: Type CM or CMG; OR MPP, CMP, MPR, CMR, MP, or MPG, as directed.
 2) Communications, Plenum Rated: Type CMP OR MPP, as directed, complying with NFPA 262.
 3) Communications, Riser Rated: Type CMR; OR MPP, CMP, or MPR, as directed, complying with UL 1666.
 4) Communications, Limited Purpose: Type CMX; OR MPP, CMP, MPR, CMR, MP, MPG, CM, or CMG, as directed.
 5) Multipurpose: Type MP or MPG; OR MPP or MPR, as directed.
 6) Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 7) Multipurpose, Riser Rated: Type MPR OR MPP, as directed, complying with UL 1666.

D. UTP Cable Hardware
 1. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
 2. Connecting Blocks: 110-style for Category 5e OR 110-style for Category 6 OR 66-style for Category 5e, OR 110-style for Category 6e as directed. Provide blocks for the number of cables terminated on the block, plus 25, as directed, percent spare. Integral with connector bodies, including plugs and jacks where indicated.

E. Optical Fiber Cable
1. Description: Multimode, 50/125 OR 62.5/125, as directed, micrometer, 24-fiber, as directed, nonconductive, as directed, tight buffer, optical fiber cable.
 a. Comply with ICEA S-83-596 for indoor cable OR ICEA S-87-640 for outside plant, as directed, for mechanical properties.
 b. Comply with TIA/EIA-568-B.3 for performance specifications.
 c. Comply with TIA-492AAAB OR TIA-492AAAA-A, as directed, for detailed specifications.
 d. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 1) General Purpose, Nonconductive: Type OFN or OFNG, OR OFNR, OFNP, as directed.
 2) Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 3) Riser Rated, Nonconductive: Type OFNR or OFNP, complying with UL 1666.
 4) General Purpose, Conductive: Type OFC or OFCG; OR OFNG, OFN, OFCR, OFNR, OFCP, or OFNP, as directed.
 5) Plenum Rated, Conductive: Type OFCP or OFNP, complying with NFPA 262.
 6) Riser Rated, Conductive: Type OFCR; or OFNR, OFCP, or OFNP, as directed, complying with UL 1666.
 e. Conductive cable shall be steel OR aluminum, as directed, armored type.
 f. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 g. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

2. Jacket:
 b. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-C.
 c. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

F. Optical Fiber Cable Hardware
 a. Quick-connect, simplex and duplex, Type SC OR Type ST OR Type LC OR Type MT-RJ, as directed, connectors. Insertion loss not more than 0.75 dB.
 b. Type SFF connectors may be used in termination racks, panels, and equipment packages.

G. Coaxial Cable
1. General Coaxial Cable Requirements: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.
2. RG-11/U: NFPA 70, Type CATV.
 a. No. 14 AWG, solid, copper-covered steel conductor.
 b. Gas-injected, foam-PE insulation.
 c. Double shielded with 100 percent aluminum polyester tape and 60 percent aluminum braid.
 d. Jacketed with sunlight-resistant, black PVC or PE.
 e. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.
3. RG59/U: NFPA 70, Type CATVR.
 a. No. 20 AWG, solid, silver-plated, copper-covered steel conductor.
 b. Gas-injected, foam-PE insulation.
 c. Triple shielded with 100 percent aluminum polyester tape and 95 percent aluminum braid; covered by aluminum foil with grounding strip.
 d. Color-coded PVC jacket.
4. RG-6/U: NFPA 70, Type CATV or CM.
a. No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
b. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.
c. Jacketed with black PVC or PE.
d. Suitable for indoor installations.

5. RG59/U: NFPA 70, Type CATV.
 a. No. 20 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 b. Double shielded with 100 percent aluminum polyester tape and 40 percent aluminum braid.
 c. PVC jacket.

6. RG59/U (Plenum Rated): NFPA 70, Type CMP.
 a. No. 20 AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.
 b. Double shielded with 100 percent aluminum-foil shield and 65 percent aluminum braid.
 c. Copolymer jacket.

7. NFPA and UL Compliance: Coaxial cables shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655, and with NFPA 70 "Radio and Television Equipment" and "Community Antenna Television and Radio Distribution" Articles. Types are as follows:
 a. CATV Cable: Type CATV, OR CATVP or CATVR, as directed.
 b. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
 c. CATV Riser Rated: Type CATVR; OR CATVP, CATVR, or CATV, as directed, complying with UL 1666.
 d. CATV Limited Rating: Type CATVX.

H. Coaxial Cable Hardware
1. Coaxial-Cable Connectors: Type BNC, 75 ohms.

I. RS-232 Cable
1. Standard Cable: NFPA 70, Type CM.
 a. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 b. Polypropylene insulation.
 c. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 d. PVC jacket.
 e. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
2. Plenum-Rated Cable: NFPA 70, Type CMP.
 a. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 b. Plastic insulation.
 c. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 d. Plastic jacket.
 e. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.

J. RS-485 Cable
1. Standard Cable: NFPA 70, Type CM OR CMG, as directed.
 a. Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors.
 b. PVC insulation.
 c. Unshielded.
 d. PVC jacket.
 e. Flame Resistance: Comply with UL 1581.
2. Plenum-Rated Cable: NFPA 70, Type CMP.
 a. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 b. Fluorinated ethylene propylene insulation.
 c. Unshielded.
d. Fluorinated ethylene propylene jacket.
e. Flame Resistance: NFPA 262, Flame Test.

K. Low-Voltage Control Cable
1. Paired Cable: NFPA 70, Type CMG.
 a. 1 pair, twisted, No. 16 AWG, stranded (19x29) and No. 18 AWG, stranded (19x30) tinned copper conductors.
 b. PVC insulation.
 c. Unshielded.
 d. PVC jacket.
 e. Flame Resistance: Comply with UL 1581.
2. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 a. 1 pair, twisted, No. 16 AWG, stranded (19x29) and No. 18 AWG, stranded (19x30) tinned copper conductors.
 b. PVC insulation.
 c. Unshielded.
 d. PVC jacket.
 e. Flame Resistance: Comply with NFPA 262.

L. Control-Circuit Conductors
1. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, complying with UL 83, in raceway OR Type XHHN, complying with UL 44, in raceway, as directed.
2. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, complying with UL 83, in raceway OR power-limited cable, complying with UL 83, concealed in building finishes OR power-limited tray cable, complying with UL 83, in cable tray OR Type XHHN, complying with UL 44, in raceway, as directed.
3. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

M. Fire Alarm Wire And Cable
1. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
2. Signaling Line Circuits: Twisted, shielded pair, not less than OR No. 18 AWG OR size as recommended by system manufacturer, as directed.
 a. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
 a. Low-Voltage Circuits: No. 16 AWG, minimum.
 b. Line-Voltage Circuits: No. 12 AWG, minimum.
 c. Multiconductor Armed Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket, as directed, with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

N. Identification Products
1. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
2. Comply with requirements in Division 26 Section "Identification For Electrical Systems".

O. Source Quality Control
1. Testing Agency: Engage a qualified testing agency to evaluate cables.
2. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
3. Factory test UTP cables according to TIA/EIA-568-B.2.
5. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
6. Cable will be considered defective if it does not pass tests and inspections.
7. Prepare test and inspection reports.

1.3 EXECUTION

A. Installation Of Pathways
 1. Cable Trays: Comply with NEMA VE 2 and TIA-569-B.
 2. Comply with TIA-569-B for pull-box sizing and length of conduit and number of bends between pull points.
 3. Comply with requirements in Division 26 Section "Raceway And Boxes For Electrical Systems" for installation of conduits and wireways.
 4. Install manufactured conduit sweeps and long-radius elbows whenever possible.
 5. Pathway Installation in Equipment Rooms:
 a. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 b. Install cable trays to route cables if conduits cannot be located in these positions.
 c. Secure conduits to backboard when entering room from overhead.
 d. Extend conduits 3 inches (75 mm) above finished floor.
 e. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.
 6. Backboards: Install backboards with 96-inch (2440-mm) dimension vertical. Butt adjacent sheets tightly, and form smooth gap-free corners and joints.

B. Installation Of Hangers And Supports
 1. Comply with requirements in Division 26 Section "Hangers And Supports For Electrical Systems" for installation of supports for pathways, conductors and cables.

C. Wiring Method
 1. Install wiring in metal raceways and wireways. Conceal raceway except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch (21 mm). Control and data transmission wiring shall not share conduit with other building wiring systems.
 2. Install wiring in raceways except in accessible indoor ceiling spaces and in interior hollow gypsum board partitions where cable may be used. Conceal raceways and wiring except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch (21 mm). Control and data transmission wiring shall not share conduit with other building wiring systems.
 3. Install cable, concealed in accessible ceilings, walls, and floors when possible.
 4. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points. Use lacing bars and distribution spools. Separate power-limited and non-power-limited conductors as recommended in writing by manufacturer. Install conductors parallel with or at right angles to sides and back of enclosure. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with intrusion system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

D. Installation Of Conductors And Cables
 1. Comply with NECA 1.
2. Conductors: Size according to system manufacturer's written instructions unless otherwise indicated.

3. General Requirements for Cabling:
 b. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 c. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 d. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 e. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 f. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 g. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 h. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

4. UTP Cable Installation: Install using techniques, practices, and methods that are consistent with Category 5e OR Category 6, OR Category 6e as directed, rating of components and that ensure Category 5e OR Category 6, OR Category 6e as directed, performance of completed and linked signal paths, end to end.
 b. Install 110-style IDC termination hardware unless otherwise indicated.
 c. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.

5. Optical Fiber Cable Installation:
 b. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.

6. Outdoor Coaxial Cable Installation:
 a. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.
 b. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).

7. Open-Cable Installation:
 a. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 b. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1525 mm) apart.
 c. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

8. Installation of Cable Routed Exposed under Raised Floors:
 a. Install plenum-rated cable only.
 b. Install cabling after the flooring system has been installed in raised floor areas.
 c. Coil cable 72 inches (1830 mm) long shall be neatly coiled not less than 12 inches (300 mm) in diameter below each feed point.

9. Separation from EMI Sources:
 a. Comply with BICSI TDMM and TIA-569-B recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
b. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).

c. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).

d. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 1) Electrical Equipment Rating Less Than 2 kVA: No requirement.
 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).

e. Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).

f. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

E. Fire Alarm Wiring Installation
 1. Comply with NECA 1 and NFPA 72.
 2. Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceway And Boxes For Electrical Systems".
 a. Install plenum cable in environmental air spaces, including plenum ceilings.
 b. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
 3. Wiring Method:
 a. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 b. Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is OR is not, as directed, permitted.
 c. Signaling Line Circuits: Power-limited fire alarm cables may OR shall not, as directed, be installed in the same cable or raceway as signaling line circuits.
 4. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
 5. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
 7. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.
8. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

F. Power And Control-Circuit Conductors
1. 120-V Power Wiring: Install according to Division 26 Section "Low-voltage Electrical Power Conductors And Cables" unless otherwise indicated.
2. Minimum Conductor Sizes:
 a. Class 1 remote-control and signal circuits, No. 14 AWG.
 b. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 c. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

G. Connections
1. Comply with requirements in Division 28 Section "Perimeter Security Systems" for connecting, terminating, and identifying wires and cables.
2. Comply with requirements in Division 28 Section "Intrusion Detection" for connecting, terminating, and identifying wires and cables.
3. Comply with requirements in Division 28 Section "Access Control" for connecting, terminating, and identifying wires and cables.
4. Comply with requirements in Division 28 Section "Video Surveillance" for connecting, terminating, and identifying wires and cables.
5. Comply with requirements in Division 28 Section "Plc Electronic Detention Monitoring And Control Systems" for connecting, terminating, and identifying wires and cables.
6. Comply with requirements in Division 28 Section(s) "Digital, Addressable Fire-alarm System" OR "Zoned (dc Loop) Fire-alarm System", as directed, for connecting, terminating, and identifying wires and cables.
7. Comply with requirements in Division 28 Section "Refrigerant Detection And Alarm" for connecting, terminating, and identifying wires and cables.

H. Firestopping
1. Comply with requirements in Division 07 Section "Penetration Firestopping".
2. Comply with TIA-569-B, "Firestopping" Annex A.

I. Grounding
2. For low-voltage wiring and cabling, comply with requirements in Division 26 Section "Grounding And Bonding For Electrical Systems".

J. Identification
1. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification For Electrical Systems".

K. Field Quality Control
1. Perform tests and inspections.
2. Tests and Inspections:
 a. Visually inspect UTP and optical fiber cable jacket materials for NRTL certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 b. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
c. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 1) Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

d. Optical Fiber Cable Tests:
 1) Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 2) Link End-to-End Attenuation Tests:
 a) Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA-526-14-A, Method B, One Reference Jumper.
 b) Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.

e. Coaxial Cable Tests: Comply with requirements in Division 27 Section "Master Antenna Television System".

3. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

4. End-to-end cabling will be considered defective if it does not pass tests and inspections.

5. Prepare test and inspection reports.

END OF SECTION 26 05 33 13f
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 05 33 13</td>
<td>01 51 13 00</td>
<td>Electrical Renovation</td>
</tr>
<tr>
<td>26 05 33 13</td>
<td>26 05 19 16</td>
<td>Conductors And Cables</td>
</tr>
<tr>
<td>26 05 46 00</td>
<td>26 05 26 00b</td>
<td>Overhead Electrical Distribution</td>
</tr>
</tbody>
</table>
SECTION 26 05 53 00 - ELECTRICAL IDENTIFICATION

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for electrical identification. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Identification for raceways.
 b. Identification of power and control cables.
 c. Identification for conductors.
 d. Underground-line warning tape.
 e. Warning labels and signs.
 f. Instruction signs.
 g. Equipment identification labels.
 h. Miscellaneous identification products.

C. Submittals
1. Product Data: For each electrical identification product indicated.
2. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.
3. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

D. Quality Assurance
1. Comply with ANSI A13.1 and IEEE C2, as directed.
2. Comply with NFPA 70.
4. Comply with ANSI Z535.4 for safety signs and labels.
5. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.2 PRODUCTS

A. Power Raceway Identification Materials
1. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.
2. Colors for Raceways Carrying Circuits at 600 V or Less:
 a. Black letters on an orange field.
 b. Legend: Indicate voltage and system or service type, as directed.
3. Colors for Raceways Carrying Circuits at More Than 600 V:
 a. Black letters on an orange field.
 b. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high letters on 20-inch (500-mm) centers.
4. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
5. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

6. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

7. Tape and Stencil for Raceways Carrying Circuits More Than 600 V: 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers diagonally over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stop stripes at legends.

8. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.

9. Write-On Tags: Polyester tag, 0.010 inch (0.25 mm) OR 0.015 inch (0.38 mm), as directed, thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 a. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 OR
 Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

B. Armored And Metal-Clad Cable Identification Materials
1. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

2. Colors for Raceways Carrying Circuits at 600 V and Less:
 a. Black letters on an orange field.
 b. Legend: Indicate voltage and system or service type, as directed.

3. Colors for Raceways Carrying Circuits at More Than 600 V:
 a. Black letters on an orange field.
 b. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high letters on 20-inch (500-mm) centers.

 OR
 Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches (50 mm) wide; compounded for outdoor use.

C. Power And Control Cable Identification Materials
1. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

2. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

3. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.

4. Write-On Tags: Polyester tag, 0.010 inch (0.25 mm) OR 0.015 inch (0.38 mm), as directed, thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 a. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 OR
 Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

5. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
6. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

D. Conductor Identification Materials
1. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.
2. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
3. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
4. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
5. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
6. Write-On Tags: Polyester tag, 0.010 inch (0.25 mm) or 0.015 inch (0.38 mm), as directed, thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 a. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 OR
 b. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

E. Floor Marking Tape
1. 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

F. Underground-Line Warning Tape
1. Tape:
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.
2. Color and Printing:
 a. Comply with ANSI Z535.1 through ANSI Z535.5.
 b. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE.
 c. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.
3. Tag: Type I:
 a. Pigmented polyolefin, bright-colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 b. Thickness: 4 mils (0.1 mm).
 c. Weight: 18.5 lb/1000 sq. ft. (9.0 kg/100 sq. m).
 d. 3-Inch (75-mm) Tensile According to ASTM D 882: 30 lbf (133.4 N), and 2500 psi (17.2 MPa).
4. Tag: Type II:
 a. Multilayer laminate consisting of high-density polyethylene scrim coated with pigmented polyolefin, bright-colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 b. Thickness: 12 mils (0.3 mm).
 c. Weight: 36.1 lb/1000 sq. ft. (17.6 kg/100 sq. m).
d. 3-Inch (75-mm) Tensile According to ASTM D 882: 400 lbf (1780 N), and 11,500 psi (79.2 MPa).

5. Tag: Type ID:
 a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core, bright-colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 b. Overall Thickness: 5 mils (0.125 mm).
 c. Foil Core Thickness: 0.35 mil (0.00889 mm).
 d. Weight: 28 lb/1000 sq. ft. (13.7 kg/100 sq. m).
 e. 3-Inch (75-mm) Tensile According to ASTM D 882: 70 lbf (311.3 N), and 4600 psi (31.7 MPa).

6. Tag: Type IID:
 a. Reinforced, detectable three-layer laminate, consisting of a printed pigmented woven scrim, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core, bright-colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 b. Overall Thickness: 8 mils (0.2 mm).
 c. Foil Core Thickness: 0.35 mil (0.00889 mm).
 d. Weight: 34 lb/1000 sq. ft. (16.6 kg/100 sq. m).
 e. 3-Inch (75-mm) Tensile According to ASTM D 882: 300 lbf (1334 N), and 12,500 psi (86.1 MPa).

G. Warning Labels And Signs
2. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
3. Baked-Enamel Warning Signs:
 a. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 b. 1/4-inch (6.4-mm) grommets in corners for mounting.
 c. Nominal size, 7 by 10 inches (180 by 250 mm).
4. Metal-Backed, Butyrate Warning Signs:
 a. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application.
 b. 1/4-inch (6.4-mm) grommets in corners for mounting.
 c. Nominal size, 10 by 14 inches (250 by 360 mm).
5. Warning label and sign shall include, but are not limited to, the following legends:
 a. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 b. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

H. Instruction Signs
1. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. inches (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
 a. Engraved legend with black letters on white face.
 b. Punched or drilled for mechanical fasteners.
 c. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.
2. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm).
3. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and UV-resistant seal for label.

I. Equipment Identification Labels
1. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm).
2. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and UV-resistant seal for label.
5. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch (25 mm).

J. Cable Ties
1. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
 a. Minimum Width: 3/16 inch (5 mm).
 b. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi (82.7 MPa).
 c. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 d. Color: Black except where used for color-coding.
2. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self extinguishing, one piece, self locking, Type 6/6 nylon.
 a. Minimum Width: 3/16 inch (5 mm).
 b. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi (82.7 MPa).
 c. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 d. Color: Black.
3. Plenum-Rated Cable Ties: Self extinguishing, UV stabilized, one piece, self locking.
 a. Minimum Width: 3/16 inch (5 mm).
 b. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 7000 psi (48.2 MPa).
 c. UL 94 Flame Rating: 94V-0.
 d. Temperature Range: Minus 50 to plus 284 deg F (Minus 46 to plus 140 deg C).
 e. Color: Black.

K. Miscellaneous Identification Products
1. Paint: Comply with requirements in Division 07 for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).
2. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

1.3 EXECUTION
A. Installation
1. Verify identity of each item before installing identification products.
2. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
3. Apply identification devices to surfaces that require finish after completing finish work.
5. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

6. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.

7. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

8. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 a. Outdoors: UV-stabilized nylon.
 b. In Spaces Handling Environmental Air: Plenum rated.

9. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.

10. Painted Identification: Comply with requirements in Division 07 for surface preparation and paint application.

B. Identification Schedule
1. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil 4-inch-(100-mm-) wide black stripes on 10-inch (250-mm) centers over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stencil legend “DANGER CONCEALED HIGH VOLTAGE WIRING” with 3-inch- (75-mm-) high black letters on 20-inch (500-mm) centers. Stop stripes at legends. Apply to the following finished surfaces:
 a. Floor surface directly above conduits running beneath and within 12 inches (300 mm) of a floor that is in contact with earth or is framed above unexcavated space.
 b. Wall surfaces directly external to raceways concealed within wall.
 c. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

2. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Self-adhesive vinyl OR Snap-around, as directed, labels. Install labels at 10-foot (3-m) OR 30-foot (10-m), as directed, maximum intervals.

3. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl label OR self-adhesive vinyl tape applied in bands, as directed. Install labels at 10-foot (3-m) OR 30-foot (10-m), as directed, maximum intervals.

4. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
 b. Power.
 c. UPS.

5. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 a. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 1) Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
 2) Colors for 208/120-V Circuits:
 a) Phase A: Black.
 b) Phase B: Red.
 c) Phase C: Blue.
 3) Colors for 480/277-V Circuits:
a) Phase A: Brown.
b) Phase B: Orange.
c) Phase C: Yellow.

4) Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

6. Power-Circuit Conductor Identification, More than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use write-on tags OR nonmetallic plastic tag holder with adhesive-backed phase tags, and a separate tag with the circuit designation, as directed.

7. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

8. Conductors to Be Extended in the Future: Attach write-on tags OR marker tape, as directed, to conductors and list source.

 a. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 b. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

10. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 a. Limit use of underground-line warning tape to direct-buried cables.
 b. Install underground-line warning tape for both direct-buried cables and cables in raceway.

11. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

12. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels OR Baked-enamel warning signs OR Metal-backed, butyrate warning signs, as directed.
 b. Identify system voltage with black letters on an orange background.
 c. Apply to exterior of door, cover, or other access.
 d. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 1) Power transfer switches.
 2) Controls with external control power connections.

13. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

14. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer OR load shedding, as directed.

15. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 a. Labeling Instructions:
 1) Indoor Equipment: Adhesive film label OR Adhesive film label with clear protective overlay OR Self-adhesive, engraved, laminated acrylic or melamine label OR
Engraved, laminated acrylic or melamine label, as directed. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.

2) Outdoor Equipment: Engraved, laminated acrylic or melamine label OR Stenciled legend 4 inches (100 mm) high, as directed.

3) Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.

4) Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

b. Equipment to Be Labeled:

1) Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive, engraved OR engraved, as directed, laminated acrylic or melamine label.

2) Enclosures and electrical cabinets.

3) Access doors and panels for concealed electrical items.

4) Switchgear.

5) Switchboards.

6) Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.

7) Substations.

8) Emergency system boxes and enclosures.

9) Motor-control centers.

10) Enclosed switches.

11) Enclosed circuit breakers.

12) Enclosed controllers.

13) Variable-speed controllers.

14) Push-button stations.

15) Power transfer equipment.

16) Contactors.

17) Remote-controlled switches, dimmer modules, and control devices.

18) Battery-inverter units.

19) Battery racks.

20) Power-generating units.

21) Monitoring and control equipment.

22) UPS equipment.

END OF SECTION 26 05 53 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 05 53 00</td>
<td>01 51 13 00</td>
<td>Electrical Renovation</td>
</tr>
<tr>
<td>26 27 13 00</td>
<td>26 05 26 00b</td>
<td>Overhead Electrical Distribution</td>
</tr>
</tbody>
</table>
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 26 27 16 00 - RACEWAYS AND BOXES

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of raceways and boxes. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

C. Definitions
1. EMT: Electrical metallic tubing.
2. ENT: Electrical nonmetallic tubing.
3. EPDM: Ethylene-propylene-diene terpolymer rubber.
4. FMC: Flexible metal conduit.
5. IMC: Intermediate metal conduit.
6. LFMC: Liquidtight flexible metal conduit.
7. LFNC: Liquidtight flexible nonmetallic conduit.
8. NBR: Acrylonitrile-butadiene rubber.
9. RNC: Rigid nonmetallic conduit.

D. Submittals
1. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
2. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 a. Custom enclosures and cabinets.
 b. For handholes and boxes for underground wiring, including the following:
 1) Duct entry provisions, including locations and duct sizes.
 2) Frame and cover design.
 3) Grounding details.
 4) Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
 5) Joint details.
3. Samples: For each type of exposed finish required for wireways, nonmetallic wireways and surface raceways, prepared on Samples of size indicated below.
4. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 a. Structural members in the paths of conduit groups with common supports.
 b. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
5. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division 26 Section(s) "Hangers And Supports For Electrical Systems" AND "Vibration And Seismic Controls For Electrical Systems". Include the following:
 a. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 1) The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will retain its enclosure characteristics, including its interior accessibility, after the seismic event."
b. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
c. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

6. Qualification Data: For professional engineer and testing agency.
7. Source quality-control test reports.

E. Quality Assurance
1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
2. Comply with NFPA 70.

1.2 PRODUCTS

A. Metal Conduit And Tubing
1. Rigid Steel Conduit: ANSI C80.1.
2. Aluminum Rigid Conduit: ANSI C80.5.
3. IMC: ANSI C80.6.
4. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit OR IMC, as directed.
 a. Comply with NEMA RN 1.
 b. Coating Thickness: 0.040 inch (1 mm), minimum.
5. EMT: ANSI C80.3.
6. FMC: Zinc-coated steel OR Aluminum OR Zinc-coated steel or aluminum, as directed.
7. LFMC: Flexible steel conduit with PVC jacket.
8. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 b. Fittings for EMT: Steel OR Die-cast, as directed, set-screw OR compression, as directed, type.
 c. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
9. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

B. Nonmetallic Conduit And Tubing
2. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated.
3. LFNC: UL 1660.
4. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material.
5. Fittings for LFNC: UL 514B.

C. Optical Fiber/Communications Cable Raceway And Fittings
1. Description: Comply with UL 2024; flexible type, approved for plenum OR riser OR general-use, as directed, installation.

D. Metal Wireways
1. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1 OR 12 OR 3R, as directed, unless otherwise indicated.
2. **Fittings and Accessories:** Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

3. **Wireway Covers:** Hinged type OR Screw-cover type OR Flanged-and-gasketed type OR As indicated, as directed.

4. **Finish:** Manufacturer's standard enamel finish.

E. Nonmetallic Wireways

1. **Description:** Fiberglass polyester, extruded and fabricated to size and shape indicated, with no holes or knockouts. Cover is gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections are flanged, with stainless-steel screws and oil-resistant gaskets.

 OR

 Description: PVC plastic, extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners.

2. **Fittings and Accessories:** Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

F. Surface Raceways

1. **Surface Metal Raceways:** Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected OR Prime coating, ready for field painting, as directed.

2. **Surface Nonmetallic Raceways:** Two-piece construction, manufactured of rigid PVC with texture and color selected from manufacturer's standard OR custom, as directed, colors.

G. Boxes, Enclosures, And Cabinets

1. **Sheet Metal Outlet and Device Boxes:** NEMA OS 1.

2. **Cast-Metal Outlet and Device Boxes:** NEMA FB 1, ferrous alloy OR aluminum, as directed, Type FD, with gasketed cover.

3. **Nonmetallic Outlet and Device Boxes:** NEMA OS 2.

4. **Metal Floor Boxes:** Cast metal OR Sheet metal, as directed, fully adjustable OR semi-adjustable, as directed, rectangular.

5. **Nonmetallic Floor Boxes:** Nonadjustable, round.

6. **Small Sheet Metal Pull and Junction Boxes:** NEMA OS 1.

7. **Cast-Metal Access, Pull, and Junction Boxes:** NEMA FB 1, cast aluminum OR galvanized, cast iron, as directed, with gasketed cover.

8. **Hinged-Cover Enclosures:** NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.

 a. **Metal Enclosures:** Steel, finished inside and out with manufacturer's standard enamel.

 b. **Nonmetallic Enclosures:** Plastic, finished inside with radio-frequency-resistant paint, as directed.

9. **Cabinets:**

 a. **NEMA 250, Type 1,** galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.

 b. **Hinged door in front cover with flush latch and concealed hinge.**

 c. **Key latch to match panelboards.**

 d. **Metal barriers to separate wiring of different systems and voltage.**

 e. **Accessory feet where required for freestanding equipment.**

H. Handholes And Boxes For Exterior Underground Wiring

1. **Description:** Comply with SCTE 77.

 a. **Color of Frame and Cover:** Gray OR Green as directed.

 b. **Configuration:** Units shall be designed for flush burial and have open OR closed OR integral closed, as directed, bottom, unless otherwise indicated.
c. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
d. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
e. Cover Legend: Molded lettering, “ELECTRIC” OR “TELEPHONE” OR as indicated for each service, as directed.
f. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
g. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel or fiberglass or a combination of the two.

3. Fiberglass Handholes and Boxes with Polymer-Concrete Frame and Cover: Sheet-molded, fiberglass-reinforced, polyester-resin enclosure joined to polymer-concrete top ring or frame.

4. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with covers of polymer concrete OR reinforced concrete OR cast iron OR hot-dip galvanized-steel diamond plate OR fiberglass, as directed.

I. Sleeves For Raceways
2. Cast-Iron Pipe Sleeves: Cast or fabricated “wall pipe,” equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
3. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
4. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section “Penetration Firestopping”.

J. Sleeve Seals
1. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 a. Sealing Elements: EPDM OR NBR, as directed, interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 b. Pressure Plates: Plastic OR Carbon steel OR Stainless steel, as directed. Include two for each sealing element.
 c. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating OR Stainless steel, as directed, of length required to secure pressure plates to sealing elements. Include one for each sealing element.

K. Source Quality Control For Underground Enclosures
1. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 a. Tests of materials shall be performed by an independent testing agency.
 b. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 c. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

1.3 EXECUTION
A. Raceway Application
1. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 a. Exposed Conduit: Rigid steel conduit OR IMC OR RNC, Type EPC-40-PVC OR RNC, Type EPC-80-PVC, as directed.
 b. Concealed Conduit, Aboveground: Rigid steel conduit OR IMC OR EMT OR RNC, Type EPC-40-PVC, as directed.
 c. Underground Conduit: RNC, Type EPC-40 OR 80, as directed; PVC, direct buried.
 d. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC OR LFNC, as directed.
 e. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R OR 4, as directed.
 f. Application of Handholes and Boxes for Underground Wiring:
 1) Handholes and Pull Boxes in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Polymer concrete OR Fiberglass enclosures with polymer-concrete frame and cover OR Fiberglass-reinforced polyester resin, as directed, SCTE 77, Tier 15 structural load rating.
 2) Handholes and Pull Boxes in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer-concrete units OR Heavy-duty fiberglass units with polymer-concrete frame and cover, as directed, SCTE 77, Tier 8 structural load rating.
 3) Handholes and Pull Boxes Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading.
 g. Comply with the following indoor applications, unless otherwise indicated:
 a. Exposed, Not Subject to Physical Damage: EMT OR ENT OR RNC, as directed.
 b. Exposed, Not Subject to Severe Physical Damage: EMT OR RNC identified for such use, as directed.
 c. Exposed and Subject to Severe Physical Damage: Rigid steel conduit OR IMC, as directed. Includes raceways in the following locations:
 1) Loading dock.
 2) Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 3) Mechanical rooms.
 d. Concealed in Ceilings and Interior Walls and Partitions: EMT OR ENT OR RNC, Type EPC-40-PVC, as directed.
 e. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 f. Damp or Wet Locations: Rigid steel conduit OR IMC, as directed.
 g. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical fiber/communications cable raceway OR EMT, as directed.
 h. Raceways for Optical Fiber or Communications Cable Risers in Vertical Shafts: Riser-type, optical fiber/communications cable raceway OR EMT, as directed.
 i. Raceways for Concealed General Purpose Distribution of Optical Fiber or Communications Cable: General-use, optical fiber/communications cable raceway OR Riser-type, optical fiber/communications cable raceway OR Plenum-type, optical fiber/communications cable raceway OR EMT, as directed.
 j. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel OR nonmetallic, as directed, in damp or wet locations.

3. Minimum Raceway Size: 1/2-inch (16-mm) OR 3/4-inch (21-mm), as directed, trade size.
4. Raceway Fittings: Compatible with raceways and suitable for use and location.
 a. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 b. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.
5. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.
6. Do not install aluminum conduits in contact with concrete.

B. Installation
1. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
2. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
3. Complete raceway installation before starting conductor installation.
4. Support raceways as specified in Division 26 Section(s) "Hangers And Supports For Electrical Systems" AND "Vibration And Seismic Controls For Electrical Systems".
5. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
6. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.
7. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
8. Raceways Embedded in Slabs:
 a. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 b. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 c. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor.
9. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
10. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.
11. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.
12. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows:
 a. 3/4-Inch (19-mm) Trade Size and Smaller: Install raceways in maximum lengths of 50 feet (15 m).
 b. 1-Inch (25-mm) Trade Size and Larger: Install raceways in maximum lengths of 75 feet (23 m).
 c. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.
13. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 a. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 b. Where otherwise required by NFPA 70.
14. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet (7.6 m).
 a. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location:
 1) Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 2) Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
3) Indoor Spaces: Connected with the Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.

4) Attics: 135 deg F (75 deg C) temperature change.

b. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change.

c. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation.

15. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures, as directed, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

a. Use LFMC in damp or wet locations subject to severe physical damage.

b. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

17. Set metal floor boxes level and flush with finished floor surface.

18. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

C. Installation Of Underground Conduit

1. Direct-Buried Conduit:

a. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter.

b. Install backfill as specified in Division 31 Section "Earth Moving"

c. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving".

d. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow.

OR

Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor:

1) Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.

OR

For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

e. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried conduits, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of conduit.

D. Installation Of Underground Handholes And Boxes

1. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

2. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

3. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.
4. Install handholes and boxes with bottom below the frost line, *<Insert depth of frost line below grade at Project site>* below grade.
5. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure.
6. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

E. Sleeve Installation For Electrical Penetrations
1. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping".
2. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
3. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
4. Rectangular Sleeve Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 b. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).
5. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
6. Cut sleeves to length for mounting flush with both surfaces of walls.
7. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
8. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway unless sleeve seal is to be installed or unless seismic criteria require different clearance.
9. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies, *as directed*.
10. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
11. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping".
12. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work.
13. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
14. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway and sleeve for installing mechanical sleeve seals.

F. Sleeve-Seal Installation
1. Install to seal underground, exterior wall penetrations.
2. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

G. Firestopping
1. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping".

H. Protection
1. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 a. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 b. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 26 27 16 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 41 13 00</td>
<td>26 05 26 00</td>
<td>Lightning Protection</td>
</tr>
</tbody>
</table>
SECTION 26 56 13 00 - EXTERIOR LIGHTING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for exterior lighting. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Exterior luminaires with lamps and ballasts.
 b. Luminaire-mounted photoelectric relays.
 c. Poles and accessories.
 d. Luminaire lowering devices.

C. Definitions
1. CCT: Correlated color temperature.
2. CRI: Color-rendering index.
3. HID: High-intensity discharge.
4. LER: Luminaire efficacy rating.
5. Luminaire: Complete lighting fixture, including ballast housing if provided.
6. Pole: Luminaire support structure, including tower used for large area illumination.
7. Standard: Same definition as "Pole" above.

D. Structural Analysis Criteria For Pole Selection
1. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied as stated in AASHTO LTS-4-M.
2. Live Load: Single load of 500 lbf (2224 N), distributed as stated in AASHTO LTS-4-M.
3. Ice Load: Load of 3 lbf/sq. ft. (145 Pa), applied as stated in AASHTO LTS-4-M Ice Load Map.
4. Wind Load: Pressure of wind on pole and luminaire and banners and banner arms, calculated and applied as stated in AASHTO LTS-4-M.
 a. Basic wind speed for calculating wind load for poles exceeding 49.2 feet (15 m) in height is 100 mph (45 m/s) OR 90 mph (40 m/s), as directed.
 1) Wind Importance Factor: 1.0.
 3) Velocity Conversion Factors: 1.0.
 b. Basic wind speed for calculating wind load for poles 50 feet (15 m) high or less is 100 mph (45 m/s) OR 90 mph (40 m/s).
 1) Wind Importance Factor: 1.0.
 3) Velocity Conversion Factors: 1.0.

E. Submittals
1. Product Data: For each luminaire, pole, and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following:
 a. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
 b. Details of attaching luminaires and accessories.
 c. Details of installation and construction.
 d. Luminaire materials.
e. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories.
 1) Testing Agency Certified Data: For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
 OR
 Manufacturer Certified Data: Photometric data shall be certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

f. Photoelectric relays.
g. Ballasts, including energy-efficiency data.
h. Lamps, including life, output, CCT, CRI, lumens, and energy-efficiency data.
i. Materials, dimensions, and finishes of poles.
j. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.
k. Anchor bolts for poles.
l. Manufactured pole foundations.

2. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 a. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 b. Anchor-bolt templates keyed to specific poles and certified by manufacturer.
 c. Design calculations, certified by a qualified professional engineer, indicating strength of screw foundations and soil conditions on which they are based.
 d. Wiring Diagrams: For power, signal, and control wiring.

4. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements in AASHTO LTS-4-M and that load imposed by luminaire and attachments has been included in design. The certification shall be based on design calculations by a professional engineer.

5. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.

6. Field quality-control reports.

7. Operation and Maintenance Data: For luminaires and poles OR luminaire lowering devices, as directed, to include in emergency, operation, and maintenance manuals.

8. Warranty: Sample of special warranty.

F. Quality Assurance
 1. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers’ laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
 OR
 Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.

2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

4. Comply with NFPA 70.

G. Delivery, Storage, And Handling
 1. Package aluminum poles for shipping according to ASTM B 660.
 2. Store poles on decay-resistant-treated skids at least 12 inches (300 mm) above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.
3. Handle wood poles so they will not be damaged. Do not use pointed tools that can indent pole surface more than 1/4 inch (6 mm) deep. Do not apply tools to section of pole to be installed below ground line.

4. Retain factory-applied pole wrappings on fiberglass and laminated wood poles until right before pole installation. Handle poles with web fabric straps.

5. Retain factory-applied pole wrappings on metal poles until right before pole installation. For poles with nonmetallic finishes, handle with web fabric straps.

H. Warranty
1. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs or alterations from special warranty coverage.
 a. Warranty Period for Luminaires: Five years from date of Substantial Completion.
 b. Warranty Period for Metal Corrosion: Five years from date of Substantial Completion.
 c. Warranty Period for Color Retention: Five years from date of Substantial Completion.
 d. Warranty Period for Poles: Repair or replace lighting poles and standards that fail in finish, materials, and workmanship within manufacturer's standard warranty period, but not less than three years from date of Substantial Completion.

1.2 PRODUCTS
A. General Requirements For Luminaires
1. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.
 a. LER Tests Incandescent Fixtures: Where LER is specified, test according to NEMA LE 5A.
 b. LER Tests Fluorescent Fixtures: Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
 c. LER Tests HID Fixtures: Where LER is specified, test according to NEMA LE 5B.
2. Lateral Light Distribution Patterns: Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
4. Sheet Metal Components: Corrosion-resistant aluminum unless otherwise indicated. Form and support to prevent warping and sagging.
5. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.
6. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.
8. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
9. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.
10. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 a. White Surfaces: 85 percent.
 b. Specular Surfaces: 83 percent.
 c. Diffusing Specular Surfaces: 75 percent.
11. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
12. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

 a. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling."
 b. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 1) Color: As selected from manufacturer's standard catalog of colors OR As selected from manufacturer's full range, as directed.

 a. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 b. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
 c. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 d. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
 1) Color: Light bronze OR Medium bronze OR Dark bronze OR Black, as directed.

15. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 a. Label shall include the following lamp and ballast characteristics:
 1) "USES ONLY" and include specific lamp type.
 2) Lamp diameter code (T-4, T-5, T-8, T-12), tube configuration (twin, quad, triple), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.
 3) Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
 4) Start type (preheat, rapid start, instant start) for fluorescent and compact fluorescent luminaires.
 5) ANSI ballast type (M98, M57, etc.) for HID luminaires.
 6) CCT and CRI for all luminaires.

B. Luminaire-Mounted Photoelectric Relays
 1. Comply with UL 773 or UL 773A.
 2. Contact Relays: Factory mounted, single throw, designed to fail in the on position, and factory set to turn light unit on at 1.5 to 3 fc (16 to 32 lx) and off at 4.5 to 10 fc (48 to 108 lx) with 15-second minimum time delay. Relay shall have directional lens in front of photocell to prevent artificial light sources from causing false turnoff, as directed.
 a. Relay with locking-type receptacle shall comply with ANSI C136.10.
 b. Adjustable window slide for adjusting on-off set points.

C. Fluorescent Ballasts And Lamps
 1. Ballasts for Low-Temperature Environments:
a. Temperatures 0 Deg F (Minus 17 Deg C) and Higher: Electronic or electromagnetic type rated for 0 deg F (minus 17 deg C) starting and operating temperature with indicated lamp types.

b. Temperatures Minus 20 Deg F (Minus 29 Deg C) and Higher: Electromagnetic type designed for use with indicated lamp types.

2. Ballast Characteristics:
 a. Power Factor: 90 percent, minimum.
 b. Sound Rating: Class A OR Class A except Class B for T12/HO ballasts, as directed.
 c. Total Harmonic Distortion Rating: Less than 10 OR 20, as directed, percent.
 d. Electromagnetic Ballasts: Comply with ANSI C82.1, energy-saving, high power factor, Class P, automatic-reset thermal protection.
 f. Transient-Voltage Protection: Comply with IEEE C62.41.1 and IEEE C62.41.2, Category A or better.

3. Low-Temperature Lamp Capability: Rated for reliable starting and operation with ballast provided at temperatures 0 deg F (minus 18 deg C) OR minus 20 deg F (minus 29 deg C), as directed, and higher.

D. Ballasts For HID Lamps
 1. Comply with ANSI C82.4 and UL 1029 and capable of open-circuit operation without reduction of average lamp life. Include the following features unless otherwise indicated:
 a. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
 b. Minimum Starting Temperature: Minus 22 deg F (Minus 30 deg C).
 c. Normal Ambient Operating Temperature: 104 deg F (40 deg C).
 d. Ballast Fuses: One in each ungrounded power supply conductor. Voltage and current ratings as recommended by ballast manufacturer.

2. Auxiliary, Instant-On, Quartz System: Factory-installed feature automatically switches quartz lamp on when fixture is initially energized and when momentary power outages occur. System automatically turns quartz lamp off when HID lamp reaches approximately 60 percent of light output.

3. High-Pressure Sodium Ballasts: Electromagnetic type with solid-state igniter/starter and capable of open-circuit operation without reduction of average lamp life. Igniter/starter shall have an average life in pulsing mode of 10,000 hours at an igniter/starter-case temperature of 90 deg C.
 a. Instant-Restrike Device: Integral with ballast, or solid-state potted module, factory installed within fixture and compatible with lamps, ballasts, and mogul sockets up to 150 W.
 1) Restrike Range: 105- to 130-V ac.
 2) Maximum Voltage: 250-V peak or 150-V ac rms.
 b. Minimum Starting Temperature: Minus 40 deg F (Minus 40 deg C).

E. HID Lamps
 1. High-Pressure Sodium Lamps: ANSI C78.42, CRI 21 (minimum), CCT color temperature 1900 K, and average rated life of 24,000 hours, minimum.
 a. Dual-Arc Tube Lamp: Arranged so only one of two arc tubes is lighted at one time and, when power is restored after an outage, the cooler arc tube, with lower internal pressure, lights instantly, providing an immediate 8 to 15 percent of normal light output.
 2. Low-Pressure Sodium Lamps: ANSI C78.43.
 3. Metal-Halide Lamps: ANSI C78.43, with minimum CRI 65, and CCT color temperature 4000 K.
 4. Pulse-Start, Metal-Halide Lamps: Minimum CRI 65, and CCT color temperature 4000 K.
 5. Ceramic, Pulse-Start, Metal-Halide Lamps: Minimum CRI 80, and CCT color temperature 4000 K.

F. General Requirements For Poles And Support Components
 1. Structural Characteristics: Comply with AASHTO LTS-4-M.
26 - Electrical

[Image 475x710 to 535x770]

Electrical Exterior Lighting

July 2012

56 13 00 - 6 County of Santa Clara Roads and Airports Department, RAD-2012-01

a. Wind-Load Strength of Poles: Adequate at indicated heights above grade without failure, permanent deflection, or whipping in steady winds of speed indicated in "Structural Analysis Criteria for Pole Selection" Article.

b. Strength Analysis: For each pole, multiply the actual equivalent projected area of luminaires and brackets by a factor of 1.1 to obtain the equivalent projected area to be used in pole selection strength analysis.

2. Luminaire Attachment Provisions: Comply with luminaire manufacturers' mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated.

3. Mountings, Fasteners, and Appurtenances: Corrosion-resistant items compatible with support components.

a. **Materials:** Shall not cause galvanic action at contact points.

b. **Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers:** Hot-dip galvanized after fabrication unless otherwise indicated.

c. **Anchor-Bolt Template:** Plywood or steel.

4. **Handhole:** Oval-shaped, with minimum clear opening of 2-1/2 by 5 inches (65 by 130 mm), with cover secured by stainless-steel captive screws. Provide on all, except wood poles.

5. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Concrete, reinforcement, and formwork are specified in Division 3 Section "Cast-in-Place Concrete."

6. Power-Installed Screw Foundations: Factory fabricated by pole manufacturer, with structural steel complying with ASTM A 36/A 36M and hot-dip galvanized according to ASTM A 123/A 123M; and with top-plate and mounting bolts to match pole base flange and strength required to support pole, luminaire, and accessories.

7. Breakaway Supports: Frangible breakaway supports, tested by an independent testing agency acceptable to authorities having jurisdiction, according to AASHTO LTS-4-M.

G. Steel Poles

1. **Poles:** Comply with ASTM A 500, Grade B, carbon steel with a minimum yield of 46,000 psig (317 MPa); one-piece construction up to 40 feet (12 m) in height with access handhole in pole wall.

 a. **Shape:** Round, tapered OR Round, straight OR Square, tapered OR Square, straight, as directed.

 b. **Mounting Provisions:** Butt flange for bolted mounting on foundation or breakaway support.

2. **Steel Mast Arms:** Single-arm OR Truss OR Davit, as directed, type, continuously welded to pole attachment plate. Material and finish same as pole.

3. **Brackets for Luminaires:** Detachable, cantilever, without underbrace.

 a. **Adapter fitting welded to pole, allowing the bracket to be bolted to the pole mounted adapter, then bolted together with stainless OR galvanized, as directed,-steel bolts.**

 b. **Cross Section:** Tapered oval, with straight tubular end section to accommodate luminaire.

 c. **Match pole material and finish.**

4. **Pole-Top Tenons:** Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.

5. **Steps:** Fixed steel, with nonslip treads, positioned for 15-inch (381-mm) vertical spacing, alternating on opposite sides of pole; first step at elevation 10 feet (3 m) above finished grade.

6. **Intermediate Handhole and Cable Support:** Weathertight, 3-by-5-inch (76-by-127-mm) handhole located at midpoint of pole with cover for access to internal welded attachment lug for electric cable support grip.

7. **Grounding and Bonding Lugs:** Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Division 26 Section "Grounding And Bonding For Electrical Systems", listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.

8. **Cable Support Grip:** Wire-mesh type with rotating attachment eye, sized for diameter of cable and rated for a minimum load equal to weight of supported cable times a 5.0 safety factor.
11. Galvanized Finish: After fabrication, hot-dip galvanize complying with ASTM A 123/A 123M.
 a. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or with SSPC-SP 8, "Pickling."
 b. Interior Surfaces of Pole: One coat of bituminous paint, or otherwise treat for equal corrosion protection.
 c. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 1) Color: As indicated by manufacturer's designations OR As selected from manufacturer's full range, as directed.

H. Aluminum Poles
 1. Poles: Seamless, extruded structural tube complying with ASTM B 429/B 429M, Alloy 6063-T6 with access handhole in pole wall.
 a. Shape: Round, tapered OR Round, straight OR Square, tapered OR Square, straight, as directed.
 b. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
 3. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
 4. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Division 26 Section "Grounding And Bonding For Electrical Systems", listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.
 5. Brackets for Luminaires: Detachable, with pole and adapter fittings of cast aluminum. Adapter fitting welded to pole and bracket, then bolted together with stainless-steel bolts.
 a. Tapered oval cross section, with straight tubular end section to accommodate luminaire.
 b. Finish: Same as pole OR luminaire, as directed.
 a. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 b. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
 c. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 d. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
 1) Color: Light bronze OR Medium bronze OR Dark bronze OR Black OR As selected from manufacturer's full range, as directed.

I. Fiberglass Poles
1. Poles: Designed specifically for supporting luminaires, with factory-formed cable entrance and handhole. Not less than 65 percent fiberglass, with resin and pigment making up the remainder.
 a. Resin Color: Dark bronze; provide uniform coloration throughout entire wall thickness.
 b. Surface Finish: Pigmented polyurethane, with a minimum dry film thickness of 1.5 mils (0.04 mm). Polyurethane may be omitted if the surface layer of pole is inherently UV inhibited.

J. Decorative Poles
1. Pole Material:
 a. Cast ductile iron.
 b. Cast gray iron, according to ASTM A 48/A 48M, Class 30.
 c. Cast aluminum.
 d. Cast concrete.
 e. Spun concrete.
 f. Steel tube, covered with closed-cell polyurethane foam, with a polyethylene exterior.
2. Mounting Provisions:
 a. Bolted to concrete foundation.
 b. Embedded.
3. Fixture Brackets:
 a. Cast ductile iron.
 b. Cast gray iron.
 c. Cast aluminum.

K. Laminated Wood Poles
1. Species and Grades for Structural Glulam Timber: Engineer and fabricate structural laminated wood poles, complying with ANSI A190.1. Use southern pine OR Douglas fir OR Alaska cedar OR any species listed in AITC 117, as directed, to withstand indicated structural loads without exceeding allowable design working stresses according to AITC 117.
2. Features: Include wood bracket OR wood crossarm OR pole-top adapter, as directed, for mounting luminaire(s), metal pole cap, as directed, and concealed raceway path connected to access handhole.
4. Appearance Grade: Architectural appearance grade complying with AITC 110.
5. Preservative Treatment: Pressure treat lumber before gluing according to AWPA C28 for waterborne preservatives. After dressing and end-cutting each member to final size and shape, apply a field-treatment preservative to comply with AWPA M4 to surfaces cut to a depth of more than 1/16 inch (1.6 mm).
7. End Sealer: Manufacturer's standard, transparent, colorless wood sealer that is effective in retarding the transmission of moisture at cross-grain cuts and is compatible with indicated finish.
8. Penetrating Sealer: Manufacturer's standard, transparent, penetrating wood sealer that is compatible with indicated finish.
9. Finish: Natural, unstained wood OR Semitransparent stain applied after erection OR Semitransparent stain applied at factory, as directed, color as selected.

L. Wood Poles
1. Poles: Douglas fir OR Southern yellow pine, as directed, machine trimmed by turning, as directed, complying with ANSI O5.1 and with AWPA C4 for wood species used; and bored, roofed, and gained before treatment.
2. Preservative Treatment: Pressure treat poles with creosote OR pentachlorophenol OR ammoniacal copper arsenate, as directed, according to AWPA C1 and AWPA C4.
M. Prestressed Concrete Poles
1. Poles: Manufactured by centrifugal spin-casting process OR of cast concrete, as directed.
 a. Shape: Round, tapered OR Round, straight OR Square, tapered OR Square, straight, as directed.
 b. Mounting Provisions: Steel butt flange for bolted mounting to foundation or breakaway support OR Embedded, as directed.
 c. Finishing: Capped at top and plugged at bottom. Seat each steel reinforcing strand with epoxy adhesive.
 d. Grounding: Continuous copper ground wire cast into pole. Terminate at top of pole and attach to 24-inch (610-mm) lightning rod, as directed.
2. Cure with wet steam and age for a minimum of 15 days before installation.
3. Fabricate poles with a hard, nonporous surface that is resistant to water, frost, and road and soil chemicals and that has a maximum water-absorption rate of 3 percent.
4. Cast aluminum nameplate into pole wall at approximately 5 feet (1.5 m) above ground line, listing name of manufacturer, Project identifier, overall height, and approximate weight.
6. Finish Color: Provided by color material complying with ASTM C 979, uniformly impregnated throughout the pole concrete. Color material shall provide a uniform, stable, permanent color and be as follows:
 a. Inert, and carbon free.
 b. Unaffected by environmental conditions and contaminants including, but not limited to, UV solar radiation, salts, and alkalis.
7. Finish Texture: Standard form OR Polished exposed aggregate OR Etched exposed aggregate, as directed.
 a. Exposed aggregate shall be of <Insert aggregate type selected from manufacturers' lists> type.

N. Pole Accessories
1. Duplex Receptacle: 120 V, 20 A in a weatherproof assembly complying with Division 16 Section "Wiring Devices" for ground-fault circuit-interrupter type.
 a. Surface mounted OR Recessed, as directed, 12 inches (300 mm) above finished grade.
 b. Nonmetallic polycarbonate plastic or reinforced fiberglass, weatherproof in use, cover, that when mounted results in NEMA 250, Type 3R OR Type 4X, as directed, enclosure.
 c. With cord opening.
 d. With lockable hasp and latch that complies with OSHA lockout and tag-out requirements.
2. Minimum 1800-W transformer, protected by replaceable fuses, mounted behind access cover.
3. Base Covers: Manufacturers' standard metal units, arranged to cover pole's mounting bolts and nuts. Finish same as pole.
4. Transformer Type Base: Same material and color as pole. Coordinate dimensions to suit pole's base flange and accept ballast(s) OR indicated accessories, as directed.
5. Decorative accessories, supplied by decorative pole manufacturer, include the following:
 a. Banner Arms: <Insert material>.
 b. Flag Holders: <Insert material>.
 c. Ladder Rests: <Insert material>.

O. Lowering System For Luminaires
1. Arrange system to lower luminaire OR luminaire assembly, as directed, to a servicing position within 36 inches (900 mm) of finished grade in winds up to 30 mph (49 km/h) and to provide for manual plug connection to electrical power in the lowered position for testing.
2. Coordinate with luminaire and pole manufacturers for assembly details, wind-load and vibration analysis, and compatibility of materials for electrolysis-free attachment and connection for luminaire mounting assembly, lowering device, lowering cable, and portable winch.
3. Structural and Mechanical Design: Use a minimum safety factor of 5.0 for static and dynamic loads of load-bearing components, including cable.
4. Luminaire Mounting and Disconnect Arrangement: Multiple ring OR carriage, as directed,-mounted luminaires, arranged for lowering and rising as a group.
 a. Electrical cable for normal operating power to luminaires manually disconnects inside pole base, using weatherproof multipin connector, and shall be arranged to move within the pole during lowering and rising of luminaire assembly.
 OR
 Electrical cable for normal operating power to luminaires automatically disconnects at a weatherproof multipin connector within the pole-top lowering head at the beginning of the lowering cycle and reconnects when luminaire or luminaire assembly is raised to the operating position.

5. Lowering Device: Weatherproof, cast-aluminum housing and multiple mechanical latches. Moving parts of latching assembly shall be located in the portion of the unit that is lowered to the servicing position. Positive latching in the operating position shall be indicated to the operator at the base of the pole by a clear visual signal, or by other means acceptable to Owner or authorities having jurisdiction.

6. Lowering Cable: Zinc-electroplated- or stainless-steel aircraft cable.

7. Portable Winch: Manual OR 120-V electric, as directed, type. One required.
 b. Winch Raise-Lower Control: Remote-control station with 15 feet (5 m) of cable.

8. Winch Transformer: Portable, totally enclosed, encapsulated, single-phase, dry type. Primary rated at lighting-circuit voltage; secondary rated at 120 V. Permanent, primary and secondary, twist-locking plug connectors on pigtails shall match pole-base power outlet and winch plug.

1.3 EXECUTION

A. Luminaire Installation
 1. Install lamps in each luminaire.
 2. Fasten luminaire to indicated structural supports.
 a. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
 3. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation, as directed.

B. Pole Installation
 1. Alignment: Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on the pole.
 2. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features unless otherwise indicated on Drawings:
 a. Fire Hydrants and Storm Drainage Piping: 60 inches (1520 mm).
 b. Water, Gas, Electric, Communication, and Sewer Lines: 10 feet (3 m).
 c. Trees: 15 feet (5 m) from tree trunk.
 3. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Division 03 Section "Cast-in-place Concrete".
 4. Foundation-Mounted Poles: Mount pole with leveling nuts, and tighten top nuts to torque level recommended by pole manufacturer.
 a. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer.
 b. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space.
 c. Install base covers unless otherwise indicated.
d. Use a short piece of 1/2-inch- (13-mm-) diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.

5. Embedded Poles with Tamped Earth Backfill: Set poles to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height.
 a. Dig holes large enough to permit use of tampers in the full depth of hole.
 b. Backfill in 6-inch (150-mm) layers and thoroughly tamp each layer so compaction of backfill is equal to or greater than that of undisturbed earth.

6. Embedded Poles with Concrete Backfill: Set poles in augered holes to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height.
 a. Make holes 6 inches (150 mm) in diameter larger than pole diameter.
 b. Fill augered hole around pole with air-entrained concrete having a minimum compressive strength of 3000 psi (20 MPa) at 28 days, and finish in a dome above finished grade.
 c. Use a short piece of 1/2-inch- (13-mm-) diameter pipe to make a drain hole through concrete dome. Arrange to drain condensation from interior of pole.
 d. Cure concrete a minimum of 72 hours before performing work on pole.

7. Poles and Pole Foundations Set in Concrete Paved Areas: Install poles with minimum of 6-inch-(150-mm-) wide, unpaved gap between the pole or pole foundation and the edge of adjacent concrete slab. Fill unpaved ring with pea gravel to a level 1 inch (25 mm) below top of concrete slab.

8. Raise and set poles using web fabric slings (not chain or cable).

C. Bollard Luminaire Installation
1. Align units for optimum directional alignment of light distribution.
2. Install on concrete base with top 4 inches (100 mm) above finished grade or surface at bollard location. Cast conduit into base, and shape base to match shape of bollard base. Finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 03 Section “Cast-in-place Concrete”.

D. Installation Of Individual Ground-Mounting Luminaires
1. Install on concrete base with top 4 inches (100 mm) above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 03 Section “Cast-in-place Concrete”.

E. Corrosion Prevention
1. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
2. Steel Conduits: Comply with Division 26 Section “Raceway And Boxes For Electrical Systems”. In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

F. Grounding
1. Ground metal poles and support structures according to Division 26 Section “Grounding And Bonding For Electrical Systems”.
 a. Install grounding electrode for each pole unless otherwise indicated.
 b. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.

2. Ground nonmetallic poles and support structures according to Division 26 Section “Grounding And Bonding For Electrical Systems”.
 a. Install grounding electrode for each pole.
 b. Install grounding conductor and conductor protector.
 c. Ground metallic components of pole accessories and foundations.

G. Field Quality Control
1. Inspect each installed fixture for damage. Replace damaged fixtures and components.
2. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
 a. Verify operation of photoelectric controls.
3. Illumination Tests:
 a. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IESNA testing guide(s):
 1) IESNA LM-5, "Photometric Measurements of Area and Sports Lighting Installations."
 2) IESNA LM-50, "Photometric Measurements of Roadway Lighting Installations."
 4) IESNA LM-64, "Photometric Measurements of Parking Areas."
 5) IESNA LM-72, "Directional Positioning of Photometric Data."
4. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

H. Demonstration
 1. Train Owner's maintenance personnel to adjust, operate, and maintain luminaire lowering devices.

END OF SECTION 26 56 13 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 56 13 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>26 56 13 00</td>
<td>26 05 26 00b</td>
<td>Overhead Electrical Distribution</td>
</tr>
<tr>
<td>26 56 19 00</td>
<td>26 56 13 00</td>
<td>Exterior Lighting</td>
</tr>
<tr>
<td>Task</td>
<td>Specification</td>
<td>Specification Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>27 14 13 13</td>
<td>26 05 19 16</td>
<td>Conductors And Cables</td>
</tr>
<tr>
<td>27 14 13 13</td>
<td>26 05 19 16a</td>
<td>Undercarpet Cables</td>
</tr>
<tr>
<td>27 14 13 13</td>
<td>26 05 19 16b</td>
<td>Medium-Voltage Cables</td>
</tr>
<tr>
<td>27 14 13 16</td>
<td>26 05 19 16</td>
<td>Conductors And Cables</td>
</tr>
<tr>
<td>27 14 13 16</td>
<td>26 05 19 16a</td>
<td>Undercarpet Cables</td>
</tr>
<tr>
<td>27 14 13 16</td>
<td>26 05 19 16b</td>
<td>Medium-Voltage Cables</td>
</tr>
<tr>
<td>27 14 33 16</td>
<td>26 05 19 16</td>
<td>Conductors And Cables</td>
</tr>
</tbody>
</table>
SECTION 31 05 13 00 - EARTHWORK

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of materials for earthwork. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
 1. Section Includes:
 a. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses, and plants.
 b. Excavating and backfilling for buildings and structures.
 c. Drainage course for concrete slabs-on-grade.
 d. Subbase course for concrete walks and pavements.
 e. Subbase course and base course for asphalt paving.
 f. Subsurface drainage backfill for walls and trenches.
 g. Excavating and backfilling trenches for utilities and pits for buried utility structures.
 h. Excavating well hole to accommodate elevator-cylinder assembly.

C. Definitions
 1. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 a. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 b. Final Backfill: Backfill placed over initial backfill to fill a trench.
 2. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.
 3. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.
 4. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
 5. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.
 6. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 a. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by the Owner. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
 b. Bulk Excavation: Excavation more than 10 feet (3 m) in width and more than 30 feet (9 m) in length.
 c. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by the Owner. Unauthorized excavation, as well as remedial work directed by the Owner, shall be without additional compensation.
 7. Fill: Soil materials used to raise existing grades.
 8. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material that exceed 1 cu. yd. (0.76 cu. m) for bulk excavation or 3/4 cu. yd. (0.57 cu. m) for footing, trench, and pit excavation that cannot be removed by rock excavating equipment equivalent to the following in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted:
 a. Excavation of Footings, Trenches, and Pits: Late-model, track-mounted hydraulic excavator; equipped with a 42-inch- (1065-mm-) wide, maximum, short-tip-radius rock bucket; rated at not less than 138-hp (103-kW) flywheel power with bucket-curving force of
not less than 28,700 lbf (128 kN) and stick-crowd force of not less than 18,400 lbf (82 kN) with extra-long reach boom; measured according to SAE J-1179.

b. Bulk Excavation: Late-model, track-mounted loader; rated at not less than 230-hp (172-kW) flywheel power and developing a minimum of 47,992-lbf (213.3-kN) breakout force with a general-purpose bare bucket; measured according to SAE J-732.

9. If Standard Penetration Values are used to Define Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material 3/4 cu. yd. (0.57 cu. m) or more in volume that exceed a standard penetration resistance of 100 blows/2 inches (97 blows/50 mm) when tested by a geotechnical testing agency, according to ASTM D 1586.

10. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

11. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.

12. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.

13. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

D. Submittals
1. Product Data: For each type of the following manufactured products required:
 a. Geotextiles.
 b. Controlled low-strength material, including design mixture.
 c. Geofoam.
 d. Warning tapes.

2. Samples: For the following products, in sizes indicated below:
 a. Geotextile: 12 by 12 inches (300 by 300 mm).
 b. Warning Tape: 12 inches (300 mm) long; of each color.

3. Qualification Data: For qualified testing agency.

4. Material Test Reports: For each on-site and borrow soil material proposed for fill and backfill as follows:
 a. Classification according to ASTM D 2487.
 b. Laboratory compaction curve according to ASTM D 698 OR ASTM D 1557, as directed.

5. Blasting plan approved by authorities having jurisdiction.

7. Pre-excavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by earth moving operations. Submit before earth moving begins.

E. Quality Assurance
1. Blasting:
 a. blasting will not be allowed.

 OR

 Comply with applicable requirements in NFPA 495, "Explosive Materials Code," and prepare a blasting plan reporting the following:
 1) Types of explosive and sizes of charge to be used in each area of rock removal, types of blasting mats, sequence of blasting operations, and procedures that will prevent damage to site improvements and structures on Project site and adjacent properties.
 2) Seismographic monitoring during blasting operations.

 2. Seismic Survey Agency: An independent testing agency, acceptable to authorities having jurisdiction, experienced in seismic surveys and blasting procedures to perform the following services:
a. Report types of explosive and sizes of charge to be used in each area of rock removal, types of blasting mats, sequence of blasting operations, and procedures that will prevent damage to site improvements and structures on Project site and adjacent properties.
b. Seismographic monitoring during blasting operations.

3. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E 329 and ASTM D 3740 for testing indicated.

4. Pre-excavation Conference: Conduct conference at Project site.

F. Project Conditions
1. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth moving operations.
a. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
b. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.

2. Improvements on Adjoining Property: Authority for performing earth moving indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.

3. Do not proceed with work on adjoining property until directed by the Owner.

4. Utility Locator Service: Notify utility locator service OR Miss Utility" OR "Call Before You Dig" OR "Dig Safe System" OR "One Call", as directed, for area where Project is located before beginning earth moving operations.

5. Do not commence earth moving operations until temporary erosion- and sedimentation-control measures, specified in Division 01 Section(s) "Temporary Facilities And Controls" OR Division 31 Section(s) "Site Clearing", as directed, are in place.

6. Do not commence earth moving operations until plant-protection measures specified in Division 01 Section “Temporary Tree And Plant Protection” are in place.

7. The following practices are prohibited within protection zones:
a. Storage of construction materials, debris, or excavated material.
b. Parking vehicles or equipment.
c. Foot traffic.
d. Erection of sheds or structures.
e. Impoundment of water.
f. Excavation or other digging unless otherwise indicated.
g. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.

8. Do not direct vehicle or equipment exhaust towards protection zones.

9. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

1.2 PRODUCTS

A. Soil Materials
1. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

2. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D 2487 OR Groups A-1, A-2-4, A-2-5, and A-3 according to AASHTO M 145, as directed, or a combination of these groups; free of rock or gravel larger than 3 inches (75 mm) in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

3. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487 OR Groups A-2-6, A-2-7, A-4, A-5, A-6, and A-7 according to AASHTO M 145, as directed, or a combination of these groups.
a. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.
4. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 12 percent passing a No. 200 (0.075-mm) sieve.

5. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 95 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.

6. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 12 percent passing a No. 200 (0.075-mm) sieve.

7. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch (25-mm) sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.

8. Drainage Course: Narrowly graded mixture of washed, as directed, crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch (37.5-mm) sieve and 0 to 5 percent passing a No. 8 (2.36-mm) sieve.

9. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D 448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch (25-mm) sieve and 0 to 5 percent passing a No. 4 (4.75-mm) sieve.

10. Sand: ASTM C 33; fine aggregate.

11. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

B. Geotextiles

1. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:
 a. Survivability: Class 2; AASHTO M 288.
 b. Apparent Opening Size: No. 40 (0.425-mm) OR No. 60 (0.250-mm) OR No. 70 (0.212-mm), as directed, sieves, maximum; ASTM D 4751.
 c. Permittivity: 0.5 OR 0.2 OR 0.1, as directed, per second, minimum; ASTM D 4491.
 d. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.

2. Separation Geotextile: Woven geotextile fabric, manufactured for separation applications, made from polyolefins or polyesters; with elongation less than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:
 a. Survivability: Class 2; AASHTO M 288.
 b. Apparent Opening Size: No. 60 (0.250-mm) sieve, maximum; ASTM D 4751.
 c. Permittivity: 0.02 per second, minimum; ASTM D 4491.
 d. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.

C. Controlled Low-Strength Material

1. Controlled Low-Strength Material: Self-compacting, low-density, as directed, flowable concrete material produced from the following:
 a. Portland Cement: ASTM C 150, Type I OR Type II OR Type III, as directed.
 b. Fly Ash: ASTM C 618, Class C or F.
 c. Normal-Weight Aggregate: ASTM C 33, 3/4-inch (19-mm) OR 3/8-inch (10-mm), as directed, nominal maximum aggregate size.
 d. Foaming Agent (if low-density, controlled low-strength material is required): ASTM C 869.
 e. Water: ASTM C 94/C 94M.

2. Produce low-density, controlled low-strength material with the following physical properties:
 a. As-Cast Unit Weight: 30 to 36 lb/cu. ft. (480 to 576 kg/cu. m) OR 36 to 42 lb/cu. ft. (576 to 675 kg/cu. m), as directed, at point of placement, when tested according to ASTM C 138/C 138M.
b. Compressive Strength: 80 psi (550 kPa) OR 140 psi (965 kPa), as directed, when tested according to ASTM C 495.

OR

Produce conventional-weight, controlled low-strength material with 80-psi (550-kPa) OR 140-psi (965-kPa), as directed, compressive strength when tested according to ASTM C 495.

D. Geofoam

1. Extruded-Polystyrene Board Insulation: ASTM C 578, Type IV, 1.55-lb/cu. ft. (25-kg/cu. m) density, 25-psi (173-kPa) compressive strength OR Type X, 1.30-lb/cu. ft. (21-kg/cu. m) density, 15-psi (104-kPa) compressive strength OR Type VI, 1.80-lb/cu. ft. (29-kg/cu. m) density, 40-psi (276-kPa) compressive strength OR Type VII, 2.20-lb/cu. ft. (35-kg/cu. m) density, 60-psi (414-kPa) compressive strength OR Type V, 3.00-lb/cu. ft. (48-kg/cu. m) density, 100-psi (690-kPa) compressive strength, as directed.

2. Molded-Polystyrene Board Insulation: ASTM C 578, Type I, 0.90-lb/cu. ft. (15-kg/cu. m) density, 10-psi (69-kPa) compressive strength OR Type VIII, 1.15-lb/cu. ft. (18-kg/cu. m) density, 13-psi (90-kPa) compressive strength OR Type II, 1.35-lb/cu. ft. (22-kg/cu. m) density, 15-psi (104-kPa) compressive strength, as directed.

a. Manufacture molded polystyrene with an inorganic mineral registered with the EPA and suitable for application as a termite deterrent.

3. Rigid Cellular Polystyrene Geofoam: ASTM D 6817, Type EPS 19, 1.15-lb/cu. ft. (18.4-kg/cu. m) density, 5.8-psi (40-kPa) compressive strength at 1 percent deformation; 16-psi (110-kPa) compressive strength at 10 percent deformation OR Type EPS 39, 2.40-lb/cu. ft. (38.4-kg/cu. m) density, 15-psi (103-kPa) compressive strength at 1 percent deformation; 40-psi (276-kPa) compressive strength at 10 percent deformation, as directed.

4. Connectors: Geofoam manufacturer's multibarbed, galvanized-steel sheet connectors OR Deformed steel reinforcing bars, 3/4 inch (19 mm) in diameter, as directed.

E. Accessories

1. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of the utility; colored as follows:
 b. Yellow: Gas, oil, steam, and dangerous materials.
 c. Orange: Telephone and other communications.
 d. Blue: Water systems.
 e. Green: Sewer systems.

OR

Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches (750 mm) deep; colored as follows:
 g. Yellow: Gas, oil, steam, and dangerous materials.
 h. Orange: Telephone and other communications.
 i. Blue: Water systems.
 j. Green: Sewer systems.

1.3 EXECUTION

A. Preparation

1. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth moving operations.
2. Protect and maintain erosion and sedimentation controls during earth moving operations.
3. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

B. Dewatering
1. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
2. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
 a. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

C. Explosives
1. Explosives: Do not use explosives.
 OR
 Explosives: Obtain written permission from authorities having jurisdiction before bringing explosives to Project site or using explosives on Project site.
 a. Perform blasting without damaging adjacent structures, property, or site improvements.
 b. Perform blasting without weakening the bearing capacity of rock subgrade and with the least-practicable disturbance to rock to remain.

D. Excavation, General
1. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
 a. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.
 b. Remove rock to lines and grades indicated to permit installation of permanent construction without exceeding the following dimensions:
 1) 24 inches (600 mm) outside of concrete forms other than at footings.
 2) 12 inches (300 mm) outside of concrete forms at footings.
 3) 6 inches (150 mm) outside of minimum required dimensions of concrete cast against grade.
 4) Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
 5) 6 inches (150 mm) beneath bottom of concrete slabs-on-grade.
 6) 6 inches (150 mm) beneath pipe in trenches, and the greater of 24 inches (600 mm) wider than pipe or 42 inches (1065 mm) wide.
2. Classified Excavation: Excavate to subgrade elevations. Material to be excavated will be classified as earth and rock. Do not excavate rock until it has been classified and cross sectioned by the Owner. The Contract Sum will be adjusted for rock excavation according to unit prices included in the Contract Documents. Changes in the Contract Time may be authorized for rock excavation.
 a. Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation.
 1) Intermittent drilling; blasting, if permitted; ram hammering; or ripping of material not classified as rock excavation is earth excavation.
 b. Rock excavation includes removal and disposal of rock. Remove rock to lines and subgrade elevations indicated to permit installation of permanent construction without exceeding the following dimensions:
 1) 24 inches (600 mm) outside of concrete forms other than at footings.
2) 12 inches (300 mm) outside of concrete forms at footings.
3) 6 inches (150 mm) outside of minimum required dimensions of concrete cast against grade.
4) Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
5) 6 inches (150 mm) beneath bottom of concrete slabs-on-grade.
6) 6 inches (150 mm) beneath pipe in trenches, and the greater of 24 inches (600 mm) wider than pipe or 42 inches (1065 mm) wide.

E. Excavation For Structures
1. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch (25 mm). If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 a. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
 b. Pile Foundations: Stop excavations 6 to 12 inches (150 to 300 mm) above bottom of pile cap before piles are placed. After piles have been driven, remove loose and displaced material. Excavate to final grade, leaving solid base to receive concrete pile caps.
 c. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch (25 mm). Do not disturb bottom of excavations intended as bearing surfaces.

2. Excavations at Edges of Tree- and Plant-Protection Zones:
 a. Excavate by hand to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 b. Cut and protect roots according to requirements in Division 01 Section "Temporary Tree And Plant Protection".

F. Excavation For Walks And Pavements
1. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

G. Excavation For Utility Trenches
1. Excavate trenches to indicated gradients, lines, depths, and elevations.
 a. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.
2. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches (300 mm) higher than top of pipe or conduit unless otherwise indicated.
 a. Clearance: 12 inches (300 mm) each side of pipe or conduit OR As indicated, as directed.
3. Trench Bottoms (if a bedding course is not required under pipe and conduit): Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.
 a. For pipes and conduit less than 6 inches (150 mm) in nominal diameter, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
 b. For pipes and conduit 6 inches (150 mm) or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe or conduit circumference. Fill depressions with tamped sand backfill.
 c. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit on an undisturbed subgrade.
d. Excavate trenches 6 inches (150 mm) deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

4. Trench Bottoms (if a bedding course is required under pipe and conduit): Excavate trenches 4 inches (100 mm) deeper than bottom of pipe and conduit elevations to allow for bedding course. Hand-excavate deeper for bells of pipe.
 a. Excavate trenches 6 inches (150 mm) deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

5. Trenches in Tree- and Plant-Protection Zones:
 a. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 b. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.
 c. Cut and protect roots according to requirements in Division 01 Section “Temporary Tree And Plant Protection”.

H. Excavation For Elevator Cylinder
1. Drill well hole plumb in elevator pit to accommodate installation of elevator-cylinder assembly. Coordinate with applicable requirements for diameter and tolerances in Division 14 Section(s) “Hydraulic Elevators” OR “Hydraulic Freight Elevators”, as directed.
2. Provide well casing as necessary to retain walls of well hole.

I. Subgrade Inspection
1. Notify the Owner when excavations have reached required subgrade.
2. If the Owner determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.
3. Proof-roll subgrade below the building slabs and pavements with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons (13.6 tonnes) to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 a. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph (5 km/h).
 b. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by the Owner, and replace with compacted backfill or fill as directed.
4. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
5. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by the Owner, without additional compensation.

J. Unauthorized Excavation
1. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi (17.2 MPa), may be used when approved by the Owner.
 a. Fill unauthorized excavations under other construction, pipe, or conduit as directed by the Owner.

K. Storage Of Soil Materials
1. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 a. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

L. Backfill
1. Place and compact backfill in excavations promptly, but not before completing the following:
a. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.

b. Surveying locations of underground utilities for Record Documents.

c. Testing and inspecting underground utilities.

d. Removing concrete formwork.

e. Removing trash and debris.

f. Removing temporary shoring and bracing, and sheeting.

g. Installing permanent or temporary horizontal bracing on horizontally supported walls.

2. Place backfill on subgrades free of mud, frost, snow, or ice.

M. Utility Trench Backfill
1. Place backfill on subgrades free of mud, frost, snow, or ice.
2. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
3. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches (450 mm) of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Division 03 Section "Cast-in-place Concrete".
4. Trenches under Roadways: Provide 4-inch- (100-mm-) thick, concrete-base slab support for piping or conduit less than 30 inches (750 mm) below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches (100 mm) of concrete before backfilling or placing roadway subbase course. Concrete is specified in Division 03 Section "Cast-in-place Concrete".
5. Backfill voids with satisfactory soil while removing shoring and bracing.
6. If soil material is required as initial backfill, place and compact initial backfill of subbase material OR satisfactory soil, as directed, free of particles larger than 1 inch (25 mm) in any dimension, to a height of 12 inches (300 mm) over the pipe or conduit.
 a. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
7. Controlled Low-Strength Material: If controlled low-strength material is permitted or required as initial backfill, place initial backfill of controlled low-strength material to a height of 12 inches (300 mm) over the pipe or conduit. Coordinate backfilling with utilities testing.
8. If satisfactory soil material is required as final backfill, place and compact final backfill of satisfactory soil to final subgrade elevation.
9. Controlled Low-Strength Material: If controlled low-strength material is permitted or required as final backfill, place final backfill of controlled low-strength material to final subgrade elevation.
10. Install warning tape directly above utilities, 12 inches (300 mm) below finished grade, except 6 inches (150 mm) below subgrade under pavements and slabs.

N. Soil Fill
1. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
2. Place and compact fill material in layers to required elevations as follows:
 a. Under grass and planted areas, use satisfactory soil material.
 b. Under walks and pavements, use satisfactory soil material.
 c. Under steps and ramps, use engineered fill.
 d. Under building slabs, use engineered fill.
 e. Under footings and foundations, use engineered fill.
3. Place soil fill on subgrades free of mud, frost, snow, or ice.

O. Geofoam Fill
1. Place a leveling course of sand, 2 inches (50 mm) thick, over subgrade. Finish leveling course to a tolerance of 1/2 inch (13 mm) when tested with a 10-foot (3-m) straightedge.
 a. Place leveling course on subgrades free of mud, frost, snow, or ice.
b. Install geofoam blocks in layers with abutting edges and ends and with the long dimension of each block at right angles to blocks in each subsequent layer. Offset joints of blocks in successive layers.

c. Install geofoam connectors at each layer of geofoam to resist horizontal displacement according to geofoam manufacturer’s written instructions.

2. Cover geofoam with subdrainage OR separation, as directed, geotextile before placing overlying soil materials.

P. Soil Moisture Control

1. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
 a. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 b. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

Q. Compaction Of Soil Backfills And Fills

1. Place backfill and fill soil materials in layers not more than 8 inches (200 mm) in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches (100 mm) in loose depth for material compacted by hand-operated tampers.

2. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.

3. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 698 OR ASTM D 1557, as directed:
 a. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches (300 mm) of existing subgrade and each layer of backfill or fill soil material at 95 percent.
 b. Under walkways, scarify and recompact top 6 inches (150 mm) below subgrade and compact each layer of backfill or fill soil material at 92 percent.
 c. Under turf or unpaved areas, scarify and recompact top 6 inches (150 mm) below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 d. For utility trenches, compact each layer of initial and final backfill soil material at 85 percent.

R. Grading

1. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 a. Provide a smooth transition between adjacent existing grades and new grades.
 b. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.

2. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
 a. Turf or Unpaved Areas: Plus or minus 1 inch (25 mm).
 b. Walks: Plus or minus 1 inch (25 mm).
 c. Pavements: Plus or minus 1/2 inch (13 mm).

3. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch (13 mm) when tested with a 10-foot (3-m) straightedge.

S. Subsurface Drainage

1. Subdrainage Pipe: Specified in Division 33 Section "Storm Utility Drainage Piping".

2. Subsurface Drain: If nonwoven geotextile is used in subsurface drainage applications, place subsurface drainage geotextile around perimeter of subdrainage trench. Place a 6-inch (150-mm) course of filter material on subsurface drainage geotextile to support subdrainage pipe.
Encase subdrainage pipe in a minimum of 12 inches (300 mm) of filter material, placed in compacted layers 6 inches (150 mm) thick, and wrap in subsurface drainage geotextile, overlapping sides and ends at least 6 inches (150 mm).

a. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698 OR with a minimum of two passes of a plate-type vibratory compactor, as directed.

3. Drainage Backfill: If using free-draining granular backfill against walls, place and compact filter material over subsurface drain, in width indicated, to within 12 inches (300 mm) of final subgrade, in compacted layers 6 inches (150 mm) thick. Overlay drainage backfill with one layer of subsurface drainage geotextile, overlapping sides and ends at least 6 inches (150 mm).

a. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698 OR with a minimum of two passes of a plate-type vibratory compactor, as directed.

b. Place and compact impervious fill over drainage backfill in 6-inch- (150-mm-) thick compacted layers to final subgrade.

T. Subbase And Base Courses Under Pavements And Walks
1. Place subbase course and base course, as directed, on subgrades free of mud, frost, snow, or ice.

2. On prepared subgrade, place subbase course and base course, as directed, under pavements and walks as follows:
 a. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 b. Place base course material over subbase course under hot-mix asphalt pavement.
 c. Shape subbase course and base course, as directed, to required crown elevations and cross-slope grades.
 d. Place subbase course and base course, as directed, 6 inches (150 mm) or less in compacted thickness in a single layer.
 e. Place subbase course and base course, as directed, that exceeds 6 inches (150 mm) in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches (150 mm) thick or less than 3 inches (75 mm) thick.
 f. Compact subbase course and base course, as directed, at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 698 OR ASTM D 1557, as directed.

3. Pavement Shoulders: Place shoulders along edges of subbase course and base course, as directed, to prevent lateral movement. Construct shoulders, at least 12 inches (300 mm) wide, of satisfactory soil materials and compact simultaneously with each subbase and base, as directed, layer to not less than 95 percent of maximum dry unit weight according to ASTM D 698 OR ASTM D 1557, as directed.

U. Drainage Course Under Concrete Slabs-On-Grade
1. Place drainage course on subgrades free of mud, frost, snow, or ice.

2. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:
 a. Install subdrainage geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 b. Place drainage course 6 inches (150 mm) or less in compacted thickness in a single layer.
 c. Place drainage course that exceeds 6 inches (150 mm) in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches (150 mm) thick or less than 3 inches (75 mm) thick.
 d. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

V. Field Quality Control
1. Special Inspections: If special inspections are required by code, engage a qualified special inspector to perform the following special inspections:
 a. Determine prior to placement of fill that site has been prepared in compliance with requirements.
 b. Determine that fill material and maximum lift thickness comply with requirements.
 c. Determine, at the required frequency, that in-place density of compacted fill complies with requirements.
2. Testing Agency: Engage a qualified geotechnical engineering testing agency to perform tests and inspections.
3. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
4. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by the Owner.
5. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:
 a. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. (186 sq. m) or less of paved area or building slab, but in no case fewer than three tests.
 b. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet (30 m) or less of wall length, but no fewer than two tests.
 c. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 150 feet (46 m) or less of trench length, but no fewer than two tests.
6. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

W. Protection
1. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
2. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 a. Scarify or remove and replace soil material to depth as directed by the Owner; reshape and recompact.
3. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 a. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

X. Disposal Of Surplus And Waste Materials
1. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.
 OR
 Transport surplus satisfactory soil to designated storage areas on Owner's property. Stockpile or spread soil as directed by the Owner.
 a. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 31 05 13 00
SECTION 31 05 13 00a - SUBDRAINAGE

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for subdrainage. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Perforated-wall pipe and fittings.
 b. Drainage conduits.
 c. Drainage panels.
 d. Geotextile filter fabrics.

C. Submittals
1. Drainage conduits, including rated capacities.
2. Drainage panels, including rated capacities.

1.2 PRODUCTS

A. Perforated-Wall Pipes And Fittings
1. Perforated PE Pipe and Fittings:
 a. NPS 6 (DN 150) and Smaller: ASTM F 405 or AASHTO M 252, Type CP; corrugated, for coupled joints.
 b. NPS 8 (DN 200) and Larger: ASTM F 667; AASHTO M 252, Type CP; or AASHTO M 294, Type CP; corrugated; for coupled joints.
 c. Couplings: Manufacturer's standard, band type.
4. Perforated Concrete Pipe and Fittings: ASTM C 444 (ASTM C 444M), Type 1, and applicable requirements in ASTM C 14 (ASTM C 14M), Class 2, socket-and-spigot ends for gasketed joints.

B. Drainage Conduits
 a. Nominal Size: 12 inches (305 mm) high by approximately 1 inch (25 mm) thick.
 1) Minimum In-Plane Flow: 30 gpm (114 L/min.) at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
 b. Nominal Size: 18 inches (457 mm) high by approximately 1 inch (25 mm) thick.
 1) Minimum In-Plane Flow: 45 gpm (170 L/min.) at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
 c. Filter Fabric: PP geotextile.
 d. Fittings: HDPE with combination NPS 4 and NPS 6 (DN 100 and DN 150) outlet connection.
 a. Nominal Size: 6 inches (152 mm) high by approximately 1-1/4 inches (31 mm) thick.
 1) Minimum In-Plane Flow: 15 gpm (57 L/min.) at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
 b. Nominal Size: 12 inches (305 mm) high by approximately 1-1/4 inches (31 mm) thick.
 1) Minimum In-Plane Flow: 30 gpm (114 L/min.) at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
 c. Nominal Size: 18 inches (457 mm) high by approximately 1-1/4 inches (31 mm) thick.
 1) Minimum In-Plane Flow: 45 gpm (170 L/min.) at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
 d. Filter Fabric: Nonwoven, needle-punched geotextile.
 e. Fittings: HDPE with combination NPS 4 and NPS 6 (DN 100 and DN 150) outlet connection.
 f. Couplings: HDPE.

 a. Nominal Size: 12 inches (305 mm) high by approximately 1 inch (25 mm) thick.
 1) Minimum In-Plane Flow: 30 gpm (114 L/min.) at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
 b. Nominal Size: 18 inches (457 mm) high by approximately 1 inch (25 mm) thick.
 1) Minimum In-Plane Flow: 45 gpm (170 L/min.) at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
 c. Filter Fabric: Nonwoven, PP geotextile.
 d. Fittings: HDPE with combination NPS 4 and NPS 6 (DN 100 and DN 150) outlet connection.
 e. Couplings: Corrugated HDPE band.

 a. Nominal Size: 6 inches (2-mm) high by approximately 0.9 inch (23 mm) thick.
 1) Minimum In-Plane Flow: 2.4 gpm (9.1 L/min.) at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
 b. Filter Fabric: Nonwoven geotextile made of PP or polyester fibers or combination of both. Flow rates range from 120 to 200 gpm/sq. ft. (81 to 136 L/s per sq. m) when tested according to ASTM D 4491.

 a. Nominal Size: 18 inches (0.5 m) high by 1 inch (25 mm) thick.
 1) Minimum In-Plane Flow: 82 gpm (310 L/min.) at hydraulic gradient of 1.0 when tested according to ASTM D 4716.
 b. Nominal Size: 36 inches (1 m) high by 1 inch (25 mm) thick.
 1) Minimum In-Plane Flow: 164 gpm (621 L/min.) at hydraulic gradient of 1.0 when tested according to ASTM D 4716.

C. Drainage Panels
 1. Molded-Sheet Drainage Panels: Prefabricated geocomposite, 36 to 60 inches (915 to 1525 mm) wide with drainage core faced with geotextile filter fabric.
 a. Drainage Core: Three-dimensional, nonbiodegradable, molded PP.
 1) Minimum Compressive Strength: 10,000 lbf/sq. ft. (479 kPa) OR 15,000 lbf/sq. ft. (718 kPa) OR 18,000 lbf/sq. ft. (862 kPa) OR 21,000 lbf/sq. ft. (1005 kPa), as directed, when tested according to ASTM D 1621.
2) Minimum In-Plane Flow Rate: 2.8 gpm/ft. (35 L/min. per m) OR 7 gpm/ft. (87 L/min. per m) OR 15 gpm/ft. (188 L/min. per m), as directed, of unit width at hydraulic gradient of 1.0 and compressive stress of 25 psig (172 kPa) when tested according to ASTM D 4716.

b. Filter Fabric: Nonwoven needle-punched geotextile, manufactured for subsurface drainage, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with the following properties determined according to AASHTO M 288:
 1) Survivability: Class 1 OR 2 OR 3, as directed.
 2) Apparent Opening Size: No. 40 (0.425-mm) OR No. 60 (0.25-mm) OR No. 70 (0.212-mm), as directed, sieve, maximum.
 3) Permittivity: 0.5 OR 0.2 OR 0.1, as directed, per second, minimum.

c. Filter Fabric: Woven geotextile fabric, manufactured for subsurface drainage, made from polyolefins or polyesters; with elongation less than 50 percent; complying with the following properties determined according to AASHTO M 288:
 1) Survivability: Class 1 OR 2 OR 3, as directed.
 2) Apparent Opening Size: No. 40 (0.425-mm) OR No. 60 (0.25-mm) OR No. 70 (0.212-mm) OR No. 30 (0.6-mm), as directed, sieve, maximum.
 3) Permittivity: 0.5 OR 0.2 OR 0.1 OR 0.02, as directed, per second, minimum.

d. Film Backing: Polymeric film bonded to drainage core surface.

 a. Drainage Core: Open-construction, resilient, approximately 0.4-inch- (10.2-mm-) thick, plastic-filament mesh.
 1) Minimum In-Plane Flow Rate: 2.4 gpm/ft. (30 L/min. per m) of unit width at hydraulic gradient of 1.0 and normal pressure of 25 psig (172 kPa) when tested according to ASTM D 4716.
 b. Filter Fabric: Nonwoven geotextile of PP or polyester fibers or combination of both. Flow rates range from 120 to 200 gpm/sq. ft. (81 to 136 L/s per sq. m) when tested according to ASTM D 4491.

 a. Drainage Core: 3-dimensional, PE nonwoven-strand geonet, approximately 0.25-inch- (6-mm-) thick.
 1) Minimum In-Plane Flow Rate: 2.4 gpm/ft. (30 L/min. per m) OR 5 gpm/ft. (62 L/min. per m), as directed, of unit width at hydraulic gradient of 1.0 and normal pressure of 25 psig (172 kPa) when tested according to ASTM D 4716.
 b. Filter Fabric: Nonwoven geotextile of PP or polyester fibers or combination of both. Flow rates range from 120 to 200 gpm/sq. ft. (81 to 136 L/s per sq. m) when tested according to ASTM D 4491.

 a. Drainage Core: 3-dimensional, HDPE rings in grid pattern, approximately 1 inch (25 mm) thick.
 1) Minimum In-Plane Flow Rate: 40 gpm/ft. (500 L/min. per m) of unit width at hydraulic gradient of 1.0 and normal pressure of 25 psig (172 kPa) when tested according to ASTM D 4716.

5. Fabric-Covered Insulated Drainage Panels: Extruded PS board insulation complying with ASTM C 578; fabricated with shiplap OR tongue-and-groove, as directed, edges and with one side having grooved drainage channels; unfaced OR faced with geotextile filter fabric, as directed.
 a. Type IV, 1.6-lb/cu. ft. (26-kg/cu. m) minimum density and 25-psig (172-kPa) minimum compressive strength.
 b. Type VI, 1.8-lb/cu. ft. (29-kg/cu. m) minimum density and 40-psig (276-kPa) minimum compressive strength.
 c. Minimum In-Plane Flow Rate: 9 gpm/ft. (112 L/min. per m) of unit width when tested according to ASTM D 4716.
d. Filter Fabric: Nonwoven geotextile of PP or polyester fibers or combination of both. Flow rates range from 120 to 200 gpm/sq. ft. (81 to 136 L/s per sq. m) when tested according to ASTM D 4491.

6. Noncovered Insulated Drainage Panels: Extruded PS board insulation complying with ASTM C 578; fabricated with rabbeted edges and with one side having ribbed drainage channels.
 a. Type VI, 1.8-lb/cu. ft. (29-kg/cu. m) minimum density and 40-psig (276-kPa) minimum compressive strength.
 b. Type VII, 2.2-lb/cu. ft. (35-kg/cu. m) minimum density and 60-psig (414-kPa) minimum compressive strength.
 c. Minimum In-Plane Flow Rate: 9 gpm/ft. (112 L/min. per m) of unit width when tested according to ASTM D 4716.

7. Expanded PS Insulated Drainage Panels: PS bead board insulation; panels are 4 inches (102 mm) thick by 48 inches (1220 mm) wide and faced with geotextile filter fabric.
 a. Density: 2 lb/cu. ft. (32 kg/cu. m).
 b. Compressive Strength: 800 lbf/sq. ft. (38 kPa).
 c. Minimum In-Plane Flow Rate: 3 gpm/ft. (37 L/min. per m) of unit width when tested according to ASTM D 4716.
 d. Filter Fabric: Nonwoven geotextile of PP or polyester fibers or combination of both. Flow rates range from 120 to 200 gpm/sq. ft. (81 to 136 L/s per sq. m) when tested according to ASTM D 4491.

D. Soil Materials
1. Soil materials are specified in Division 31 Section "Earth Moving".

E. Waterproofing Felts
1. Material: Comply with ASTM D 226, Type I, asphalt OR ASTM D 227, coal-tar, as directed, saturated organic felt.

F. Geotextile Filter Fabrics
1. Description: Fabric of PP or polyester fibers or combination of both, with flow rate range from 110 to 330 gpm/sq. ft. (4480 to 13 440 L/min. per sq. m) when tested according to ASTM D 4491.
 a. Structure Type: Nonwoven, needle-punched continuous filament.
 1) Survivability: AASHTO M 288 Class 2.
 2) Style(s): Flat OR sock, as directed.

1.3 EXECUTION

A. Earthwork
1. Excavating, trenching, and backfilling are specified in Division 31 Section "Earth Moving".

B. Foundation Drainage Installation
1. Place impervious fill material on subgrade adjacent to bottom of footing after concrete footing forms have been removed. Place and compact impervious fill to dimensions indicated, but not less than 6 inches (150 mm) deep and 12 inches (300 mm) wide.
2. Lay flat-style geotextile filter fabric in trench and overlap trench sides.
3. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches (100 mm).
5. Install drainage piping as indicated in Article 1.3 "Piping Installation" for foundation subdrainage.
6. Add drainage course to width of at least 6 inches (150 mm) on side away from wall and to top of pipe to perform tests.
7. After satisfactory testing, cover drainage piping to width of at least 6 inches (150 mm) on side away from footing and above top of pipe to within 12 inches (300 mm) of finish grade.
8. Install drainage course and wrap top of drainage course with flat-style geotextile filter fabric.
9. Place layer of flat-style geotextile filter fabric OR waterproofing felt, as directed, over top of drainage course, overlapping edges at least 4 inches (100 mm).
10. Install drainage panels on foundation walls as follows:
 a. Coordinate placement with other drainage materials.
 b. Lay perforated drainage pipe at base of footing. Install as indicated in Article 1.3 "Piping Installation."
 c. Separate 4 inches (100 mm) of fabric at beginning of roll and cut away 4 inches (100 mm) of core. Wrap fabric around end of remaining core.
 d. Attach panels to wall beginning at subdrainage pipe. Place and secure molded-sheet drainage panels, with geotextile facing away from wall.
11. Place backfill material over compacted drainage course. Place material in loose-depth layers not exceeding 6 inches (150 mm). Thoroughly compact each layer. Final backfill to finish elevations and slope away from building.

C. Underslab Drainage Installation
1. Excavate for underslab drainage system after subgrade material has been compacted but before drainage course has been placed. Include horizontal distance of at least 6 inches (150 mm) between drainage pipe and trench walls. Grade bottom of trench excavations to required slope, and compact to firm, solid bed for drainage system.
2. Lay flat-style geotextile filter fabric in trench and overlap trench sides.
3. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches (100 mm).
5. Install drainage piping as indicated in Part 1.3 "Piping Installation" Article for underslab subdrainage.
6. Add drainage course to width of at least 6 inches (150 mm) on side away from wall and to top of pipe to perform tests.
7. After satisfactory testing, cover drainage piping with drainage course to elevation of bottom of slab, and compact and wrap top of drainage course with flat-style geotextile filter fabric.
8. Install horizontal drainage panels as follows:
 a. Coordinate placement with other drainage materials.
 b. Lay perforated drainage pipe at inside edge of footings.
 c. Place drainage panel over drainage pipe with core side up. Peel back fabric and wrap fabric around pipe. Locate top of core at bottom elevation of floor slab.
 d. Butt additional panels against other installed panels. If panels have plastic flanges, overlap installed panel with flange.

D. Retaining-Wall Drainage Installation
1. Lay flat-style geotextile filter fabric in trench and overlap trench sides.
2. Place supporting layer of drainage course over compacted subgrade to compacted depth of not less than 4 inches (100 mm).
4. Install drainage piping as indicated in Article 1.3 "Piping Installation" for retaining-wall subdrainage.
5. Add drainage course to width of at least 6 inches (150 mm) on side away from wall and to top of pipe to perform tests.
6. After satisfactory testing, cover drainage piping to width of at least 6 inches (150 mm) on side away from footing and above top of pipe to within 12 inches (300 mm) of finish grade.
7. Place drainage course in layers not exceeding 3 inches (75 mm) in loose depth; compact each layer placed and wrap top of drainage course with flat-style geotextile filter fabric.
8. Place layer of flat-style geotextile filter fabric OR waterproofing felt, **as directed**, over top of drainage course, overlapping edges at least 4 inches (100 mm).

9. Install drainage panels on walls as follows:
 a. Coordinate placement with other drainage materials.
 b. Lay perforated drainage pipe at base of footing as described elsewhere in this Specification. Do not install aggregate.
 c. If weep holes are used instead of drainage pipe, cut 1/2-inch- (13-mm-) diameter holes on core side at weep-hole locations. Do not cut fabric.
 d. Mark horizontal calk line on wall at a point 6 inches (150 mm) less than panel width above footing bottom. Before marking wall, subtract footing width.
 e. Separate 4 inches (100 mm) of fabric at beginning of roll and cut away 4 inches (100 mm) of core. Wrap fabric around end of remaining core.
 f. Attach panel to wall at horizontal mark and at beginning of wall corner. Place core side of panel against wall. Use concrete nails with washers through product. Place nails from 2 to 6 inches (50 to 150 mm) below top of panel, approximately 48 inches (1200 mm) apart. Construction adhesives, metal stick pins, or double-sided tape may be used instead of nails. Do not penetrate waterproofing. Before using adhesives, discuss with waterproofing manufacturer.
 g. If another panel is required on same row, cut away 4 inches (100 mm) of installed panel core and wrap fabric over new panel.
 h. If additional rows of panel are required, overlap lower panel with 4 inches (100 mm) of fabric.
 i. Cut panel as necessary to keep top 12 inches (300 mm) below finish grade.
 j. For inside corners, bend panel. For outside corners, cut core to provide 3 inches (75 mm) for overlap.

10. **Fill to Grade**: Place satisfactory soil fill material over compacted drainage course. Place material in loose-depth layers not exceeding 6 inches (150 mm). Thoroughly compact each layer. Fill to finish grade.

E. Landscaping Drainage Installation

1. Provide trench width to allow installation of drainage conduit. Grade bottom of trench excavations to required slope, and compact to firm, solid bed for drainage system.
2. Lay flat-style geotextile filter fabric in trench and overlap trench sides.
3. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches (100 mm).
4. Install drainage conduits as indicated in Article 1.3 "Piping Installation" for landscaping subdrainage with horizontal distance of at least 6 inches (150 mm) between conduit and trench walls. Wrap drainage conduits without integral geotextile filter fabric with flat-style geotextile filter fabric before installation. Connect fabric sections with adhesive or tape.
5. Add drainage course to top of drainage conduits.
6. After satisfactory testing, cover drainage conduit to within 12 inches (300 mm) of finish grade.
7. Install drainage course and wrap top of drainage course with flat-style geotextile filter fabric.
8. Place layer of flat-style geotextile filter fabric **OR** waterproofing felt, **as directed**, over top of drainage course, overlapping edges at least 4 inches (100 mm).
9. **Fill to Grade**: Place satisfactory soil fill material over drainage course. Place material in loose-depth layers not exceeding 6 inches (150 mm). Thoroughly compact each layer. Fill to finish grade.

F. Piping Installation

1. Install piping beginning at low points of system, true to grades and alignment indicated, with unbroken continuity of invert. Bed piping with full bearing in filtering material. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions and other requirements indicated.
a. Foundation Subdrainage: Install piping pitched down in direction of flow, at a minimum slope of 0.5 percent and with a minimum cover of 36 inches (915 mm), unless otherwise indicated.
b. Underslab Subdrainage: Install piping level.
c. Plaza Deck Subdrainage: Install piping level.
d. Retaining-Wall Subdrainage: When water discharges at end of wall into stormwater piping system, install piping level and with a minimum cover of 36 inches (915 mm), unless otherwise indicated.
e. Landscaping Subdrainage: Install piping pitched down in direction of flow, at a minimum slope of 0.5 percent and with a minimum cover of 36 inches (915 mm), unless otherwise indicated.
f. Lay perforated pipe with perforations down.
g. Excavate recesses in trench bottom for bell ends of pipe. Lay pipe with bells facing upslope and with spigot end entered fully into adjacent bell.

2. Use increasers, reducers, and couplings made for different sizes or materials of pipes and fittings being connected. Reduction of pipe size in direction of flow is prohibited.
3. Install thermoplastic piping according to ASTM D 2321.

G. Pipe Joint Construction
1. Join perforated PE pipe and fittings with couplings according to ASTM D 3212 with loose banded, coupled, or push-on joints.
2. Join perforated PVC sewer pipe and fittings according to ASTM D 3212 with loose bell-and-spigot, push-on joints.
3. Special Pipe Couplings: Join piping made of different materials and dimensions with special couplings made for this application. Use couplings that are compatible with and fit materials and dimensions of both pipes.

1.4 Backwater Valve Installation
1. Comply with requirements for backwater valves specified in Division 2 Section "Storm Drainage."
2. Install horizontal backwater valves in header piping downstream from perforated subdrainage piping.
3. Install horizontal backwater valves in piping in manholes or pits where indicated.

B. Cleanout Installation
1. Comply with requirements for cleanouts specified in Division 2 Section "Storm Drainage."
2. Cleanouts for Foundation, Retaining-Wall, and Landscaping Subdrainage:
 a. Install cleanouts from piping to grade. Locate cleanouts at beginning of piping run and at changes in direction. Install fittings so cleanouts open in direction of flow in piping.
 b. In vehicular-traffic areas, use NPS 4 (DN 100) cast-iron soil pipe and fittings for piping branch fittings and riser extensions to cleanout. Set cleanout frames and covers in a cast-in-place concrete anchor, 18 by 18 by 12 inches (450 by 450 by 300 mm) in depth. Set top of cleanout flush with grade. Cast-iron pipe may also be used for cleanouts in nonvehicular-traffic areas.
 c. In nonvehicular-traffic areas, use NPS 4 (DN 100) cast-iron OR PVC, as directed, pipe and fittings for piping branch fittings and riser extensions to cleanout. Set cleanout frames and covers in a cast-in-place concrete anchor, 12 by 12 by 4 inches (300 by 300 by 100 mm) in depth. Set top of cleanout plug 1 inch (25 mm) above grade.
3. Cleanouts for Underslab Subdrainage:
 a. Install cleanouts and riser extensions from piping to top of slab. Locate cleanouts at beginning of piping run and at changes in direction. Install fittings so cleanouts open in direction of flow in piping.
 b. Use NPS 4 (DN 100) cast-iron soil pipe and fittings for piping branch fittings and riser extensions to cleanout flush with top of slab.
C. Connections
 1. Comply with requirements for piping specified in Division 2 Section “Storm Drainage.” Drawings indicate general arrangement of piping, fittings, and specialties.
 2. Connect low elevations of subdrainage system to building’s solid-wall-piping storm drainage system.
 3. Where required, connect low elevations of foundation OR Underslab, as directed, subdrainage to stormwater sump pumps.

D. Identification
 1. Arrange for installation of green warning tapes directly over piping. Comply with requirements for underground warning tapes specified in Division 31 Section “Earth Moving”.
 a. Install PE warning tape or detectable warning tape over ferrous piping.
 b. Install detectable warning tape over nonferrous piping and over edges of underground structures.

E. Field Quality Control
 1. Tests and Inspections:
 a. After installing drainage course to top of piping, test drain piping with water to ensure free flow before backfilling.
 b. Remove obstructions, replace damaged components, and repeat test until results are satisfactory.
 2. Drain piping will be considered defective if it does not pass tests and inspections.
 3. Prepare test and inspection reports.

F. Cleaning
 1. Clear interior of installed piping and structures of dirt and other superfluous material as work progresses. Maintain swab or drag in piping and pull past each joint as it is completed. Place plugs in ends of uncompleted pipe at end of each day or when work stops.

END OF SECTION 31 05 13 00a
Task Specification Specification Description

<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 05 16 00</td>
<td>31 05 13 00</td>
<td>Earthwork</td>
</tr>
<tr>
<td>31 05 16 00</td>
<td>31 05 13 00a</td>
<td>Subdrainage</td>
</tr>
</tbody>
</table>
SECTION 31 11 00 00 - SITE CLEARING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for site clearing. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Protecting existing vegetation to remain.
 b. Removing existing vegetation.
 c. Clearing and grubbing.
 d. Stripping and stockpiling topsoil.
 e. Removing above- and below-grade site improvements.
 f. Disconnecting, capping or sealing, and removing site utilities OR abandoning site utilities in place, as directed.
 g. Temporary erosion- and sedimentation-control measures.

C. Definitions
1. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.
 OR
 Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil; but in disturbed areas such as urban environments, the surface soil can be subsoil.
2. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil and is the zone where plant roots grow.
 OR
 Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil and is the zone where plant roots grow. Its appearance is generally friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches (50 mm) in diameter; and free of subsoil and weeds, roots, toxic materials, or other nonsoil materials.
3. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction, and indicated on Drawings.
 OR
 Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction, and indicated on Drawings OR defined by a circle concentric with each tree with a radius 1.5 times the diameter of the drip line unless otherwise indicated, as directed.
4. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

D. Material Ownership
1. Except for stripped topsoil and other materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

E. Submittals
1. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.
a. Use sufficiently detailed photographs or videotape.
b. Include plans and notations to indicate specific wounds and damage conditions of each
tree or other plants designated to remain.
2. Record Drawings: Identifying and accurately showing locations of capped utilities and other
subsurface structural, electrical, and mechanical conditions.

F. Quality Assurance
1. Preinstallation Conference: Conduct conference at Project site.

G. Project Conditions
1. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or
used facilities during site-clearing operations.
 a. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without
permission from Owner and authorities having jurisdiction.
 b. Provide alternate routes around closed or obstructed traffic ways if required by Owner or
authorities having jurisdiction.
2. Improvements on Adjoining Property: Authority for performing site clearing indicated on property
adjoining Owner's property will be obtained by Owner before award of Contract.
 a. Do not proceed with work on adjoining property until directed by the Owner.
3. Salvageable Improvements: Carefully remove items indicated to be salvaged and store on Owner's
premises where indicated.
4. Utility Locator Service: Notify utility locator service OR Miss Utility OR Call Before You Dig OR
Dig Safe System OR One Call, as directed, for area where Project is located before site clearing.
5. Do not commence site clearing operations until temporary erosion- and sedimentation-control and
plant-protection measures are in place.
6. The following practices are prohibited within protection zones:
 a. Storage of construction materials, debris, or excavated material.
 b. Parking vehicles or equipment.
 c. Foot traffic.
 d. Erection of sheds or structures.
 e. Impoundment of water.
 f. Excavation or other digging unless otherwise indicated.
 g. Attachment of signs to or wrapping materials around trees or plants unless otherwise
indicated.
7. Do not direct vehicle or equipment exhaust towards protection zones.
8. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.
9. Soil Stripping, Handling, and Stockpiling: Perform only when the topsoil is dry or slightly moist.

1.2 PRODUCTS

A. Materials
1. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Division 31
Section "Earth Moving".
 a. If soil backfill is required in below-grade areas after site clearing, obtain approved borrow
soil material off-site when satisfactory soil material is not available on-site.
2. Antirust Coating: Fast-curing, lead- and chromate-free, self-curing, universal modified-alkyd
primer complying with MPI #79, Alkyd Anticorrosive Metal Primer OR SSPC-Paint 20 or SSPC-
Paint 29 zinc-rich coating, as directed.
 a. Use coating with a VOC content of 420 g/L (3.5 lb/gal.) or less when calculated according
to 40 CFR 59, Subpart D (EPA Method 24).
1.3 EXECUTION

A. Preparation
1. Protect and maintain benchmarks and survey control points from disturbance during construction.
2. Locate and clearly identify trees, shrubs, and other vegetation to remain or to be relocated. Flag OR Wrap a 1-inch (25-mm) blue vinyl tie tape flag around, as directed, each tree trunk at 54 inches (1372 mm) above the ground.
3. Protect existing site improvements to remain from damage during construction.
 a. Restore damaged improvements to their original condition, as acceptable to Owner.

B. Temporary Erosion And Sedimentation Control
1. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.
2. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
3. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
4. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

C. Tree And Plant Protection
1. General: Protect trees and plants remaining on-site according to requirements in Division 01 Section “Temporary Tree And Plant Protection”.
2. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations, in a manner approved by the Owner.

D. Existing Utilities
1. Owner will arrange for disconnecting and sealing indicated utilities that serve existing structures before site clearing, when requested by Contractor.
 OR Verify that utilities have been disconnected and capped before proceeding with site clearing.
2. Locate, identify, disconnect, and seal or cap utilities indicated to be removed.
 a. Arrange with utility companies to shut off indicated utilities.
 OR Owner will arrange to shut off indicated utilities when requested by Contractor.
3. Locate, identify, and disconnect utilities indicated to be abandoned in place.
4. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 a. Notify the Owner not less than two days in advance of proposed utility interruptions.
 b. Do not proceed with utility interruptions without the Owner’s written permission.
5. Excavate for and remove underground utilities indicated to be removed.
 OR Removal of underground utilities is included in Division 21 OR Division 22 OR Division 23 OR Division 26 OR Division 28.

E. Clearing And Grubbing
1. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 a. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
 b. Grind down stumps and remove roots, obstructions, and debris to a depth of 18 inches (450 mm) below exposed subgrade.
 c. Use only hand methods for grubbing within protection zones.
d. Chip removed tree branches and stockpile in areas approved by the Owner OR dispose of off-site, as directed.

2. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 a. Place fill material in horizontal layers not exceeding a loose depth of 8 inches (200 mm), and compact each layer to a density equal to adjacent original ground.

F. Topsoil Stripping
 1. Remove sod and grass before stripping topsoil.
 2. Strip topsoil to depth indicated on Drawings OR to depth of 6 inches (150 mm), as directed, in a manner to prevent intermingling with underlying subsoil or other waste materials.
 a. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects more than 2 inches (50 mm) in diameter; trash, debris, weeds, roots, and other waste materials.
 3. Stockpile topsoil away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.
 a. Limit height of topsoil stockpiles to 72 inches (1800 mm).
 b. Do not stockpile topsoil within protection zones.
 c. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
 d. Stockpile surplus topsoil to allow for respreading deeper topsoil.

G. Site Improvements
 1. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.
 2. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.
 a. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut along line of existing pavement to remain before removing adjacent existing pavement. Saw-cut faces vertically.
 b. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer’s written instructions. Keep paint off surfaces that will remain exposed.

H. Disposal Of Surplus And Waste Materials
 1. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner’s property.
 2. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 31 11 00 00
SECTION 31 23 16 13 - EXCAVATION SUPPORT AND PROTECTION

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for excavation support and protection. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Performance Requirements
1. Design, as directed, furnish, install, monitor, and maintain excavation support and protection system capable of supporting excavation sidewalls and of resisting soil and hydrostatic pressure and superimposed and construction loads.
 a. Delegated Design: Design excavation support and protection system, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
 b. Prevent surface water from entering excavations by grading, dikes, or other means.
 c. Install excavation support and protection systems without damaging existing buildings, structures, and site improvements adjacent to excavation.
 d. Monitor vibrations, settlements, and movements.

C. Submittals
1. Shop Drawings: For excavation support and protection system.
2. Delegated-Design Submittal: For excavation support and protection system indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

D. Quality Assurance
1. Preinstallation Conference: Conduct conference at Project site.

E. Project Conditions
1. Interruption of Existing Utilities: Do not interrupt any utility serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility according to requirements indicated:
 a. Notify the Owner no fewer than two days in advance of proposed interruption of utility.
 b. Do not proceed with interruption of utility without the Owner’s written permission.
2. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.
 a. During installation of excavation support and protection systems, regularly resurvey benchmarks, maintaining an accurate log of surveyed elevations and positions for comparison with original elevations and positions. Promptly notify the Owner if changes in elevations or positions occur or if cracks, sags, or other damage is evident in adjacent construction.

1.2 PRODUCTS

A. Materials
1. General: Provide materials that are either new or in serviceable condition.
2. Structural Steel: ASTM A 36/A 36M, ASTM A 690/A 690M, or ASTM A 992/A 992M.
3. Steel Sheet Piling: ASTM A 328/A 328M, ASTM A 572/A 572M, or ASTM A 690/A 690M; with continuous interlocks.
 a. Corners: Site-fabricated mechanical interlock OR Roll-formed corner shape with continuous interlock, as directed.
4. Wood Lagging: Lumber, mixed hardwood, nominal rough thickness of size and strength required for application, OR 3 inches (75 mm) OR 4 inches (100 mm), as directed.
5. Shotcrete: Comply with Division 03 Section "Shotcrete" for shotcrete materials and mixes, reinforcement, and shotcrete application.
6. Cast-in-Place Concrete: ACI 301, of compressive strength required for application.
7. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
8. Tiebacks: Steel bars, ASTM A 722/A 722M.
9. Tiebacks: Steel strand, ASTM A 416/A 416M.

1.3 EXECUTION

A. Preparation
1. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards that could develop during excavation support and protection system operations.
 a. Shore, support, and protect utilities encountered.
2. Install excavation support and protection systems to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.
 a. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.
3. Locate excavation support and protection systems clear of permanent construction so that forming and finishing of concrete surfaces are not impeded.
4. Monitor excavation support and protection systems daily during excavation progress and for as long as excavation remains open. Promptly correct bulges, breakage, or other evidence of movement to ensure that excavation support and protection systems remain stable.
5. Promptly repair damages to adjacent facilities caused by installing excavation support and protection systems.

B. Soldier Piles And Lagging
1. Install steel soldier piles before starting excavation. Extend soldier piles below excavation grade level to depths adequate to prevent lateral movement. Space soldier piles at regular intervals not to exceed allowable flexural strength of wood lagging. Accurately align exposed faces of flanges to vary not more than 2 inches (50 mm) from a horizontal line and not more than 1:120 out of vertical alignment.
2. Install wood lagging within flanges of soldier piles as excavation proceeds. Trim excavation as required to install lagging. Fill voids behind lagging with soil, and compact.
3. Install wales horizontally at locations indicated on Drawings and secure to soldier piles.

C. Sheet Piling
1. Before starting excavation, install one-piece sheet piling lengths and tightly interlock to form a continuous barrier. Accurately place the piling, using templates and guide frames unless otherwise recommended in writing by the sheet piling manufacturer. Limit vertical offset of adjacent sheet piling to 60 inches (1500 mm). Accurately align exposed faces of sheet piling to vary not more than 2 inches (50 mm) from a horizontal line and not more than 1:120 out of vertical alignment. Cut tops of sheet piling to uniform elevation at top of excavation.

D. Tiebacks
1. Tiebacks: Drill, install, grout, and tension tiebacks. Test load-carrying capacity of each tieback and replace and retest deficient tiebacks.
 a. Test loading shall be observed by a qualified professional engineer responsible for design of excavation support and protection system.
 b. Maintain tiebacks in place until permanent construction is able to withstand lateral soil and hydrostatic pressures.

E. Bracing
1. Bracing: Locate bracing to clear columns, floor framing construction, and other permanent work. If necessary to move brace, install new bracing before removing original brace.
 a. Do not place bracing where it will be cast into or included in permanent concrete work unless otherwise approved by the Owner.
 b. Install internal bracing, if required, to prevent spreading or distortion of braced frames.
 c. Maintain bracing until structural elements are supported by other bracing or until permanent construction is able to withstand lateral earth and hydrostatic pressures.

F. Removal And Repairs
1. Remove excavation support and protection systems when construction has progressed sufficiently to support excavation and bear soil and hydrostatic pressures. Remove in stages to avoid disturbing underlying soils or damaging structures, pavements, facilities, and utilities.
 a. Remove excavation support and protection systems to a minimum depth of 48 inches (1200 mm) below overlaying construction and abandon remainder.
 b. Fill voids immediately with approved backfill compacted to density specified in Division 31 Section "Earth Moving".
 c. Repair or replace, as approved by the Owner, adjacent work damaged or displaced by removing excavation support and protection systems.
2. Leave excavation support and protection systems permanently in place.

END OF SECTION 31 23 16 13
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 23 16 13</td>
<td>31 05 13 00</td>
<td>Earthwork</td>
</tr>
<tr>
<td>31 23 16 33</td>
<td>31 05 13 00</td>
<td>Earthwork</td>
</tr>
<tr>
<td>31 23 16 36</td>
<td>31 23 16 13</td>
<td>Excavation Support And Protection</td>
</tr>
<tr>
<td>31 23 16 36</td>
<td>31 05 13 00</td>
<td>Earthwork</td>
</tr>
</tbody>
</table>
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 31 23 19 00 - PIPED UTILITIES BASIC MATERIALS AND METHODS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for piped utilities - basic materials and methods. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes the following:
 a. Piping joining materials.
 b. Transition fittings.
 c. Dielectric fittings.
 d. Sleeves.
 e. Identification devices.
 f. Grout.
 g. Flowable fill.
 h. Piped utility demolition.
 i. Piping system common requirements.
 j. Equipment installation common requirements.
 k. Painting.
 l. Concrete bases.
 m. Metal supports and anchorages.

C. Definitions
1. Exposed Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions.
2. Concealed Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
4. CPVC: Chlorinated polyvinyl chloride plastic.
5. PE: Polyethylene plastic.
6. PVC: Polyvinyl chloride plastic.

D. Submittals
1. Product Data: For the following:
 a. Dielectric fittings.
 b. Identification devices.
2. Welding certificates.

E. Quality Assurance
1. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
2. Steel Piping Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 a. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 b. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
3. Comply with ASME A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.
F. Delivery, Storage, And Handling
 1. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
 2. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.2 PRODUCTS

A. Piping Joining Materials
 1. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 a. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness, unless otherwise indicated.
 1) Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 2) Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 b. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
 3. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
 5. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
 7. Solvent Cements for Joining Plastic Piping:
 a. ABS Piping: ASTM D 2235.
 b. CPVC Piping: ASTM F 493.
 c. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 d. PVC to ABS Piping Transition: ASTM D 3138.
 8. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

B. Transition Fittings
 1. Transition Fittings, General: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 2. Transition Couplings NPS 1-1/2 (DN 40) and Smaller:
 a. Underground Piping: Manufactured piping coupling or specified piping system fitting.
 b. Aboveground Piping: Specified piping system fitting.
 3. AWWA Transition Couplings NPS 2 (DN 50) and Larger:
 a. Description: AWWA C219, metal sleeve-type coupling for underground pressure piping.
 4. Plastic-to-Metal Transition Fittings:
 a. Description: CPVC and PVC one-piece fitting with manufacturer’s Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint or threaded end.
 5. Plastic-to-Metal Transition Unions:
 a. Description: MSS SP-107, CPVC and PVC four-part union. Include brass or stainless-steel threaded end, solvent-cement-joint or threaded plastic end, rubber O-ring, and union nut.
 6. Flexible Transition Couplings for Underground Nonpressure Drainage Piping:
 a. Description: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
C. Dielectric Fittings
1. Dielectric Fittings, General: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.
2. Dielectric Unions:
 a. Description: Factory fabricated, union, NPS 2 (DN 50) and smaller.
 1) Pressure Rating: 150 psig (1035 kPa) minimum OR 250 psig (1725 kPa), as directed, at 180 deg F (82 deg C).
 2) End Connections: Solder-joint copper alloy and threaded ferrous; threaded ferrous.
3. Dielectric Flanges:
 a. Description: Factory-fabricated, bolted, companion-flange assembly, NPS 2-1/2 to NPS 4 (DN 65 to DN 100) and larger.
 1) Pressure Rating: 150 psig (1035 kPa) minimum OR 175 psig (1200 kPa) minimum OR 300 psig (2070 kPa), as directed.
 2) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
4. Dielectric-Flange Kits:
 a. Description: Nonconducting materials for field assembly of companion flanges, NPS 2-1/2 (DN 65) and larger.
 1) Pressure Rating: 150 psig (1035 kPa) minimum.
5. Dielectric Couplings:
 a. Description: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining, NPS 3 (DN 80) and smaller.
 1) Pressure Rating: 300 psig (2070 kPa) at 225 deg F (107 deg C).
 2) End Connections: Threaded.
6. Dielectric Nipples:
 a. Description: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining.
 1) Pressure Rating: 300 psig (2070 kPa) at 225 deg F (107 deg C).
 2) End Connections: Threaded or grooved.

D. Sleeves
1. Mechanical sleeve seals for pipe penetrations are specified in Division 22 Section "Common Work Results For Plumbing".
2. Galvanized-Steel Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
4. Cast-Iron Sleeves: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
5. Molded PVC Sleeves: Permanent, with nailing flange for attaching to wooden forms.
7. Molded PE Sleeves: Reusable, PE, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

E. Identification Devices
1. Equipment Nameplates: Metal permanently fastened to equipment with data engraved or stamped.
 a. Data: Manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels of tested compliances, and essential data.
 b. Location: Accessible and visible.
2. Stencils: Standard stencils prepared with letter sizes complying with recommendations in ASME A13.1. Minimum letter height is 1-1/4 inches (30 mm) for ducts, and 3/4 inch (20 mm) for access door signs and similar operational instructions.
a. Material: Fiberboard OR Brass, as directed.
b. Stencil Paint: Exterior, oil-based, alkyd-gloss black enamel, unless otherwise indicated. Paint may be in pressurized spray-can form.
c. Identification Paint: Exterior, oil-based, alkyd enamel in colors according to ASME A13.1, unless otherwise indicated.

3. Snap-on Plastic Pipe Markers: Manufacturer's standard preprinted, semirigid, snap-on type. Include color-coding according to ASME A13.1, unless otherwise indicated.

4. Pressure-Sensitive Pipe Markers: Manufacturer's standard preprinted, color-coded, pressure-sensitive-vinyl type with permanent adhesive.

5. Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): Full-band pipe markers, extending 360 degrees around pipe at each location.

6. Pipes with OD, Including Insulation, 6 Inches (150 mm) and Larger: Either full-band or strip-type pipe markers, at least three times letter height and of length required for label.

7. Lettering: Manufacturer's standard preprinted captions as selected by the Owner.

8. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length.
 a. Arrows: Either integrally with piping system service lettering to accommodate both directions of flow, or as separate unit on each pipe marker to indicate direction of flow.

9. Plastic Tape: Manufacturer's standard color-coded, pressure-sensitive, self-adhesive vinyl tape, at least 3 mils (0.08 mm) thick.
 a. Width: 1-1/2 inches (40 mm) on pipes with OD, including insulation, less than 6 inches (150 mm); 2-1/2 inches (65 mm) for larger pipes.
 b. Color: Comply with ASME A13.1, unless otherwise indicated.

10. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) sequenced numbers. Include 5/32-inch (4-mm) hole for fastener.
 a. Material: 0.032-inch- (0.8-mm-) thick, polished brass OR aluminum, as directed.
 b. Material: 0.0375-inch- (1-mm-) thick stainless steel.
 c. Material: 3/32-inch- (2.4-mm-) thick plastic laminate with 2 black surfaces and a white inner layer.
 d. Material: Valve manufacturer's standard solid plastic.
 e. Size: 1-1/2 inches (40 mm) in diameter, unless otherwise indicated.
 f. Shape: As indicated for each piping system.

11. Valve Tag Fasteners: Brass, wire-link or beaded chain; or brass S-hooks.

12. Engraved Plastic-Laminate Signs: ASTM D 709, Type I, cellulose, paper-base, phenolic-resin-laminate engraving stock; Grade ES-2, black surface, black phenolic core, with white melamine subcore, unless otherwise indicated. Fabricate in sizes required for message. Provide holes for mechanical fastening.
 a. Engraving: Engraver's standard letter style, of sizes and with terms to match equipment identification.
 b. Thickness: 1/16 inch (1.6 mm), for units up to 20 sq. in. (130 sq. cm) or 8 inches (200 mm) in length, and 1/8 inch (3 mm) for larger units.
 c. Fasteners: Self-tapping, stainless-steel screws or contact-type permanent adhesive.

13. Plastic Equipment Markers: Manufacturer's standard laminated plastic, in the following color codes:
 a. Green: Cooling equipment and components.
 b. Yellow: Heating equipment and components.
 d. Blue: Equipment and components that do not meet criteria above.
 f. Terminology: Match schedules as closely as possible. Include the following:
 1) Name and plan number.
 2) Equipment service.
 3) Design capacity.
4) Other design parameters such as pressure drop, entering and leaving conditions, and speed.

g. Size: 2-1/2 by 4 inches (65 by 100 mm) for control devices, dampers, and valves; 4-1/2 by 6 inches (115 by 150 mm) for equipment.

14. Plasticized Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with mat finish suitable for writing.
 a. Size: 3-1/4 by 5-5/8 inches (83 by 143 mm).
 b. Fasteners: Brass grommets and wire.
 c. Nomenclature: Large-size primary caption such as DANGER, CAUTION, or DO NOT OPERATE.

15. Lettering and Graphics: Coordinate names, abbreviations, and other designations used in piped utility identification with corresponding designations indicated. Use numbers, letters, and terms indicated for proper identification, operation, and maintenance of piped utility systems and equipment.
 a. Multiple Systems: Identify individual system number and service if multiple systems of same name are indicated.

F. Grout
 1. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 a. Characteristics: Post hardening, volume adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 b. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 c. Packaging: Premixed and factory packaged.

G. Flowable Fill
 1. Description: Low-strength-concrete, flowable-slurry mix.
 a. Cement: ASTM C 150, Type I, portland.
 b. Density: 115- to 145-lb/cu. ft. (1840- to 2325-kg/cu. m).
 c. Aggregates: ASTM C 33, natural sand, fine and crushed gravel or stone, coarse
 OR
 d. Water: Comply with ASTM C 94/C 94M.
 e. Strength: 100 to 200 psig (690 to 1380 kPa) at 28 days.

1.3 EXECUTION

A. Piped Utility Demolition
 1. Refer to Division 01 Section(s) "Cutting And Patching" AND Division 02 Section(s) "Selective Structure Demolition" for general demolition requirements and procedures.
 2. Disconnect, demolish, and remove piped utility systems, equipment, and components indicated to be removed.
 a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 b. Piping to Be Abandoned in Place: Drain piping. Fill abandoned piping with flowable fill, and cap or plug piping with same or compatible piping material.
 c. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make operational.
 e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
 3. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

B. Dielectric Fitting Applications
1. Dry Piping Systems: Connect piping of dissimilar metals with the following:
 a. NPS 2 (DN 50) and Smaller: Dielectric unions.
 b. NPS 2-1/2 to NPS 12 (DN 65 to DN 300): Dielectric flanges or dielectric flange kits.

2. Wet Piping Systems: Connect piping of dissimilar metals with the following:
 a. NPS 2 (DN 50) and Smaller: Dielectric couplings OR dielectric nipples, as directed.
 b. NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Dielectric nipples.
 c. NPS 2-1/2 to NPS 8 (DN 65 to DN 200): Dielectric nipples or dielectric flange kits.
 d. NPS 10 and NPS 12 (DN 250 and DN 300): Dielectric flange kits.

C. Piping Installation
1. Install piping according to the following requirements and Division 33 specifying piping systems.
2. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on the Coordination Drawings.
3. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
4. Install piping to permit valve servicing.
5. Install piping at indicated slopes.
6. Install piping free of sags and bends.
7. Install fittings for changes in direction and branch connections.
8. Select system components with pressure rating equal to or greater than system operating pressure.
9. Sleeves are not required for core-drilled holes, unless directed otherwise.
10. Permanent sleeves are not required for holes formed by removable PE sleeves, unless directed otherwise.
11. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
 a. Cut sleeves to length for mounting flush with both surfaces.
 1) Exception: Extend sleeves installed in floors of equipment areas or other wet areas 2 inches (50 mm) above finished floor level.
 b. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 1) PVC OR Steel, as directed, Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 2) Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsum-board partitions.
12. Verify final equipment locations for roughing-in.
13. Refer to equipment specifications in other Sections for roughing-in requirements.

D. Piping Joint Construction
1. Join pipe and fittings according to the following requirements and Division 33 specifying piping systems.
2. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
3. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
4. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 a. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 b. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
6. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
7. Grooved Joints: Assemble joints with grooved-end pipe coupling with coupling housing, gasket, lubricant, and bolts according to coupling and fitting manufacturer’s written instructions.
8. Soldered Joints: Apply ASTM B 813 water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA’s "Copper Tube Handbook," using lead-free solder alloy (0.20 percent maximum lead content) complying with ASTM B 32.
10. Pressure-Sealed Joints: Assemble joints for plain-end copper tube and mechanical pressure seal fitting with proprietary crimping tool according to fitting manufacturer’s written instructions.
11. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 a. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 b. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 appendixes.
 c. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 d. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 e. PVC Nonpressure Piping: Join according to ASTM D 2855.
 f. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.
12. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
 a. Plain-End PE Pipe and fittings: Use butt fusion.
 b. Plain-End PE Pipe and Socket Fittings: Use socket fusion.
15. Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer’s written instructions.

E. Piping Connections
1. Make connections according to the following, unless otherwise indicated:
 a. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 b. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 c. Install dielectric fittings at connections of dissimilar metal pipes.

F. Equipment Installation
1. Install equipment level and plumb, unless otherwise indicated.
2. Install equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference with other installations. Extend grease fittings to an accessible location.
3. Install equipment to allow right of way to piping systems installed at required slope.

G. Painting
1. Painting of piped utility systems, equipment, and components is specified in Division 09.
2. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

H. Identification
1. Piping Systems: Install pipe markers on each system. Include arrows showing normal direction of flow.
b. Plastic markers, with application systems. Install on insulation segment if required for hot noninsulated piping.

c. Locate pipe markers on exposed piping according to the following:
 1) Near each valve and control device.
 2) Near each branch, excluding short takeoffs for equipment and terminal units. Mark each pipe at branch if flow pattern is not obvious.
 3) Near locations where pipes pass through walls or floors or enter inaccessible enclosures.
 4) At manholes and similar access points that permit view of concealed piping.
 5) Near major equipment items and other points of origination and termination.

2. Equipment: Install engraved plastic-laminate sign or equipment marker on or near each major item of equipment.
 a. Lettering Size: Minimum 1/4 inch (6.4 mm) high for name of unit if viewing distance is less than 24 inches (610 mm), 1/2 inch (13 mm) high for distances up to 72 inches (1800 mm), and proportionately larger lettering for greater distances. Provide secondary lettering two-thirds to three-fourths of size of principal lettering.
 b. Text of Signs: Provide name of identified unit. Include text to distinguish among multiple units, inform user of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

3. Adjusting: Relocate identifying devices that become visually blocked by work of this or other Divisions.

I. Concrete Bases

1. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 a. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
 b. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of base.
 c. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 d. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 e. Install anchor bolts to elevations required for proper attachment to supported equipment.
 f. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 g. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-place Concrete".

J. Erection Of Metal Supports And Anchorages

1. Refer to Division 05 Section "Metal Fabrications" for structural steel.

2. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor piped utility materials and equipment.

3. Field Welding: Comply with AWS D1.1/D1.1M.

K. Grouting

1. Mix and install grout for equipment base bearing surfaces, pump and other equipment base plates, and anchors.

2. Clean surfaces that will come into contact with grout.

3. Provide forms as required for placement of grout.

4. Avoid air entrapment during placement of grout.

5. Place grout, completely filling equipment bases.

6. Place grout on concrete bases and provide smooth bearing surface for equipment.

7. Place grout around anchors.
8. Cure placed grout.

END OF SECTION 31 23 19 00
SECTION 31 23 19 00a - DEWATERING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for dewatering. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Performance Requirements
1. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.
 a. Delegated Design: Design dewatering system, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
 b. Continuously monitor and maintain dewatering operations to ensure erosion control, stability of excavations and constructed slopes, that excavation does not flood, and that damage to subgrades and permanent structures is prevented.
 c. Prevent surface water from entering excavations by grading, dikes, or other means.
 d. Accomplish dewatering without damaging existing buildings, structures, and site improvements adjacent to excavation.
 e. Remove dewatering system when no longer required for construction.

C. Submittals
1. Shop Drawings: For dewatering system. Show arrangement, locations, and details of wells and well points; locations of risers, headers, filters, pumps, power units, and discharge lines; and means of discharge, control of sediment, and disposal of water.
 a. Include layouts of piezometers and flow-measuring devices for monitoring performance of dewatering system.
 b. Include a written plan for dewatering operations including control procedures to be adopted if dewatering problems arise.
2. Delegated-Design Submittal: For dewatering system indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

D. Quality Assurance
1. Regulatory Requirements: Comply with governing EPA notification regulations before beginning dewatering. Comply with hauling and disposal regulations of authorities having jurisdiction.
2. Preinstallation Conference: Conduct conference at Project site.

E. Project Conditions
1. Interruption of Existing Utilities: Do not interrupt any utility serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility according to requirements indicated:
 a. Notify the Owner no fewer than two days in advance of proposed interruption of utility.
 b. Do not proceed with interruption of utility without the Owner's written permission.
2. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements, establishing exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.
During dewatering, regularly resurvey benchmarks, maintaining an accurate log of surveyed elevations for comparison with original elevations. Promptly notify the Owner if changes in elevations occur or if cracks, sags, or other damage is evident in adjacent construction.

PRODUCTS (Not Used)

EXECUTION

A. Preparation

1. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by dewatering operations.
 a. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding site and surrounding area.
 b. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.

2. Install dewatering system to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.
 a. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

3. Provide temporary grading to facilitate dewatering and control of surface water.

4. Monitor dewatering systems continuously.

5. Promptly repair damages to adjacent facilities caused by dewatering.

6. Protect and maintain temporary erosion and sedimentation controls, which are specified in Division 31 Section "Site Clearing" during dewatering operations.

B. Installation

1. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, water disposal, and surface-water controls.
 a. Space well points or wells at intervals required to provide sufficient dewatering.
 b. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.

2. Before excavating below ground-water level, place system into operation to lower water to specified levels. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.

3. Provide an adequate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Install sufficient dewatering equipment to drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.
 a. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.

4. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.
 a. Maintain piezometric water level a minimum of 24 inches (600 mm) OR 60 inches (1500 mm), as directed, below surface of excavation.

5. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others. Provide sumps, sedimentation tanks, and other flow-control devices as required by authorities having jurisdiction.
6. Provide standby equipment on site, installed and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails. If dewatering requirements are not satisfied due to inadequacy or failure of dewatering system, restore damaged structures and foundation soils at no additional expense to Owner.
 a. Remove dewatering system from Project site on completion of dewatering. Plug or fill well holes with sand or cut off and cap wells a minimum of 36 inches (900 mm) below overlying construction.

7. Damages: Promptly repair damages to adjacent facilities caused by dewatering operations.

END OF SECTION 31 23 19 00a
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 23 23 23</td>
<td>31 05 13 00</td>
<td>Earthwork</td>
</tr>
</tbody>
</table>
SECTION 31 24 13 00 - EMBANKMENT

1.1 GENERAL

A. Description Of Work
1. This specification covers the reuse of suitable excavated material or furnishing material at the Contractor's expense to construct embankments where and as required by the Owner.

B. Submittals
1. Preconstruction Submittals
 a. Construction equipment list.
 b. Contractor shall record Existing Conditions prior to starting work in accordance with the paragraph entitled, "Existing Conditions," of this section.
 c. Location of Utilities
 d. Location of Tests
 e. Location of Inspection
 f. Location of Approved Utilities
 g. A protection plan verifying the Existing Utilities left in place.
2. Test Reports for Soil Test within three working days of test date. Soil test shall comply with paragraph entitled, "Quality Control Testing During Construction."
3. Certificates of compliance for Proposed Soil Materials shall be submitted in accordance with paragraph entitled, "Tests for Proposed Soil Materials."

C. Definitions
1. Soil Materials
 a. Cohesionless soil materials include gravels, gravel-sand mixtures, sands, and gravelly sands. Moisture-density relations of compacted cohesionless soils when plotted on graphs will show straight lines or reverse-shaped moisture-density curves.
 b. Cohesive soil materials include clayey and silty gravels, sand-clay mixtures, gravel-silt mixtures, clayey and silty sands, sand-silt mixtures, clays, silts, and very fine sands. Moisture density relations of compacted cohesive soils when plotted on graphs will show normal moisture-density curves.
2. Subgrade shall mean the top surface of a backfill or fill or the uppermost surface of an excavation, graded to conform to the required subgrade elevation and compacted to densities indicated.
3. Degree of compaction required is expressed as a percentage of the maximum density obtained by the test procedure in AASHTO T 180, Method B or D.
4. Classified Excavation: Separate consideration will be given to the nature of the materials excavated, in accordance with the following designations and classifications.
 a. Rock excavation shall include blasting, excavating, grading, and disposing of material classified as rock and shall include the satisfactory removal and disposition of boulders 1/2-cu yd (0.4 cu m) or more in volume; solid rock; rock material in ledges, bedded deposits, and unstratified masses which cannot be removed without systematic drilling and blasting; and conglomerate deposits that are so firmly cemented as to possess the characteristics of solid rock that is impossible to remove without systematic drilling and blasting. The removal of any concrete or masonry structures, except pavements, exceeding 1/2-cu yd (0.4 cu m) in volume that may be encountered in the work shall be included in this classification.
 b. Common excavation shall include the satisfactory removal and disposition of materials not classified as rock excavation.
5. Unclassified Excavation: No consideration will be given to the nature of the materials, and all excavation will be designated as unclassified excavation.
D. Sampling And Testing

1. Soil Test and Inspection Service: Soil survey for satisfactory soil materials and samples of soil materials shall be furnished by the Contractor. A certified soil testing service approved by the Owner shall be provided by the Contractor. Testing shall include soil survey for satisfactory soil materials, sampling and testing soil materials proposed for use in the work, and field-testing facilities for quality control during construction period.

2. Tests for Proposed Soil Materials: Soil materials proposed for use in the work shall be tested. The materials shall be approved by the Owner prior to start of work as follows:

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>NUMBER OF TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory soil materials</td>
<td>Sampling</td>
<td>AASHTO T 2</td>
<td>One for each source of materials to determine conformance to definition of satisfactory soil materials; additional tests whenever there is any apparent change</td>
</tr>
<tr>
<td></td>
<td>Preparation of samples</td>
<td>AASHTO T 87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sieve analysis of fine and coarse aggregate</td>
<td>ASTM C 136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical analysis of soils</td>
<td>ASTM D 422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid limit of Soils</td>
<td>ASTM D 4318</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plastic limit and plasticity index of soils</td>
<td>ASTM D 4318</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moisture-density relations of soil</td>
<td>AASHTO T 180, Method B or D</td>
<td></td>
</tr>
</tbody>
</table>
3. Quality Control Testing During Construction: Soil Test on materials shall be performed during construction as follows:

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>MATERIAL TESTED AND NUMBER OF TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil material-in-place after</td>
<td>Density of soil-in-place</td>
<td>ASTM D 1556 Sand Cone Method or</td>
<td>At least three daily for each subgrade soil material, and</td>
</tr>
<tr>
<td>compaction</td>
<td></td>
<td>ASTM D 2922 Nuclear Method</td>
<td>for each layer of soil material; additional tests whenever there is any change in moisture</td>
</tr>
</tbody>
</table>

4. Field Testing Facilities at Subbase Mixing Plant: Field-testing facilities for the purpose of testing subbase course material at the mixing plant shall be provided by the Contractor's soil-testing service.

5. Reports: No soil material shall be used until soil test reports have been reviewed and approved.

6. Evaluation of Test Results
 a. Soil materials of any classification shall not have a moisture content at the time of compaction that would be classified as unsatisfactory soil materials in the paragraph entitled, "Definitions."
 b. Results of density of soil-in-place tests shall be considered satisfactory if the average of any group of four consecutive density tests which may be selected is in each instance equal to or greater than the specified density, and if no density test has a value more than 2 percentage points below the specified density.

E. Use Of Explosives:
 1. Explosives shall not be used or brought to the project site without prior written approval. Such approval shall not be construed as relieving the Contractor of responsibility for injury to persons or for damage to property due to blasting operations. Blasting shall be performed by skilled personnel in accordance with governing authorities and as approved. Minimum safety requirements for blasting shall be in accordance with OSHA Regulations 29 CFR 1926, Subpart U.
 OR
 The use of explosives will not be permitted.

F. Protection Of Persons And Property
 1. Excavations shall be barricaded and posted with warning signs for the safety of persons. Warning lights shall be provided during hours of darkness.
 2. Structures, utilities, sidewalks, pavements, and other facilities immediately adjacent to excavations shall be protected against damage including settlement, lateral movement, undermining, and washout.
 3. Topsoil removal operations shall be conducted to ensure safety of persons and to prevent damage to existing structures and utilities, construction in progress, trees and vegetation to remain standing, and other property.

G. Construction Equipment List: Construction Equipment List for all major equipment to be used in this section shall be submitted to the Owner prior to start of work.

H. Existing Conditions
 1. Records of Existing Conditions shall be submitted by the Contractor prior to the start of work. The Contractor shall verify the existing conditions are correct as shown on the plans and described in the specifications. The Owner shall be notified immediately if any discrepancies are found.
2. Records of underground utilities, Location of Utilities, Location of Inspection, Location of Tests, and Location of Approved Utilities shall be submitted to the Owner prior to start of work.

1.2 PRODUCTS

A. Materials
2. Unsatisfactory Materials shall mean AASHTO M 145, Soil Classification Groups A-2-6, A-2-7, A-4, A-5, A-6, and A-7, peat and other highly organic soils, and soil materials of any classification that have a moisture content, at the time of compaction, beyond the range of 1 percentage point below and 3 percentage points above the optimum moisture content of the soil material as determined by moisture-density relations test.
3. Topsoil shall be any soil removed from the project site which consists of clay or sandy loam. The topsoil shall be reasonably free from subsoil, clay lumps, brush, objectionable weeds, and other litter, and shall be free from stones, stumps, roots, and other objectionable material larger than 2 in. (50 mm) in any dimension.
4. Compost shall be yard trimmings or yard waste compost processed and graded according to state and local regulations.
5. Topsoil Blend: Where insufficient topsoil is removed from the project site for later reuse, the topsoil removed shall be stockpiled and blended with compost at the site to achieve the required volume.

1.3 EXECUTION

A. Blasting: Where explosives are used in rock excavation, the charges shall be so proportioned and placed that they will not loosen the rock outside the excavation lines indicated, or as specified. Contractor shall remove, at no additional cost, any material outside the authorized cross section that may be shattered or loosened by blasting.

OR

Blasting is not required or permitted.

B. Conservation Of Topsoil: Topsoil shall be stripped to a depth of not less than 4 in. (100 mm); when stored it shall be kept separate from other excavated materials, free of roots, stones, and other undesirable materials. Where indicated, topsoil shall be removed without contamination with subsoil and spread on areas already graded and prepared for topsoil, or when so specified, topsoil shall be transported and deposited in stockpiles convenient to areas that are to receive application of the topsoil later or at locations indicated or specified by the Owner. Topsoil blend shall be used on all embankments when there is not enough topsoil available.

C. Excavation
1. Excavations specified shall be done on either a classified or unclassified basis as directed by the Owner.
2. Contractor shall perform excavation of every type of material encountered by cutting accurately to the cross sections to the lines, grades, and elevations indicated. Grading shall be in conformity with the typical sections indicated and the tolerances specified in paragraph entitled, “Finishing.”
3. Satisfactory excavated materials shall be transported to and placed in fill or embankment areas within the limits of the work. Unsatisfactory materials encountered within the limits of the work shall be excavated below grade and replaced with satisfactory materials as directed. Surplus satisfactory excavated material not required for fill or embankment shall be disposed in areas approved for surplus materials storage or designated waste areas. Unsatisfactory excavated
material shall be disposed in designated waste or spoil areas. During construction, excavation and filling shall be performed in a manner and sequence that will provide proper drainage at all times. Material required for fill or embankment in excess of that produced by excavation within the grading limits shall be excavated from the borrow areas indicated or from other approved areas selected by the Owner.

4. Excavation of Ditches, Gutters, and Channels: Care shall be taken not to excavate ditches and gutters below grades shown. Excessive open-ditch or gutter excavation shall be backfilled with suitable materials to grades indicated at no additional cost. Materials excavated shall be disposed as indicated, except that in no case shall material be deposited less than 3 ft. (1 m) from the edge of a ditch. Contractor shall maintain excavations free from debris until final acceptance of the work.

5. Excavation for Drainage Structures
 a. Dimensions and elevations of footings and foundation excavations indicated are only approximate and may be changed if necessary to ensure adequate foundation support. Trenches and foundation pits shall be of sufficient size to permit the placement and removal of forms for the full length and width of structure footings and foundations. Rock or other hard foundation material shall be cleaned of loose debris and cut to a firm surface, either level, stepped, or serrated. Loose disintegrated rock and thin strata shall be removed. When concrete or masonry is to be placed in an excavated area, special care shall be taken not to disturb the bottom of the excavation. Excavation to the final grade level shall not be made until just before concrete or masonry is to be placed.
 b. Where pile foundations are to be used, the excavation of each pit shall be stopped at an elevation 1 ft. (300 mm) above the base of the footing, as specified, before piles are driven. After pile driving has been completed, loose and displaced material shall be removed and excavation completed, leaving a smooth, solid, undisturbed surface to receive concrete or masonry.

6. Protection or Removal of Utility Lines: Existing Utilities that are indicated to be retained, or the locations of which have been ascertained from Owner utility drawings, as well as utility lines encountered during excavation, shall be protected from damage during excavation and backfilling. However, reliance on the information obtained from Owner drawings does not absolve the Contractor of responsibility for damages, so careful hand methods shall be used to verify the location of underground utilities. Damage shall be reported immediately and satisfactorily repaired by the Contractor at no additional cost. The Contractor shall provide sketches of existing conditions if there are variances, as well as any modifications, on "as-built" drawings. When utility lines that are to be removed are encountered within the area of operations, the Contractor shall give notice in ample time for the necessary measures to be taken to prevent interruption of service.

D. Classification Of Excavation: Excavations specified shall be done on either a classified or unclassified basis as provided for under the item designations of the Contract.

E. Utilization Of Excavation Materials: Unsatisfactory materials removed from excavations shall be disposed in designated areas. Satisfactory material removed from excavations shall be used, insofar as practicable, in the construction of fills, embankments, subgrades, shoulders, bedding; as backfill; and for similar purposes. No satisfactory excavated material shall be wasted without specific written authorization. Satisfactory material authorized to be wasted shall be disposed in designated areas approved for surplus material storage or designated waste areas as directed. Coarse rock from excavations shall be stockpiled and used for constructing slopes of embankments adjacent to streams, for constructing slopes or sides and bottoms of channels, and for protecting against erosion. Hand placing of coarse rock from excavations will not be required. Excavated material shall not be disposed in a manner as to obstruct the flow of any stream, endanger a partly finished structure, impair the efficiency or appearance of any structure, or be detrimental to the completed work in any way.

F. Selection Of Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be
obtained from the borrow areas indicated on the plans or from other approved sources, either private or within the limits of the project site, selected by the Contractor. Unless otherwise provided in the contract, the Contractor shall obtain from the Owners the right to procure material, pay all royalties and other charges involved, and bear all expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Owner-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris shall be considered related operations to the borrow excavation and shall be performed by the Contractor at no additional cost to the Owner.

G. Opening And Drainage Of Excavation And Borrow Pits: The Contractor shall give notice sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Unless otherwise permitted, borrow pits and other excavation areas shall be excavated in such manner as will afford adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed as directed. Borrow pits shall be neatly trimmed and left in such shape as will facilitate accurate measurements after the excavation is completed.

H. Grading Areas: When so provided and indicated, work under contract will be divided into grading areas, within which satisfactory excavated material shall be placed in embankments, fills, and required backfills. Contractor shall not haul satisfactory material excavated in one grading area to another grading area, except when so directed in writing.

I. Preparation Of Ground Surface For Embankments
1. Ground surface on which fill is to be placed shall be stripped of live, dead, or decayed vegetation, rubbish, debris, and other unsatisfactory material; shall be plowed, disked, or otherwise broken up; pulverized; moistened or aerated as necessary; mixed; and compacted to at least 90 percent maximum density for cohesive materials or 100 percent maximum density for cohesionless materials.
2. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, or other approved equipment. The prepared ground surface shall be scarified and moistened or aerated just prior to placement of embankment materials to ensure adequate bond between embankment material and the prepared ground surface.

J. Embankments
1. Earth Embankments
 a. Earth embankments shall be constructed from satisfactory materials free of organic or frozen material and rocks with maximum dimensions not greater than 3 in. (75 mm). The material shall be placed in successive horizontal layers of loose material not more than 6 in. (150 mm) in depth. Each layer shall be spread uniformly on a prepared surface, i.e., a soil surface that has been moistened or aerated and scarified plowed, disked, or otherwise broken up in such a manner that the fill will bond with the surface on which it is placed, mixed, and compacted to at least 90 percent maximum density for borrow materials or 100 percent maximum density for excavated materials. Compaction requirements for the upper portion of earth embankments forming subgrade for pavements shall be identical to those requirements specified in paragraph entitled, "Subgrade Preparation."
 b. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, or other approved equipment.
2. Rock Embankments
 a. Rock embankments shall be constructed from material essentially classified as rock excavation, placed in successive horizontal layers of loose material not more than 8 to 10 in. (200 to 250 mm) in depth. Pieces of rock larger than 8 to 10 in. (200 to 250 mm) in greatest dimension shall not be used.
b. Each layer of material shall be spread uniformly and shall be completely saturated and compacted to density as directed by the Owner.

c. Each layer of material shall be spread uniformly and shall be completely saturated and compacted until the interstices are filled with well-compacted materials and the entire layer is a dense, compacted mass.

d. Each successive layer of material shall adequately bond to the material on which it is placed.

e. Compaction shall be accomplished with vibratory compactors with a minimum static weight of 20,000 lbs. (90 kN), heavy rubber-tired rollers weighing not less than 25,000 lbs. (110 kN) or steel-wheeled rollers with a loaded weight of not less than 4,000 lb/ft (58,400 N/m) of drum length.

f. Rock shall not be used above a point 6 in. (150 mm) below the surface of an embankment that is to be paved.

K. Subgrade Preparation

1. Construction
 a. Subgrade shall be shaped to line, grade, and cross section and compacted as specified. This operation shall include plowing, disking, and any moistening or aerating required to obtain proper compaction. Soft or otherwise unsatisfactory material shall be removed and replaced with satisfactory excavated material or other approved material as directed. Rock encountered in the cut sections shall be excavated to a depth of 6 in. (150 mm) below finished grade for the subgrade. Low areas resulting from removal of unsatisfactory material or excavation of rock shall be brought up to required grade with satisfactory materials, and the entire subgrade shall be shaped to line, grade, and cross section and compacted as specified.

 b. After rolling, the surface of the subgrade for roadways and/or airfields shall indicate a deviation not greater than 3/8 in. (10 mm) when tested with a 10-ft (3.0 m) straightedge applied both parallel with, and at right angles to, the centerline of the area.

 c. Elevation of the finished subgrade shall vary not more than 1/4-in. (6 mm) from the established grade and approved cross section.

2. Compaction: Compaction for pavements and shoulders shall be accomplished with approved equipment until the layer is compacted to the full depth to at least 95 percent maximum density.

L. Shoulder Construction: Shoulders shall be constructed of satisfactory excavated or borrow materials or as otherwise indicated on the plans. Shoulders shall be constructed as soon as possible after adjacent paving is complete, but in the case of rigid pavements, shoulders shall not be constructed until permission has been obtained. The entire shoulder area shall be compacted to at least the percentage of maximum density as specified for specific ranges of depth below the surface of the shoulder. Compaction shall be accomplished with approved equipment. Shoulder construction shall be done in proper sequence in such a manner that adjacent ditches will be drained effectively and no damage of any kind is done to the adjacent, completed pavement. The completed shoulders shall be true to alignment and grade and shaped to drain in conformity with the cross section indicated.

M. Finishing: Surface of excavations, embankments, and subgrades shall be finished to a reasonably smooth and compact surface substantially in accordance with the lines, grades, and cross sections or elevations indicated. Degree of finish for graded areas shall be within 1/10 ft (30 mm) of the grades and elevations indicated, except that the degree of finish for subgrades shall be as specified. Gutters and ditches shall be finished as indicated. Surface of areas to be turfed shall be finished to a smoothness suitable for the application of turfing materials.

N. Subgrade And Embankment Protection: During construction, embankments and excavations shall be kept shaped and drained. Ditches and drains along subgrade shall be maintained in such a manner as to drain effectively at all times. Finished subgrade shall not be disturbed by traffic or other operations and shall be protected and maintained by the Contractor in a satisfactory condition until ballast, subbase, base, or pavement is placed. Storage or stockpiling materials on finished subgrade will not be
permitted. Subbase, base course, ballast, or pavement shall not be laid until the subgrade has been checked and approved, and in no case shall subbase, base, surfacing, pavement, or ballast be placed on a muddy, spongy, or frozen subgrade.

END OF SECTION 31 24 13 00
SECTION 31 24 13 00a - LEVEE CLOSURE

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing of labor and materials for providing levee closures.

1.2 PRODUCTS - (Not Used)

1.3 EXECUTION

A. If there is deemed, by the Owner, to be considerable risk of flooding involved with removing drainage structures and gates in the existing Levee System, the Contractor shall perform the work of this contract as follows:
1. Only one drainage structure/flap gate will be allowed to be disrupted at one time. All proposed work at each drainage structure shall be completed before proceeding to the next structure.
2. The Contractor shall have all materials required for each structure installation secured on site, before beginning construction on that structure.
3. The Contractor shall have all necessary materials on site to temporarily plug existing and/or proposed piping through the levee.
4. Weather and river flow conditions shall be monitored at all times by the Contractor while each drainage structure is open to flow. The Contractor shall construct an adequate closure in a timely fashion to plug the drainage structure preventing flow through the levee.

END OF SECTION 31 24 13 00a
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 24 13 00</td>
<td>31 05 13 00</td>
<td>Earthwork</td>
</tr>
</tbody>
</table>
SECTION 31 25 14 13 - SEDIMENT REMOVAL

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing of labor and equipment for sediment removal.

1.2 PRODUCTS - (Not Used)

1.3 EXECUTION

A. The Contractor shall remove all material from areas as required to meet project requirements. Water and sediment removed from these areas shall be discharged to a sedimentation basin constructed and maintained by the Contractor. All work shall be in strict compliance with Pollution Control requirements and Dewatering requirements. All material removed shall be disposed of in an approved landfill in accordance with all State and Federal Regulations.

END OF SECTION 31 25 14 13
SECTION 31 25 14 13a - GEOSYNTHETIC FABRIC

1.1 GENERAL

A. Description Of Work

1. This specification covers the furnishing of labor, material and equipment for the installation of geosynthetic fabric.

1.2 PRODUCTS

A. Materials

1. Erosion Control Fabric - Photo and biodegradable plastic Curlex Blanket as manufactured by American Excelsior Co. or approved equal.
2. Drainage/Leach Bed - Non-woven polypropylene/polyethylene fabric, Mirafi 140N or approved equal.
3. Road Base and Structure Reinforcement - Woven polypropylene fabric, Mirafi 600X or approved equal.
4. Sediment and Job Site erosion control - woven polypropylene fabric - Envirofence by Mirafi or approved equal.

1.3 EXECUTION

A. For sediment and job site erosion control fabric, the Contractor shall provide and install silt fence as detailed on the Storm Water Management and Erosion Control Plan. It shall be the Contractor’s option to provide fabricated reinforced silt fence or prefabricated units, unless otherwise noted. In all installations, the bottom flap of filter cloth shall be firmly embedded into undisturbed or stabilized grade. Embedment shall resist pullout and prevent flow under the installation.

END OF SECTION 31 25 14 13a
SECTION 31 25 14 13b - EROSION CONTROL

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of mesh or netting for erosion control. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

1.2 PRODUCTS

A. Materials
2. Plastic Mesh: Manufacturer’s recommendation.
3. Plastic Netting: Manufacturer’s recommendation.
4. Polypropylene Mesh: Manufacturer’s recommendation.

1.3 EXECUTION:

A. Preparation: Grade, compact, fertilize, and seed the area to be protected.

B. Installation: Apply blankets either horizontally or vertically to the slope. In ditches, apply blanket in direction of water flow. Lap and anchor blankets according to the manufacturer’s instructions. Install woven fabric fence and hay bales adjacent to all excavated areas.

END OF SECTION 31 25 14 13b
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 25 14 16</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>31 25 14 16</td>
<td>31 25 14 13</td>
<td>Sediment Removal</td>
</tr>
<tr>
<td>31 25 14 16</td>
<td>31 25 14 13a</td>
<td>Geosynthetic Fabric</td>
</tr>
<tr>
<td>31 25 14 16</td>
<td>31 25 14 13b</td>
<td>Erosion Control</td>
</tr>
<tr>
<td>31 25 14 23</td>
<td>31 25 14 13</td>
<td>Sediment Removal</td>
</tr>
<tr>
<td>31 25 14 23</td>
<td>31 25 14 13a</td>
<td>Geosynthetic Fabric</td>
</tr>
<tr>
<td>31 25 14 23</td>
<td>31 25 14 13b</td>
<td>Erosion Control</td>
</tr>
</tbody>
</table>
SECTION 31 25 14 26 - SILT FENCES

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing of labor, material and equipment for the installation of silt fencing.

1.2 PRODUCTS

A. Materials
1. Fabricated Units
 a. Posts: 36" long, 2" hardwood or "T" or "U" type steel.
 b. Fence: Woven wire, 14-1/2 ga. 6-inch max. mesh opening.
 c. Filter Cloth: MIRAFI 100X or approved equal.
2. Prefabricated Units
 a. Envirofence by MIRAFI or approved equal.

1.3 EXECUTION

A. The Contractor shall provide and install silt fences as directed by the Owner. It shall be the Contractor's option to provide fabricated reinforced silt fence or prefabricated units, unless otherwise directed. In all installations, the bottom flap of filter cloth shall be firmly embedded into undisturbed or stabilized grade. Embedment shall resist pullout and prevent flow under the installation.

END OF SECTION 31 25 14 26
THIS PAGE INTENTIONALLY LEFT BLANK
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 25 14 26</td>
<td>31 25 14 13</td>
<td>Sediment Removal</td>
</tr>
<tr>
<td>31 25 14 26</td>
<td>31 25 14 13b</td>
<td>Erosion Control</td>
</tr>
</tbody>
</table>
SECTION 31 32 13 16 - SOIL STABILIZATION-LIME

1.1 GENERAL
 A. Description Of Work
 1. This specification covers furnishing of materials and the preparation and production of a stabilized
 subgrade by the addition of hydrated lime to the native material.

1.2 PRODUCTS
 A. Hydrated lime material requirements shall be as follows:
 1. Available Lime Index as Calcium Hydroxide: 90 percent minimum.
 2. Residue retained on No. 30 Sieve: 1 percent maximum.
 3. Residue retained on No. 200 Sieve: 20 percent maximum.

1.3 EXECUTION:
 A. Preparation: Scarify the subgrade to the depth required and pulverize the material until it is substantially
 free of lumps greater than three inches in diameter.
 B. Installation: Lime shall be applied to the pulverized material as a slurry, unless otherwise directed. Water
 shall be added as needed to provide a moisture content of not less than 20 percent. Surface-applied lime slurry
 shall be plowed and/or disked into the soil as necessary. The resulting mixture shall be aged for not less than 48
 hours before compaction.

END OF SECTION 31 32 13 16
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 32 13 19</td>
<td>31 32 13 16</td>
<td>Soil Stabilization-Lime</td>
</tr>
<tr>
<td>31 32 13 29</td>
<td>31 32 13 16</td>
<td>Soil Stabilization-Lime</td>
</tr>
<tr>
<td>31 32 19 13</td>
<td>31 32 13 16</td>
<td>Soil Stabilization-Lime</td>
</tr>
<tr>
<td>31 32 19 13</td>
<td>31 25 14 13a</td>
<td>Geosynthetic Fabric</td>
</tr>
</tbody>
</table>
SECTION 31 32 19 16 - SEWAGE TREATMENT LAGOONS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for the repair and maintenance of sewage treatment lagoons. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Materials
1. Concrete Block shall comply with ASTM C 129.
3. Riprap Stone shall comply with AREA-01.
5. Sand shall comply with ASTM C 33.
6. Portland Cement shall comply with ASTM C 150, Type V.
7. Rubble shall consist of broken concrete or broken stone.

1.3 EXECUTION

A. Algae Removal shall be by mechanical or manual methods and shall include, but not be limited to, skimming, pumping through a screen, raking, or draining and cleaning the lagoon.

B. Slope and Dike Reconstruction shall be made to re-establish the original design configuration and grades. Place riprap, where required, so that its angle of repose is not exceeded.

C. Liner Reconstruction and Repair shall be made with materials compatible with the existing liner and compatible with the wastewater and sludge to be contained therein.

D. Repairs to Elastomeric Membrane Liners shall be made with like material and shall overlap all cuts, tears, fractures or other defects a minimum of 4 inches. Cut repair pieces square or rectangular. The method of bonding the new material to existing material shall be similar to the original joint banding method, except when the original joints have failed. In this case, the material supplier shall demonstrate that an alternate jointing system shall be satisfactory to the Owner. Replace earth or sand cover removed during repair or replacement of plastic liner to the same thickness as the original installation.

E. Repairs to Non-Elastomeric Membrane Liners shall be made by cutting out defective areas back to sound liner material and replacing with similar material. Joints shall be watertight.

END OF SECTION 31 32 19 16
SECTION 31 32 19 16a - POND RESERVOIR LINERS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for pond and reservoir liners. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes geomembrane liners and floating covers for ponds and reservoirs.

C. Definitions
1. Plastics Terminology: See ASTM D 1600 for definitions of abbreviated terms for plastics not otherwise defined in this Section.
2. CSPE: Chlorosulfonated polyethylene.
3. EIA: Ethylene interpolymer alloy.
4. EPDM: Ethylene-propylene-diene terpolymer.
5. PE: Polyethylene.
6. PP: Polypropylene.

D. Performance Requirements
1. Provide geomembrane liners and floating covers, as directed, that prevent the passage of water and gas, as directed.

E. Submittals
1. Product Data: For each type of product indicated. Include the following:
 a. Sheets for geomembrane liners and floating covers.
 b. Seaming adhesives, solvents, and extrusions.
 c. Penetration assemblies.
 d. Accessories for floating covers.
2. Shop Drawings: Show fabrication and installation details for geomembrane liners. Show panel layout, seams, penetrations, perimeter anchorage, floating cover, and methods of attachment and sealing to other construction. Differentiate between factory and field seams and joints.
3. Samples: For the following products, in sizes indicated:
 a. Geomembrane Panels: For each type, not less than one 12-inch (300-mm) seam length for factory-bonded sheets and one 12-inch (300-mm) seam length for field-bonded sheets.
4. Qualification Data: For qualified Installer OR testing agency, as directed.
5. Product Certificates: For each type of geomembrane liner and floating cover, from manufacturer.
6. Product Test Reports: For each geomembrane sheet, based on evaluation of comprehensive tests performed by a qualified testing agency.
7. Source quality-control reports.
8. Field quality-control reports.
9. Maintenance Data: For geomembrane liner and floating cover to include in maintenance manuals.
10. Warranty: Special warranty specified in this Section.

F. Quality Assurance
1. Installer Qualifications: Fabricator of products OR An employer of workers trained and approved by manufacturer, as directed.
2. Source Limitations: Obtain geomembrane liner and floating cover, accessories, and required seaming materials, solvents, and adhesives from single source.
 a. Inspect and discuss condition of substrate and other preparatory work performed by other trades.
 b. Review structural load limitations.
 c. Review limitations on equipment and Installer’s personnel.
 d. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 e. Review required testing, inspecting, and certifying procedures.
 f. Review existing and forecasted weather conditions and procedures for unfavorable conditions.

G. Project Conditions
1. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit placement and seaming of geomembrane liners and floating covers to be performed according to manufacturers' written instructions and warranty requirements.

H. Warranty
1. Special Warranty: Specified form in which geomembrane manufacturer, geomembrane liner and floating cover fabricator, and geomembrane liner and floating cover Installer agree to repair or replace geomembrane liner and floating cover that fail(s) in materials or workmanship or that deteriorate(s) under conditions of normal weather within specified warranty period. Warranty does not include deterioration or failure of geomembrane liner and floating cover due to exposure to harmful chemicals, gases or vapors, abnormal and severe weather phenomena, fire, earthquakes, floods, vandalism, or abuse by persons, animals, or equipment.
 a. Failures include, but are not limited to, the following:
 1) Leaks in geomembrane liner and floating cover.
 2) Defects in seams.
 3) Cracks and holes in floating cover.
 b. Warranty Period: One OR Five OR 10, as directed, year(s) from date of Substantial Completion.

1.2 PRODUCTS
A. CSPE Sheet Materials
1. CSPE Sheet: Formulated from CSPE for use in hydraulic structures and formed into uniform, flexible sheets.
 1) Construction: 6 x 6 - 1000 d OR 8 x 8 - 250 d OR 10 x 10 - 1000 d, as directed.
 b. Nominal Thickness: 45-mil- (1.14-mm-) thick sheet per ASTM D 5199 or ASTM D 751, Optical Method.
 c. Nominal Thickness over Scrim: 11-mil- (0.28-mm-) thick sheet per ASTM D 5199 or ASTM D 751, Optical Method.
 d. Breaking Strength: Not less than 200 lbf (0.89 kN) minimum average per ASTM D 751, Procedure A.
 e. Tear Strength, Initial: Not less than 70 lbf (0.31 kN) minimum average per ASTM D 5884 or ASTM D 751, Procedure B.
 f. Tear Strength, after Aging: Not less than 35 lbf (0.16 kN) minimum average per ASTM D 5884 or ASTM D 751, Procedure B.
 g. Puncture Resistance: Not less than 200 lbf (0.89 kN) minimum average per ASTM D 4833.
i. Dimensional Stability, Reinforced Sheet: Not more than plus or minus 2 percent per ASTM D 1204.

j. Low-Temperature Flexibility: Pass, 1/8-inch (3-mm) mandrel, four hours at minus 40 deg F (minus 40 deg C), and per ASTM D 2136.

k. UV-Light Resistance: Pass, 4000 hours at 176 deg F (80 deg C), per ASTM G 155.

l. Ply Adhesion: Not less than 7 lbf/in. (1.2 kN/m) OR 10 lbf/in. (1.75 kN/m), as directed, of seam width, or film tearing bond, according to ASTM D 413, Machine Method.

m. Water Absorption (for low-water-absorption CSPE): Not more than 2 percent at 70 deg F (21 deg C) and not more than 30 percent at 158 deg F (70 deg C) for 30 days each per ASTM D 471, 30-mil- (0.76-mm-) thick sheet.

B. EIA Sheet Materials
1. EIA Sheet: Formulated from EIA for use in hydraulic structures and formed into uniform, flexible sheets.
 1) Construction: 6 x 6 - 1000 d OR 8 x 8 - 500 d OR 10 x 10 - 1000 d OR 10 x 11 - 2520 d x 2000 d, as directed.
 b. Nominal Thickness: 36-mil- (0.91-mm-) thick sheet per ASTM D 1593 or ASTM D 751, Optical Method.
 c. Tensile Strength: Not less than 400 lbf (1.8 kN) minimum average per ASTM D 751, Procedure A.
 d. Tear Strength: Not less than 35 lbf (0.16 kN) minimum average per ASTM D 5884 or ASTM D 751, Procedure B.
 e. Puncture Resistance: Not less than 150 lbf (0.67 kN) minimum average per ASTM D 4833.
 f. Hydrostatic Resistance: Not less than 100-psi (690-kPa) minimum average resistance per ASTM D 751, Procedure A.
 g. Dimensional Stability, Reinforced Sheet: Not more than plus or minus 2 percent per ASTM D 1204.
 h. Low-Temperature Flexibility: Pass, 1/8-inch (3-mm) mandrel, four hours at minus 30 deg F (minus 34 deg C), and per ASTM D 2136.
 i. UV-Light Resistance: Pass, 4000 hours at 176 deg F (80 deg C), per ASTM G 155.
 j. Ply Adhesion: Not less than 7 lbf/in. (1.2 kN/m) OR 10 lbf/in. (1.75 kN/m), as directed, of seam width, or film tearing bond, according to ASTM D 413, Machine Method.

C. EPDM Sheet Materials
1. EPDM Sheet: Formulated from EPDM, compounded for use in hydraulic structures and formed into uniform, flexible sheets.
 1) Construction: 9 x 9 - 1000 d OR 10 x 10 - 1000 d, as directed.
 b. Nominal Thickness: 45-mil- (1.14-mm-) thick sheet per ASTM D 5199 or ASTM D 751, Optical Method.
 c. Breaking Strength: Not less than 190 lbf (0.85 kN) minimum average per ASTM D 882, ASTM D 7004, or ASTM D 751, Procedure A.
 d. Tear Resistance: Not less than 130 lb (0.58 kN) minimum average per ASTM D 1004.
 e. Puncture Strength: Not less than 60 lbf (0.27 kN) minimum average per ASTM D 4833.

D. PE Sheet Materials
1. PE Sheet: Formulated from virgin PE, compounded for use in hydraulic structures, and formed into uniform sheets.
 a. Sheet Texture: One side smooth; other side smooth OR textured, as directed.
 b. Nominal Density: Low density, 0.910 to 0.925 g/cu. cm OR Linear low density, 0.919 to 0.925 g/cu. cm OR Medium density, 0.926 to 0.939 g/cu. cm OR High density, 0.940 to 0.959 g/cu. cm, as directed, per ASTM D 1505.
c. Nominal Thickness: 60-mil- (1.5-mm-) thick sheet per ASTM D 5199 OR ASTM D 5994, as directed.
d. Melt Flow Index: Not more than 0.035 oz./10 minutes (1.0 g/10 minutes) per ASTM D 1238, Condition 190/2.16.
e. Carbon Black Content: 2 to 3 percent per ASTM D 1603 or ASTM D 4218.
g. Oxidation Induction Time: Not less than 100 minutes per ASTM D 3895.
h. Tensile Properties: Not less than indicated for each direction, per ASTM D 638, Type IV or ASTM D 6693, Type IV.
 1) Strength at Yield: Not less than 126 lbf/in. (22 kN/m) and 2100 psi (14.5 MPa) minimum average.
 2) Strength at Break: Not less than 228 lbf/in. (40 kN/m) and 3800 psi (26.2 MPa) minimum average.
 3) Elongation at Yield: Not less than 12 percent minimum average.
 4) Elongation at Break: Not less than 700 percent minimum average.
i. Tear Resistance: Not less than 39 lbf (0.18 kN) minimum average per ASTM D 1004.
j. Puncture Resistance: Not less than 108 lbf (0.48 kN) minimum average per ASTM D 4833.
k. Dimensional Stability, Reinforced Sheet: Not more than plus or minus 2 percent per ASTM D 1204.
l. Low-Temperature Brittleness: Four hours at minus 76 deg F (minus 60 deg C) per ASTM D 746.
m. Environmental Stress Cracking Resistance: Not less than 1500 hours per ASTM D 1693, Condition B.

E. PP Sheet Materials
1. PP Sheet: Formulated from virgin PP, compounded for use in hydraulic structures, and formed into uniform, flexible sheets.
 1) Construction: 9 x 9 - 1000 d OR 10 x 10 - 1000 d, as directed.
 b. Sheet Texture: One side smooth; other side smooth OR textured, as directed.
 c. Nominal Thickness: 45-mil- (1.14-mm-) thick sheet per ASTM D 5199 or ASTM D 751, Optical Method OR ASTM D 5994, as directed.
 d. Tensile Strength: Not less than 250 lbf (1.1 kN) minimum average per ASTM D 412, ASTM D 7003, ASTM D 6693, or ASTM D 751, Procedure A.
 e. Tear Resistance: Not less than 55 lbf (0.24 kN) minimum average per ASTM D 1004, ASTM D 5884, ASTM D 7003, or ASTM D 751, Procedure B.
 f. Puncture Resistance: Not less than 200 lbf (0.88 kN) minimum average per ASTM D 4833 or ASTM D 7003.
 g. Low-Temperature Flexibility: Pass, 1/8-inch (3-mm) mandrel, four hours at minus 40 deg F (minus 40 deg C), and per ASTM D 2136.
 i. Dimensional Stability, Reinforced Sheet: Not more than plus or minus 1 percent per ASTM D 1204.
 j. Ply Adhesion: Not less than 20 lbf/in. (3.5 kN/m) of seam width, or film tearing bond, according to ASTM D 413, Machine Method.

F. PVC Sheet Materials
1. PVC Sheet: Formulated from virgin PVC with plasticizers and other modifiers, compounded for use in hydraulic structures, and formed into uniform, flexible sheets with material properties complying with ASTM D 7176 OR PGI 1104, “Specification for PVC Geomembranes”, as directed, for nominal thickness indicated.
a. Nominal Thickness: 10 mils (0.25 mm) OR 20 mils (0.51 mm) OR 30 mils (0.76 mm) OR 40 mils (1.02 mm) OR 50 mils (1.3 mm) OR 60 mils (1.5 mm), as directed.

b. Sheet Texture: One side smooth; other side smooth OR matte OR faille textured, as directed.

G. Floating Cover Accessories
1. Screened Scupper Hoses: Manufacturer's standard.
2. Flotation Blocks: Closed-cell polyethylene foam blocks approximately 4 by 12 inches (102 by 300 mm), 2.2 lb/cu. ft. (35.2 kg/cu. m).
3. Access Hatch: Manufacturer's standard, in size indicated.

H. Miscellaneous Materials
1. Adhesives: Provide types of adhesive primers, compounds, solvents, and tapes recommended in writing by geomembrane liner manufacturer for bonding to structures (if required), for sealing of seams in geomembrane liner, and for sealing penetrations through geomembrane liner.
2. Penetration Assemblies: Provide manufacturer’s standard factory-fabricated assemblies for sealing penetrations. Include joint sealant recommended in writing by geomembrane liner manufacturer and compatible with geomembrane liner, containment conditions, and materials.
3. Battens: Long-length strips of material indicated, size as shown on Drawings. Fabricate battens with sharp projections removed and edges eased and then predrilled or punched for anchors. Provide anchors, or other type of attachment, of type and spacing recommended in writing by geomembrane liner manufacturer for attaching geomembrane liner system to substrate and as indicated.
 a. Batten Material: Liner manufacturer's standard system.
 OR
 Batten Material: Aluminum; with stainless-steel anchors, complete with gasket and sealant compatible with geomembrane liner, containment conditions, and materials.
 OR
 Batten Material: Stainless steel; with stainless-steel anchors, complete with gasket and sealant compatible with geomembrane liner, containment conditions, and materials.
 OR
 Batten Material: Plastic compatible with geomembrane liner, cast in place or fastened with stainless-steel anchors, designed to continuously seal geomembrane liner to batten.
4. Sand: ASTM C 33; fine aggregate, natural or manufactured sand.

I. Fabrication
1. Fabricate geomembrane liner and floating cover, as directed, panels from sheets in sizes as large as possible with factory-sealed seams, consistent with limitations of weight and installation procedures. Minimize field seaming.
2. Fabricate flotation blocks, wrap in geomembrane, and attach to underside of floating cover according to manufacturer's written instructions.
3. Fabricate ballast tubes of sand-filled geomembrane and attach to top surface of floating cover according to manufacturer's written instructions.
4. Install built-in accessories, hatches, access panels, vents, and walkways on geomembrane floating cover.

J. Source Quality Control
1. Testing Agency: Engage a qualified testing agency to evaluate geomembrane seams.
2. Destructive Testing: Test for bonded seam strength and peel adhesion every 3000 feet (915 m) or once per panel, whichever is more frequent.
3. CSPE Liner and Floating Cover: Test and inspect factory seams, according to ASTM D 4545, for peel adhesion not less than 10 lbf/in. (1.75 kN/m) of seam width and for bonded seam strength not less than 180 lbf/in. (32 kN/m) of seam width for seams constructed from two scrim-reinforced sheets, each with nominal sheet thickness of not less than 45 mils (1.14 mm).
4. **EIA Liner and Floating Cover**: Test and inspect factory seams, according to ASTM D 4545, for peel adhesion not less than 10 lbf/in. (1.75 kN/m) of seam width and for bonded seam strength not less than 270 lbf/in. (48 kN/m) of seam width for seams constructed from two scrim-reinforced sheets, each with nominal sheet thickness of not less than 36 mils (0.91 mm).

5. **EPDM Liner**: Test and inspect factory seams, according to ASTM D 4545, for peel adhesion not less than 10 lbf/in. (1.75 kN/m) of seam width and for bonded seam strength not less than 160 lbf/in. (28 kN/m) of seam width for seams constructed from two scrim-reinforced sheets, each with nominal sheet thickness of not less than 45 mils (1.14 mm).

6. **PE Liner**: Test and inspect factory seams, according to ASTM D 4545, for peel adhesion and for bonded seam strength indicated.
 a. **Peel Adhesion/Extrusion**: Film tear bond and not less than 78 lbf/in. (13.7 kN/m) of extrusion-bonded seam width.
 OR
 Peel Adhesion/Fusion: Film tear bond and not less than 90 lbf/in. (15.8 kN/m) of fused seam width.
 b. **Bonded Seam Strength**: Not less than 120 lbf/in. (21 kN/m) of seam width for seams constructed from two scrim-reinforced sheets, each with nominal sheet thickness of not less than 45 mils (1.14 mm).

7. **PP Liner and Floating Cover**: Test and inspect factory seams, according to ASTM D 4545, for peel adhesion not less than 20 lbf/in. (3.5 kN/m) of seam width and for bonded seam strength not less than 200 lbf/in. (35 kN/m) of seam width for seams constructed from two scrim-reinforced sheets, each with nominal sheet thickness of not less than 45 mils (1.14 mm).

8. **PVC Liner and Floating Cover**: Test and inspect factory seams, according to ASTM D 4545, for peel adhesion not less than 10 lbf/in. (1.75 kN/m) of seam width and for bonded seam strength not less than that indicated below for seams constructed from two sheets of minimum nominal thickness indicated for each:
 a. **Bonded Seam Strength for 10-mil- (0.25-mm-) Thick Sheets**: 20 lbf/in. (3.5 kN/m) of seam width.
 b. **Bonded Seam Strength for 20-mil- (0.51-mm-) Thick Sheets**: 38.5 lbf/in. (6.7 kN/m) of seam width.
 c. **Bonded Seam Strength for 30-mil- (0.76-mm-) Thick Sheets**: 58.4 lbf/in. (10.2 kN/m) of seam width.
 d. **Bonded Seam Strength for 40-mil- (1.02-mm-) Thick Sheets**: 77.6 lbf/in. (13.6 kN/m) of seam width.
 e. **Bonded Seam Strength for 50-mil- (1.3-mm-) Thick Sheets**: 96 lbf/in. (16.8 kN/m) of seam width.
 f. **Bonded Seam Strength for 60-mil- (1.5-mm-) Thick Sheets**: 116 lbf/in. (20.3 kN/m) of seam width.

1.3 EXECUTION

A. **Examination**
 1. Examine substrates, with Installer present, for compliance with requirements for soil compaction and grading; for subgrade free from angular rocks, rubble, roots, vegetation, debris, voids, protrusions, and ground water; and for other conditions affecting performance of geomembrane liner.
 2. Examine anchor trench excavation **OR** concrete perimeter, **as directed**, where geomembrane liner and floating cover, **as directed**, will be secured, for substrate conditions indicated above and for correct location and configuration.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.

B. **Preparation**
1. Provide temporary ballast, until edges are permanently secured, that does not damage geomembrane liner or substrate, to prevent uplift of geomembrane liner in areas with prevailing winds.

2. Prepare surfaces of construction penetrating through geomembrane liner according to geomembrane liner manufacturer's written instructions.

3. Remove curing compounds and coatings from concrete surfaces to be sealed to geomembrane liner.

C. Installation

1. General: Place geomembrane liner over prepared surfaces to ensure minimum handling. Install according to Shop Drawings and in compliance with geomembrane liner manufacturer's written instructions. Begin placing geomembrane liner at Project's upwind direction and proceed downwind. Install geomembrane liner in a relaxed condition, free from stress and with minimum wrinkles, and in full contact with subgrade. Do not bridge over voids or low areas in the subgrade. Fit closely and seal around inlets, outlets, and other projections through geomembrane liner. Permanently secure edges.

2. Field Seams: Comply with geomembrane liner and floating cover manufacturer's written instructions. Form seams by lapping edges of panels 2 to 4 inches (50 to 102 mm) unless instructions require a larger overlap. Wipe contact surfaces clean and free of dirt, dust, moisture, and other foreign materials. Use solvent-cleaning methods and grind geomembrane seam surfaces if recommended by geomembrane liner manufacturer. Proceed with seaming at required temperatures for materials and ambient conditions. Continuously bond sheet to sheet to construct single or double seams of width recommended for method of seaming used. Seal or fuse free seam edges. Inspect seams and reseal voids.

 a. Adhesive Bonding: Apply bonding cement to both contact surfaces in seam area and press together immediately, or use other seaming methods as instructed by geomembrane liner manufacturer. Roll to press surfaces together, to distribute adhesive to leading edges of panels, and to remove wrinkles and fishmouths. Remove excess adhesive.

 OR

 Thermal Bonding: Use thermal-welding technique recommended by geomembrane liner manufacturer. Apply pressure to smoothly bond surfaces together. Examine for and patch wrinkles and fishmouths.

3. Installation in Anchor Trench: Install geomembrane liner and floating cover in trench according to manufacturer's written instructions. Backfill and compact to lock liner into trench.

4. Attachment to Concrete: Use manufacturer's standard system to suit Project conditions. Support adhesive and geomembrane on minimum 8-inch- (200-mm-) wide concrete substrate unless otherwise indicated.

 a. Install batten strips over geomembrane liner and floating cover as shown on Drawings.

 b. Install antichafing strips of geomembrane sheet between geomembrane liner and floating cover according to manufacturer's written instructions.

 c. Install floating cover with perimeter fold.

5. Floating Cover Flotation Control: Connect drainage hoses in perimeter fold, sumps, or scuppers to pump or gravity drain system.

6. Liner Repairs: Repair tears, punctures, and other imperfections in geomembrane liner field and seams using patches of geomembrane liner material, liner-to-liner bonding materials, and bonding methods according to geomembrane liner manufacturer's written instructions. Apply bonding solvent or weld to contact surfaces of both patch and geomembrane liner, and press together immediately. Roll to remove wrinkles.

D. Field Quality Control

1. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

2. Nondestructive Testing: Visually inspect seams and patches. Comply with ASTM D 4437 for Air Lance Test, Vacuum Box Testing, or Ultrasonic (High Frequency) Pulse Echo Testing or with GRI Test Method GM6, as applicable to geomembrane liner and floating cover and seam.
construction. Record locations of failed seams and patches. Individually number and date occurrences and details of leak and remedial action. Repair leaking seams and patches.

3. Prepare test and inspection reports.

E. Disinfection
 1. Disinfect the complete installation according to procedures in AWWA C652.

F. Protection
 1. Protect installed geomembrane liner and floating cover according to manufacturer’s written instructions. Repair or replace areas of geomembrane liner damaged by scuffing, punctures, traffic, rough subgrade, or other unacceptable conditions.
 2. Before initial filling of pond or placement of earth cover, inspect seams and patched areas to ensure tight, continuously bonded installation. Repair damaged geomembrane and seams and reinspect repaired work.

END OF SECTION 31 32 19 16a
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 32 19 16</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>31 32 19 16</td>
<td>31 32 13 16</td>
<td>Soil Stabilization-Lime</td>
</tr>
<tr>
<td>31 32 19 16</td>
<td>31 25 14 13a</td>
<td>Geosynthetic Fabric</td>
</tr>
</tbody>
</table>
SECTION 31 36 00 00 - WIRE MESH GABIONS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of wire mesh gabions. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Description: Gabion units shall consist of compartmented rectangular basket containers filled with stone. The required sizes of the gabion units are Length times Width times Depth. Twisted or welded wire mesh shall be used. Baskets shall be fabricated from galvanized steel wire formed into a nonraveling mesh.

C. Submittals
1. Samples: Stone fill material submitted for approval prior to delivery.

1.2 PRODUCTS

A. Steel Twisted Wire Mesh Gabions: Gabion basket units shall be of nonraveling construction and fabricated from a double twisted hexagonal wire mesh. The size of mesh openings shall be approximately 3-1/4 in. by 4-1/2 in. (80 by 115 mm). The gabion mesh wires shall be wrapped around the selvage wire no less than 1 1/2 times and shall interconnect with adjacent mesh wires. All steel wire used shall be galvanized prior to fabrication into mesh. All gabion diaphragm and frame wire shall equal or exceed ASTM A 641, and possess soft tensile strength of 60,000 psi (415 Mpa) with a tolerance of minus 2,000 psi (14 Mpa). The galvanized wire shall have a Finish 5, Class 3, zinc coating, as indicated in ASTM A 641. The weight of coating shall be determined by ASTM A 90. The grade of zinc used for coating shall be High Grade or Special High Grade as prescribed in ASTM B 6, Table 1. The uniformity of coating shall equal or exceed four 1-minute dips by the Preece Test, as determined by ASTM A 239.

B. Steel Welded Wire Mesh Gabions: Gabion basket units shall be of nonraveling construction and fabricated from a welded square wire mesh. The size of mesh openings shall be approximately 3 in. by 3 in. (75 by 75 mm). The welded joints of the wire mesh shall conform to ASTM A 185 except that the weld shears shall be at least 600 lbs (2700 N). All gabion diaphragm and frame wire shall equal or exceed ASTM A 641, and possess soft tensile strength of 60,000 psi (415 Mpa) with a tolerance of minus 2,000 psi (14 Mpa). The galvanized wire shall have a Finish 5 Class 3 zinc coating, indicated in ASTM A 641. The weight of coating shall be determined by ASTM A 90. The grade of zinc used for coating shall be High Grade or Special High Grade as prescribed in ASTM B 6, Table 1. The uniformity of coating shall equal or exceed four 1-minute dips by the Preece Test, as determined by ASTM A 239.

C. Mesh wire shall be minimum 0.120-in. (3.05 mm) diameter after coating with 0.85 oz/sq ft (240 g/sq m) zinc coating.

D. Selvage wire shall be minimum 0.150-in. (3.80 mm) diameter after coating with 0.85 oz/sq ft (240 g/sq m) zinc coating.

E. Wire used for lacing or as internal connecting wire within basket cells shall be minimum 0.087-in. (2.21 mm) diameter after coating with 0.70 oz/sq ft (220 g/sq m) zinc coating and may have soft tensile strength designation.
F. Stone Fill

1. Quality: Stone shall be durable and of suitable quality to ensure permanence in the structure and climate in which it is to be used. It shall be free of cracks, seams, and other defects that would tend to increase unduly its deterioration from natural causes or reduce its size to that which could not be retained in the gabion baskets. The inclusion of more than 5% by weight of dirt, sand, clay, and rock fines will not be permitted. The sources from which the Contractor proposes to obtain the material shall be selected well in advance of the time when the material will be required in the work. Suitable samples of stone fill material shall be collected in the presence of the Owner’s representative and submitted to the Owner for approval prior to delivery of any such material to the site of the work. Unless otherwise specified, all test samples shall be obtained by the Contractor and delivered at his expense to the Owner. Suitable tests and/or service records will be used to determine the acceptability of the stone. In the event suitable test reports and service records are not available, the material shall be subjected to such tests as are necessary to determine its acceptability for use in the work. Tests to which the material may be subjected include petrographic analysis, specific gravity, absorption, wetting and drying, freezing and thawing, and such other tests as may be considered necessary to demonstrate to the satisfaction of the Owner that the materials are acceptable for use in the work.

2. Gradation: Stone fill used in the gabions shall be a well-graded mixture with sizes ranging between 4 in. and 8 in. (100 and 200 mm), based on US Standard square mesh sieves. No stone shall have a minimum dimension less than 4 in. (100 mm) and a maximum dimension greater than 12 in. (300 mm) in any direction. The ratio of the maximum dimension to the minimum dimension shall not be greater than two. If the height of the gabion basket is 12 in. (300 mm) or less, stone shall have no dimensions greater than 8 in. (200 mm) in any direction.

3. Filter Material: The material shall be composed of tough durable particles, reasonably free from thin, flat, and elongated pieces, and contain no organic matter or soft friable particles in quantities considered objectionable by the Owner. Filter material shall consist of sand and gravel or crushed stone, well graded between the prescribed limits listed below, and conform to the requirements of paragraph STONE FILL, subparagraph QUALITY as to quality.

1.3 EXECUTION:

A. Foundation Preparation: No foundation preparation work shall take place on frozen or snow-covered ground. After excavation or stripping to the extent indicated on the drawings or as directed by the Owner, all remaining loose or otherwise unsuitable materials shall be removed. All depressions shall be carefully backfilled to grade. If pervious materials are encountered in the foundation depressions, the areas shall be backfilled with free-draining materials. Otherwise, the depressions shall be backfilled with suitable materials from adjacent required excavation, or other approved source, and compacted to a density at least equal to that of the adjacent foundation. Any buried debris protruding from the foundation that will impede the proper installation and final appearance of the gabion layer shall also be removed, and the voids carefully backfilled and compacted as specified above. Immediately prior to placing the material, the prepared foundation surface shall be inspected by the Owner, and no material shall be placed thereon until that area has been approved.

B. Filter Placement: Filter material shall be spread uniformly on the prepared foundation surface in a manner satisfactory to the Owner, and to the slopes, lines, and grades as indicated on the drawings or as directed. Placing of filter material by methods which will tend to segregate particle sizes will not be permitted. Any damage to the foundation surface during filter placement shall be repaired before proceeding with the work. Compaction of the filter materials will not be required, but it shall be finished to present a reasonably even surface free from mounds or windrows.

C. Fabrication: Gabions shall be fabricated in such a manner that the sides, ends, lid, and diaphragms can be assembled at the construction site into rectangular baskets of the sizes specified and shown on the drawings. Gabions shall be of single unit construction, i.e., the base, lid, ends, and sides shall be either
woven into a single unit, or one edge of these members connected to the base section of the gabion in such a manner that the minimum strengths of the wire mesh and connections as stated in paragraph MATERIALS are met. Where the length of the gabion exceeds one and one-half its horizontal width, the gabion shall be equally divided by diaphragms of the same mesh and gage as the body of the gabions, into cells whose length does not exceed the horizontal width. The gabion shall be furnished with the necessary diaphragms secured in proper position on the base in such a manner that no additional tying at this juncture will be necessary. For twisted wire gabions, all perimeter edges of the mesh forming the gabion shall be securely selvaged. In addition, the selvaged edges shall be so wrapped and reinforced with the mesh ends that the selvage wire will not be deformed locally about the lacing wire or wire fasteners when baskets are filled or during lid closing. Lacing wire, connecting wire, and/or wire fasteners shall be supplied in sufficient quantity for securely fastening all diaphragms and edges of the gabion.

D. Assembly And Installation: For gabion units in excess of 4 ft. (1.3 m) in thickness, and placed in horizontal or near horizontal position to resist high velocity flow, or as part of a stilling basin feature, a minimum of two uniformly spaced vertical connecting wires per cell linking the foundation mesh to basket lid mesh should be specified. Empty gabion units shall be assembled individually and placed on the approved surface with the sides, ends, and diaphragms erected in such a manner to ensure the correct position of all creases and that the tops of all sides are level. Filling of gabion units in one place and then transporting them to their final position in the work will not be permitted. The front row of gabion units shall be placed first and successively constructed toward the top of the slope or the back of the structure. All gabion units shall be properly staggered horizontally and vertically. Finished gabion structure shall have no gaps along the perimeter of the contact surfaces between adjoining gabion basket units. All adjoining empty gabion units shall be connected by lacing wire/or wire fasteners along the perimeter of their contact surfaces in order to obtain a monolithic structure. Lacing of adjoining basket units shall be accomplished by continuous stitching with alternating single and double loops at intervals of not more than 5 in. (125 mm), and a half hitch shall be included at every double loop. All lacing wire terminals shall be securely fastened. Wire fasteners may be used in lieu of lacing wire for forming individual baskets and joining empty baskets together prior to stone filling. All joining shall be made through selvage-to-selvage or selvage-to-edge wire connection; mesh-to-mesh or selvage-to-mesh wire connection is prohibited except in the case where baskets are offset or stacked and selvage-to-mesh or mesh-to-mesh wire connection would be necessary. Wire fasteners shall not be used to tie or join stone-filled baskets, unless approved by the Owner. As a minimum, a fastener shall be installed at each mesh opening at the location where mesh wire meets selvage or edge wire. The initial line of basket units shall be placed on the prepared filter layer surface and partially filled to provide anchorage against deformation and displacement during filling operations. After adjoining empty basket units are set to line and grade and common sides with adjacent units thoroughly laced or fastened, they shall be placed in tension and stretched to remove any kinks from the mesh and to a uniform alignment. The stretching of empty basket units shall be accomplished in such a manner as to prevent any possible unraveling. Stone filling operations shall carefully proceed with placement by hand or machine so as not to damage galvanized wire coating, to assure a minimum of voids between the stones, and the maintenance of alignment throughout the filling process. Undue deformation and bulging of the mesh shall be corrected prior to further stone filling. To avoid localized deformation, the basket units in any row are to be filled in stages consisting of maximum 12-in. (300 mm) courses, and at no time shall any cell be filled to a depth exceeding 1 ft. (300 mm) more than the adjoining cell. The maximum height from which the stone may be dropped into the basket units shall be 36 in. (1 m). For gabion units in excess of 2 ft. (0.67 m) in height, two uniformly spaced internal connecting wires shall be placed between each stone layer in all front and side gabion units, connecting the back and the front faces of the compartments. Connecting wires or alternatively the preformed stiffeners shall be looped around two twisted wire mesh openings or a welded wire joint at each basket face and the wire terminals shall be securely twisted to prevent their loosening. For twisted wire gabions, the internal connecting wires or preformed stiffeners are installed. For welded wire gabion units, preformed stiffeners are installed across the corners of gabion panels. Along all exposed faces, the outer layer of stone shall be carefully placed and arranged by hand to ensure a neat and compact appearance. The last layer of stone shall be uniformly overfilled 1 to 2 in. (25 to 50 mm) to compensate for the future settlement in rock but still
allow for the proper closing of the lid and to provide an even surface that is uniform in appearance. Final adjustments for compaction and surface tolerance shall be done by hand. Lids shall be stretched tight over the stone fill using only an approved lid closing tool, until the lid meets the perimeter edges of the front and end panels. Using crowbars or other single point leverage bars for lid closing shall be prohibited. The lid shall then be tightly tied with lacing wire, or with wire fasteners if approved by the Owner, along all edges, ends, and internal cell diaphragms by continuous stitching with alternating single and double loops at intervals of not more than 5 in. (125 mm), and a half hitch shall be included at every double loop. Special attention shall be given to see that all projections or wire ends are turned into the baskets. The Contractor shall have the option of providing gabion baskets with separate roll-out lids for the slope baskets. Roll-out lids shall be fabricated of the same material as the basket units and shall be furnished in widths as required for the contract work. as directed by the Owner, or where a complete gabion unit cannot be installed because of space limitations, the basket unit shall be cut, folded, and wired together to suit existing site conditions. The mesh must be cleanly cut and the surplus mesh cut out completely, or folded back and neatly wired to an adjacent gabion face. The assembling, installation, filling, lid closing, and lacing of the reshaped gabion units shall be carried out as specified above.

END OF SECTION 31 36 00 00
SECTION 31 37 00 00 - RIPRAP

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of riprap. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Demolition and removal of materials shall be as required to support the work.

1.2 PRODUCTS

A. Riprap: Stone used for dumped riprap shall be hard, durable, angular in shape, resistant to weathering and to water action, and free from overburden, spoil, shale, and organic material. Neither width nor thickness of a single stone should be less than one third its length. Rounded stone, boulders, shale, and stone with shale seams will not be acceptable. The minimum density of the riprap material shall be 162 pounds per cubic foot. Each load of riprap shall be reasonably well graded. Sand and rock dust exceeding 5 percent by weight of each load shall not be permitted.

B. Riprap Bedding: The riprap bedding blanket shall consist of well graded gravel, crushed rock, sand, or a combination thereof with a maximum size of 6 inches. All material comprising the riprap bedding blanket shall be composed of tough, durable particles, reasonably free from thin, flat, and elongated pieces, and shall contain no organic matter nor soft, friable particles in excess quantities.

1.3 EXECUTION

A. Preparation: Prepare earth slopes by grading and compacting.

B. Installation:
1. Riprap Bedding Blanket Layers shall be placed on the prepared slope or area to develop the full thickness. Each layer shall be placed in one operation, using methods that will not cause segregation of particle sizes within the bedding. The surface of the finished layer should be reasonably even and free from mounds or windows.

2. Stone for Riprap shall be placed on the prepared slope or area in a manner that will produce a reasonably well-graded mass of stone with the minimum practicable percentage of voids. Riprap shall be placed to its full course in one operation and in such a manner as to avoid displacing the underlying material. The larger stones shall be well distributed and the entire mass of stone shall be well-graded. The result shall be a compact, uniform riprap layer.

END OF SECTION 31 37 00 00
THIS PAGE INTENTIONALLY LEFT BLANK
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 37 00 00</td>
<td>31 32 19 16</td>
<td>Sewage Treatment Lagoons</td>
</tr>
</tbody>
</table>
SECTION 31 41 13 00 - DRILLED PIERS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for drilled piers. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
a. Dry-installed drilled piers.
b. Slurry displacement-installed drilled piers.

C. Submittals
1. Product Data: For each type of product indicated.
2. Design Mixtures: For each concrete mixture.
5. Material certificates OR test reports, as directed.

D. Quality Assurance
1. Welding Qualifications: Qualify procedures and personnel according to the following:
a. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
b. AWS D1.4, "Structural Welding Code - Reinforcing Steel."
2. Drilled-Pier Standard: Comply with ACI 336.1 unless modified in this Section.

E. Project Conditions
1. Existing Utilities: Locate existing underground utilities before excavating drilled piers. If utilities are to remain in place, provide protection from damage during drilled-pier operations.
a. Should uncharted or incorrectly charted piping or other utilities be encountered during excavation, adapt drilling procedure if necessary to prevent damage to utilities. Cooperate with Owner and utility companies in keeping services and facilities in operation without interruption. Repair damaged utilities to satisfaction of utility owner.
2. Interruption of Existing Utilities: Do not interrupt any utility to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility according to requirements indicated:
a. Notify the Owner no fewer than two days in advance of proposed interruption of utility.
b. Do not proceed with interruption of utility without the Owner’s written permission.
3. Survey Work: Engage a qualified land surveyor or professional engineer to perform surveys, layouts, and measurements for drilled piers. Before excavating, lay out each drilled pier to lines and levels required. Record actual measurements of each drilled pier’s location, shaft diameter, bottom and top elevations, deviations from specified tolerances, and other specified data.
a. Record and maintain information pertinent to each drilled pier and cooperate with Owner’s testing and inspecting agency to provide data for required reports.

1.2 PRODUCTS

A. Steel Reinforcement
1. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
3. Galvanized Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420) OR ASTM A 706/A 706M, as directed, deformed bars, ASTM A 767/A 767M, Class I OR Class II, as directed, zinc coated after fabrication and bending.
4. Epoxy-Coated Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420) OR ASTM A 706/A 706M, as directed, deformed bars, ASTM A 775/A 775M or ASTM A 934/A 934M, epoxy coated, with less than 2 percent damaged coating in each 12-inch (300-mm) bar length.
5. Plain-Steel Wire: ASTM A 82, as drawn OR galvanized, as directed.
7. Epoxy-Coated Wire: ASTM A 884/A 884M, Class A, Type 1 coated, as-drawn, plain OR deformed, as directed, steel wire, with less than 2 percent damaged coating in each 12-inch (300-mm) wire length.
8. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), plain. Cut bars true to length with ends square and free of burrs.

B. Concrete Materials
1. Cementitious Material: Use the following cementitious materials, of same type, brand, and source, throughout Project:
 a. Portland Cement: ASTM C 150, Type I OR Type II OR Type III OR Type V, as directed. Supplement with the following, as directed:
 1) Fly Ash: ASTM C 618, Class C OR Class F, as directed.
 2) Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
 b. Blended Hydraulic Cement: ASTM C 595, Type IS, portland blast-furnace slag OR Type IP, portland-pozzolan OR Type I (PM), pozzolan-modified portland OR Type I (SM), slag-modified Portland, as directed, cement.
4. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 a. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 b. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 c. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 d. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
5. Sand-Cement Grout: Portland cement, ASTM C 150, clean natural sand, ASTM C 404; and water to result in grout with a minimum 28-day compressive strength of 1000 psi (6.9 MPa), of consistency required for application.

C. Steel Casings
1. Steel Pipe Casings: ASTM A 283/A 283M, Grade C, or ASTM A 36/A 36M, carbon-steel plate, with joints full-penetration welded according to AWS D1.1/D1.1M.

D. Slurry
1. Slurry: Pulverized bentonite, pulverized attapulgite, or polymers mixed with water to form stable colloidal suspension; complying with ACI 336.1 for density, viscosity, sand content, and pH.

E. Concrete Mixtures
1. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
2. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than Portland cement according to ACI 301 limits as if concrete were exposed to deicing chemicals.
3. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 OR 0.30, as directed, percent by weight of cement.
4. Proportion normal-weight concrete mixture as follows:
 a. Compressive Strength (28 Days): 6000 psi (41.4 MPa) OR 5000 psi (34.5 MPa) OR 4500 psi (31 MPa) OR 4000 psi (27.6 MPa) OR 3500 psi (24.1 MPa) OR 3000 psi (20.7 MPa), as directed.
 b. Maximum Water-Cementitious Materials Ratio: 0.50 OR 0.45 OR 0.40, as directed.
 c. Minimum Slump: Capable of maintaining the following slump until completion of placement:
 1) 4 inches (100 mm) for dry, uncased, or permanent-cased drilling method.
 2) 6 inches (150 mm) for temporary-casing drilling method.
 3) 7 inches (175 mm) for slurry displacement method.
 d. Air Content: Do not air entrain concrete.

F. Fabricating Reinforcement
1. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

G. Concrete Mixing
1. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information.
 a. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.

1.3 EXECUTION

A. Preparation
1. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, vibration, and other hazards created by drilled-pier operations.

B. Excavation
1. Unclassified Excavation: Excavate to bearing elevations regardless of character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions.
 a. Obstructions: Unclassified excavation may include removal of unanticipated boulders, concrete, masonry, or other subsurface obstructions. No changes in the Contract Sum or the Contract Time will be authorized for removal of obstructions.
2. Classified Excavation: Excavation is classified as standard excavation, special excavation, and obstruction removal and includes excavation to bearing elevations as follows:
 a. Standard excavation includes excavation accomplished with conventional augers fitted with soil or rock teeth, drilling buckets, or underreaming tools attached to drilling equipment of size, power, torque, and downthrust necessary for the Work.
 b. Special excavation includes excavation that requires special equipment or procedures above or below indicated depth of drilled piers where drilled-pier excavation equipment used in standard excavation, operating at maximum power, torque, and downthrust, cannot advance the shaft.
 1) Special excavation requires use of special rock augers, core barrels, air tools, blasting, or other methods of hand excavation.
 2) Earth seams, rock fragments, and voids included in rock excavation area will be considered rock for full volume of shaft from initial contact with rock.
 c. Obstructions: Payment for removing unanticipated boulders, concrete, masonry, or other subsurface obstructions that cannot be removed by conventional augers fitted with soil or
rock teeth, drilling buckets, or underreaming tools attached to drilling equipment of size, power, torque, and downthrust necessary for the Work will be according to Contract provisions for changes in the Work.

3. Prevent surface water from entering excavated shafts. Conduct water to site drainage facilities.

4. Excavate shafts for drilled piers to indicated elevations. Remove loose material from bottom of excavation.
 a. Excavate bottom of drilled piers to level plane within 1:12 tolerance.
 b. Remove water from excavated shafts before concreting.
 c. Excavate rock sockets of dimensions indicated.
 d. Cut series of grooves about perimeter of shaft to height from bottom of shaft, vertical spacing, and dimensions indicated.

5. Notify and allow testing and inspecting agency to test and inspect bottom of excavation. If unsuitable bearing stratum is encountered, make adjustments to drilled piers as determined by the Owner.
 a. Do not excavate shafts deeper than elevations indicated unless approved by the Owner.
 b. Payment for additional authorized excavation will be according to Contract provisions for changes in the Work.

6. End-Bearing Drilled Piers: If further exploration below bearing elevation is required for end-bearing piers or if soft soils are suspected, probe with auger to a depth below bearing elevation, equal to diameter of the bearing area of drilled pier. Determine whether voids, clay seams, or solution channels exist.
 a. Fill augur-probe holes with grout.

7. End-Bearing Drilled Piers: If drilled piers bear on clay or hardpan, probe with auger to a depth of 96 inches (2450 mm) below bottom elevation of shaft, and visually inspect and classify soil. Verify continuity and thickness of stratum.

8. Excavate shafts for closely spaced drilled piers and for drilled piers occurring in fragile or sand strata only after adjacent drilled piers are filled with concrete and allowed to set.

9. Slurry Displacement Method: Stabilize excavation with slurry maintained a minimum of 60 inches (1500 mm) above ground-water level and above unstable soil strata to prevent caving or sloughing of shaft. Maintain slurry properties before concreting.
 a. Excavate and complete concreting of drilled pier on same day if possible, or redrill, clean, and test slurry in excavation before concreting.
 b. Clean bottom of each shaft before concreting.

10. Temporary Casings: Install watertight steel casings of sufficient length and thickness to prevent water seepage into shaft; to withstand compressive, displacement, and withdrawal stresses; and to maintain stability of shaft walls.
 a. Remove temporary casings, maintained in plumb position, during concrete placement and before initial set of concrete, or leave temporary casings in place, as directed.

11. Bells: Excavate bells for drilled piers to shape, base thickness, and slope angle indicated. Excavate bottom of bells to level plane and remove loose material before placing concrete.
 a. Shore bells in unstable soil conditions to prevent cave-in during excavation, inspection, and concreting.

12. Tolerances: Construct drilled piers to remain within ACI 336.1 tolerances.
 a. If location or out-of-plumb tolerances are exceeded, provide corrective construction. Submit design and construction proposals to the Owner for review before proceeding.

C. Permanent Steel Casings
1. Install steel casings of minimum wall thickness indicated and of diameter not less than diameter of drilled pier.
 a. Install casings as excavation proceeds, to maintain sidewall stability.
 b. Fabricate bottom edge of lowest casing section with cutting shoe capable of penetrating rock and achieving water seal.
 c. Connect casing sections by continuous penetration welds to form watertight, continuous casing.
d. Remove and replace or repair casings that have been damaged during installation and that could impair strength or efficiency of drilled pier.
e. Fill annular void between casing and shaft wall with grout.

 a. Corrugated casings may be delivered in sections or panels of convenient length and field connected according to manufacturer's written instructions.

D. Steel Reinforcement
2. Clean reinforcement of loose rust and mill scale, earth, and other materials that reduce or destroy bond with concrete.
3. Fabricate and install reinforcing cages symmetrically about axis of shafts in a single unit.
4. Accurately position, support, and secure reinforcement against displacement during concreting. Maintain minimum cover over reinforcement.
5. Use templates to set anchor bolts, leveling plates, and other accessories furnished in work of other Sections. Provide blocking and holding devices to maintain required position during final concrete placement.
6. Protect exposed ends of extended reinforcement, dowels, or anchor bolts from mechanical damage and exposure to weather.

E. Concrete Placement
1. Place concrete in continuous operation and without segregation immediately after inspection and approval of shaft by Owner's independent testing and inspecting agency.
 a. Construct a construction joint if concrete placement is delayed more than one hour. Level top surface of concrete and insert joint dowel bars, as directed. Before placing remainder of concrete, clean surface laitance, roughen, and slush concrete with commercial bonding agent or with sand-cement grout mixed at ratio of 1:1.
2. Dry Method: Place concrete to fall vertically down the center of drilled pier without striking sides of shaft or steel reinforcement.
 a. Where concrete cannot be directed down shaft without striking reinforcement, place concrete with chutes, tremies, or pumps.
 b. Vibrate top 60 inches (1500 mm) of concrete.
3. Slurry Displacement Method: Place concrete in slurry-filled shafts by tremie methods or pumping. Control placement operations to ensure that tremie or pump pipe is embedded no fewer than 60 inches (1500 mm) into concrete and that flow of concrete is continuous from bottom to top of drilled pier.
4. Coordinate withdrawal of temporary casings with concrete placement to maintain at least a 60-inch (1500-mm) head of concrete above bottom of casing.
 a. Vibrate top 60 inches (1500 mm) of concrete after withdrawal of temporary casing.
5. Screed concrete at cutoff elevation level and apply scoured, rough finish. Where cutoff elevation is above the ground elevation, form top section above grade and extend shaft to required elevation.
6. Protect concrete work, according to ACI 301, from frost, freezing, or low temperatures that could cause physical damage or reduced strength.
 a. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 b. Do not use calcium chloride, salt, or other mineral-containing antifreeze agents or chemical accelerators.
7. If hot-weather conditions exist that would seriously impair quality and strength of concrete, place concrete according to ACI 301 to maintain delivered temperature of concrete at no more than 90 deg F (32 deg C).
a. Place concrete immediately on delivery. Keep exposed concrete surfaces and formed shaft extensions moist by fog sprays, wet burlap, or other effective means for a minimum of seven days.

F. Field Quality Control
1. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 a. Drilled piers.
 b. Excavation.
 c. Concrete.
 d. Steel reinforcement welding.
2. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
3. Drilled-Pier Tests and Inspections: For each drilled pier, before concrete placement.
 a. Soil Testing: Bottom elevations, bearing capacities, and lengths of drilled piers indicated have been estimated from available soil data. Actual elevations and drilled-pier lengths and bearing capacities will be determined by testing and inspecting agency. Final evaluations and approval of data will be determined by the Owner.
 1) Bearing Stratum Tests: Testing agency will take undisturbed hardpan OR rock, as directed, core samples from drilled-pier bottoms and test each sample for compression, moisture content, and density, and will report results and evaluations.
4. Concrete Tests and Inspections: ASTM C 172 except modified for slump to comply with ASTM C 94/C 94M.
 a. Slump: ASTM C 143/C 143M; one test at point of placement for each compressive-strength test but no fewer than one test for each concrete load.
 b. Concrete Temperature: ASTM C 1064/C 1064M; 1 test hourly when air temperature is 40 deg F (4.4 deg C) and below and 80 deg F (27 deg C) and above, and 1 test for each set of compressive-strength specimens.
 c. Compression Test Specimens: ASTM C 31/C 31M; one set of four standard cylinders for each compressive-strength test unless otherwise indicated. Mold and store cylinders for laboratory-cured test specimens unless field-cured test specimens are required.
 d. Compressive-Strength Tests: ASTM C 39; one set for each drilled pier but not more than one set for each truck load. One specimen will be tested at 7 days, 2 specimens will be tested at 28 days, and 1 specimen will be retained in reserve for later testing if required.
 e. If frequency of testing will provide fewer than five strength tests for a given class of concrete, testing will be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 f. If strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
 g. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).
 h. Report test results in writing to the Owner, concrete manufacturer, and Contractor within 48 hours of testing. List Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests in reports of compressive-strength tests.
 i. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by the Owner but will not be used as sole basis for approval or rejection of concrete.
j. Additional Tests: Testing and inspecting agency will make additional tests of concrete if test results indicate that slump, compressive strengths, or other requirements have not been met, as directed by the Owner.
 1) Continuous coring of drilled piers may be required, at Contractor's expense, if temporary casings have not been withdrawn within specified time limits or if observations of placement operations indicate deficient concrete quality, presence of voids, segregation, or other possible defects.

k. Perform additional testing and inspecting, at Contractor's expense, to determine compliance of replaced or additional work with specified requirements.

l. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.

5. An excavation, concrete, or a drilled pier will be considered defective if it does not pass tests and inspections.

6. Prepare test and inspection reports for each drilled pier as follows:
 a. Actual top and bottom elevations.
 b. Actual drilled-pier diameter at top, bottom, and bell.
 c. Top of rock elevation.
 d. Description of soil materials.
 e. Description, location, and dimensions of obstructions.
 f. Final top centerline location and deviations from requirements.
 g. Variation of shaft from plumb.
 h. Shaft excavating method.
 i. Design and tested bearing capacity of bottom.
 j. Depth of rock socket.
 k. Levelness of bottom and adequacy of cleanout.
 l. Properties of slurry and slurry test results at time of slurry placement and at time of concrete placement.
 m. Ground-water conditions and water-infiltration rate, depth, and pumping.
 n. Description, purpose, length, wall thickness, diameter, tip, and top and bottom elevations of temporary or permanent casings. Include anchorage and sealing methods used and condition and weather tightness of splices if any.
 o. Description of soil or water movement, sidewall stability, loss of ground, and means of control.
 p. Bell dimensions and variations from original design.
 q. Date and time of starting and completing excavation.
 r. Inspection report.
 s. Condition of reinforcing steel and splices.
 t. Position of reinforcing steel.
 u. Concrete placing method, including elevation of consolidation and delays.
 w. Locations of construction joints.
 x. Concrete volume.
 y. Concrete testing results.
 z. Remarks, unusual conditions encountered, and deviations from requirements.

G. Disposal Of Surplus And Waste Materials
 1. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Owner’s property.

END OF SECTION 31 41 13 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 41 16 13</td>
<td>31 23 16 13</td>
<td>Excavation Support And Protection</td>
</tr>
<tr>
<td>31 41 16 13</td>
<td>31 41 13 00</td>
<td>Drilled Piers</td>
</tr>
</tbody>
</table>
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 31 62 23 13 - CONCRETE-FILLED STEEL PILES

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for concrete-filled steel piles. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section includes concrete-filled steel shell and pipe piles.

C. Submittals
1. Product Data: For each type of product indicated.
2. Shop Drawings: For composite piles. Show fabrication and installation details for piles, including splices and tip details.
 a. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld.
 b. Indicate locations, sizes, type, and arrangement of reinforcement.
 c. Include arrangement of static pile reaction frame, test and anchor piles, equipment, and instrumentation. Submit structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
3. Welding certificates.
4. Design Mixes: For each concrete mix. Include revised mix proportions when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
5. Material Certificates: For steel shell piles and accessories, steel pipe piles and accessories, steel reinforcement and concrete admixtures, from manufacturer.
7. Pile-Driving Equipment Data: Include type, make, and rated energy range; weight of striking part of hammer; weight of drive cap; and, type, size, and properties of hammer cushion.
 a. Include mandrel type and details.
8. Static Pile Test Reports: Submit within three days of completing each test.
9. Pile-Driving Records: Submit within three days of driving each pile.
10. Field quality-control reports.
11. Preconstruction Photographs: Photographs or video of existing conditions of adjacent construction. Submit before the Work begins.

D. Quality Assurance
1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
2. Comply with requirements in ACI 301, "Specifications for Structural Concrete."
3. Welding Qualifications: Qualify procedures and personnel according to the following:
 a. AWS D1.1/D1.1M, "Structural Welding Code - Steel"
 b. AWS D1.3, "Structural Welding Code - Sheet Steel."

E. Delivery, Storage, And Handling
1. Deliver piles to Project site in such quantities and at such times to ensure continuity of installation. Handle and store piles at Project site to prevent physical damage.
 a. Painted Piles: Protect finish and touch up damage before driving piles.

F. Project Conditions
1. Protect structures, underground utilities, and other construction from damage caused by pile driving.

2. Preconstruction Photographs: Inventory and record the condition of adjacent structures, underground utilities, and other construction. Provide photographs OR video, as directed, of conditions that might be misconstrued as damage caused by pile driving.

1.2 PRODUCTS

A. Steel Shell Piles

1. Fluted Pile Shells: Manufacturer's standard, vertically fluted pile shells; cold formed from steel sheet; 50,000-psi (345-MPa) minimum yield strength after forming. Fabricate watertight, uniformly tapered sections with forged-steel conical nose welded to tip.
 a. Constant Diameter Extensions: Fabricate with splice overlap capable of telescoping into tapered section.
 b. Taper: 0.14 inch in 12 inches (1:86) OR 0.25 inch in 12 inches (1:48) OR 0.40 inch in 12 inches (1:30), as directed.
 c. Thickness: 0.150 inch (3.80 mm) OR 0.179 inch (4.55 mm) OR 0.209 inch (5.31 mm) OR 0.239 inch (6.07 mm), as directed.

2. Helically Corrugated Pile Shells: Manufacturer's standard, helically corrugated, uniform-diameter, steel sheet shell piles; of sufficient strength and thickness to remain watertight and resist distortion and buckling due to soil pressure, internal mandrel operation, or redriving. Fabricate in one-piece lengths with 3/16-inch- (4.76-mm-) thick, minimum steel-plate boot continuously welded to tip and as follows:
 a. Nominal Diameter: 8-5/8 inches (219 mm) OR 10-5/8 inches (270 mm) OR 11-1/8 inches (283 mm) OR 12-1/4 inches (311 mm) OR 14 inches (350 mm) OR 16-1/8 inches (410 mm), as directed.
 b. Thickness: 0.048 inch (1.21 mm), minimum OR 0.060 inch (1.52 mm), minimum OR 0.075 inch (1.90 mm), minimum OR 0.105 inch (2.66 mm), as directed.

B. Steel Pipe Piles

1. Steel Pipe: ASTM A 252, Grade 2 OR Grade 3, as directed; seamless or welded.

C. Steel Reinforcement

1. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420); deformed.
2. Low-Alloy-Steel Reinforcing Bars: ASTM A 706/A 706M.
3. Galvanized Reinforcing Bars: ASTM A 767/A 767M, Class II zinc coated, hot-dip galvanized after fabrication and bending, as follows:
 a. Steel Reinforcement: ASTM A 615/A 615M, Grade 60 (Grade 420) OR ASTM A 706/A 706M, as directed; deformed.
4. Epoxy-Coated Reinforcing Bars: ASTM A 775/A 775M or ASTM A 934/A 934M, as follows:
 a. Steel Reinforcement: ASTM A 615/A 615M, Grade 60 (Grade 420) OR ASTM A 706/A 706M, as directed; deformed.
5. Plain Steel Wire: ASTM A 82/A 82M, as drawn OR galvanized, as directed.
6. Deformed-Steel Wire: ASTM A 496/A 496M.
7. Epoxy-Coated-Steel Wire: ASTM A 884/A 884M, Class A coated, plain OR deformed, as directed.

D. Concrete Materials

1. Portland Cement: ASTM C 150, Type I or II.
 a. Fly Ash: ASTM C 618, Class C or F.
 b. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
2. Blended Hydraulic Cement: ASTM C 595, Type IS, portland blast-furnace slag OR Type IP, portland-pozzolan OR Type I (PM), pozzolan-modified portland OR Type I (SM), slag-modified Portland, as directed, cement.

3. Normal-Weight Aggregates: ASTM C 33, Class 4S OR Class 4M OR Class 1N, as directed, uniformly graded, 3/4-inch (19-mm) maximum aggregate size. Provide aggregates from a single source.

5. Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent chloride ions by mass of cementitious material.
 b. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 c. Retarding Admixture: ASTM C 494/C 494M, Type B.
 d. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 e. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 f. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 g. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

E. Pile Accessories
1. Driving Points: Manufacturer's standard 60-degree conical driving point, with integral reinforcing ribs, to provide full bearing of pipe pile tip. Fabricate from steel castings as follows:
2. Inside Cutting Shoes: Manufacturer's standard, inside-flanged, open-ended cutting shoe, to provide full bearing of pipe pile tip. Fabricate from steel castings as follows:
3. Outside Cutting Shoes: Manufacturer's standard, outside-flanged, open-ended cutting shoe, to provide full bearing of pipe pile tip. Fabricate from steel castings as follows:
 a. Carbon-Steel Castings: ASTM A 27/A 27M, Grade 65-35 (Grade 450-240), heat treated OR Grade N1, as directed.
 b. High-Strength Steel Castings: ASTM A 148/A 148M, Grade 80-40 (Grade 550-275) OR Grade 90-60 (Grade 620-415), as directed.

4. Splice Coupling: Manufacturer's standard splice coupling, rolled from ASTM A 36/A 36M, carbon-steel bar or cast from heat-treated carbon steel, ASTM A 27/A 27M, Grade 65-35 (Grade 450-240), with interior stop and internally tapered for friction fit driving.

F. Paint
1. Paint: SSPC-Paint 16; self-priming, two-component, coal-tar epoxy polyamide, black OR red OR manufacturer's standard color, as directed.

G. Concrete Mixes
1. Prepare concrete design mixes according to ACI 301, determined by either laboratory trial batch or field test data basis.
 a. Use a qualified testing agency for preparing and reporting proposed mix designs determined by laboratory trial batch.
2. Proportion mixes according to ACI 301 to provide normal-weight concrete suitable for piles with the following properties:
 a. Compressive Strength (28 Days): 5000 psi (34.5 MPa) OR 4000 psi (27.6 MPa) OR 3000 psi (20.7 MPa), as directed.
 b. Maximum Water-Cementitious Material Ratio at Point of Placement: 0.45 OR 0.50, as directed.
 c. Slump Limit: 5 inches (127 mm) OR 8 inches (203 mm), as directed, plus or minus 1 inch (25 mm).
3. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content of 6.0 percent, plus or minus 1.5 OR 2.5 to 4.5, as directed, percent.
4. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement according to ACI 301 limits as if concrete were exposed to deicing chemicals.
5. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 OR 0.30, as directed, percent by weight of cement.

6. Concrete-mix design adjustments may be considered if characteristics of materials, Project conditions, weather, test results, or other circumstances warrant. Resubmit and obtain approval from the Owner of proposed changes to concrete-mix proportions.

H. Fabrication
1. Fabricate and assemble piles in shop to greatest extent possible.
2. Fabricate full-length piles to eliminate splicing during driving.
 OR
 Fabricate full-length piles by splicing pile lengths together. Maintain axial alignment of pile lengths. Maintain structural properties of pile across splice.
 a. Splice Coupling: Fit splice coupling into position and weld to adjoining steel pipe pile sections according to manufacturer's written instructions and AWS D1.1/D1.1M for procedures, appearance and quality of welds, and methods used in correcting welding work.
 b. Welded Splices: Accurately mill meeting ends of steel pipe piles and bevel for welding. Continuously weld pile according to AWS D1.1/D1.1M for procedures, appearance and quality of welds, and methods used in correcting welding work.
 c. Welded Splices: Continuously weld steel shell pile according to manufacturer's written instructions and AWS D1.1/D1.1M and AWS D1.3, as directed, for procedures, appearance and quality of welds, and methods used in correcting welding work.
 d. Splice piles during fabrication or field installation.
3. Fit and weld driving points to tip of pile according to manufacturer's written instructions and AWS D1.1/D1.1M for procedures, appearance and quality of welds, and methods used in correcting welding work.
 OR
 Fit and weld cutting shoes to tip of pile according to manufacturer's written instructions and AWS D1.1/D1.1M for procedures, appearance and quality of welds, and methods used in correcting welding work.
4. Pile-Length Markings: Mark each pile with horizontal lines at 12-inch (305-mm) intervals; label the distance from pile tip at 60-inch (1.52-m) intervals. Maintain markings on piles until driven.

I. Shop Painting, as directed
1. General: Shop paint steel pile surfaces, except for surfaces to be encased in concrete, as follows:
 a. Extend painting to a depth of 60 inches (1.52 m) below finished grade OR low-tide level, as directed, to top of exposed pile.
2. Surface Preparation: Clean surfaces to be painted. Remove loose rust and loose mill scale, and remove spatter, slag, or flux deposits. Prepare surfaces according to SSPC-SP 10/NACE No. 2, "Near-White Blast Cleaning."
3. Painting: Immediately after surface preparation, apply coat of paint according to manufacturer's written instructions to provide a dry film thickness of not less than 8 mils (0.2 mm).
 a. Apply second coat to provide a dry film thickness of not less than 8 mils (0.2 mm), resulting in a two-coat paint system thickness of not less than 16 mils (0.4 mm).
 b. Apply second and third coats with each coat having a dry film thickness of not less than 8 mils (0.2 mm), resulting in a three-coat paint system thickness of not less than 24 mils (0.6 mm).
 c. Mark pile lengths after shop painting.

J. Concrete Mixing
1. Ready-Mixed Concrete: Comply with ASTM C 94/C 94M.
 a. Do not add water to concrete mix after mixing.
 b. Maintain concrete temperature to not exceed 90 deg F (32 deg C).
1.3 EXECUTION

A. Examination
1. Site Conditions: Do not start pile-driving operations until earthwork fills have been completed or excavations have reached an elevation of 6 to 12 inches (152 to 305 mm) above bottom of footing or pile cap.

B. Driving Equipment
1. Pile Hammer: Air-, steam-, hydraulic-, or diesel-powered type capable of consistently delivering adequate peak-force duration and magnitude to develop the ultimate capacity required for type and size of pile driven and character of subsurface material anticipated.
2. Hammer Cushions and Driving Caps: Between hammer and top of pile, provide hammer cushion and steel driving cap as recommended by hammer manufacturer and as required to drive pile without damage.
3. Leads: Use fixed, semifixed, or hanging-type pile-driver leads that will hold full length of pile firmly in position and in axial alignment with hammer.
4. Mandrel: Expandable mandrel, capable of distributing driving energy throughout length of steel shell pile.

C. Static Pile Tests, as directed
1. General: Static pile tests will be used to verify driving criteria and pile lengths and to confirm allowable load of piles.
 a. Furnish test piles 60 inches (1.52 m) longer than production piles.
 b. Determination of actual length of piles will be based on results of static pile tests.
2. Pile Tests: Arrange and perform the following pile tests:
 c. Lateral Load Test: ASTM D 3966.
3. Equip each test pile with two telltale rods, according to ASTM D 1143, for measuring deformation during load test.
4. Provide pile reaction frame, anchor piles, equipment, and instrumentation with sufficient reaction capacity to perform tests. Notify the Owner at least 48 hours in advance of performing tests. On completion of testing, remove testing structure, anchor piles, equipment, and instrumentation.
 a. Allow a minimum of seven days to elapse after driving test piles before starting pile testing.
 b. Number of Test Piles: One pile OR As indicated, as directed.
5. Driving Test Piles: Drive test piles at locations indicated to the minimum penetration or driving resistance indicated. Use test piles identical to those required for Project and drive with appropriate pile-driving equipment operating at rated driving energy to be used in driving permanent piles.
 a. Pile Design Load: As indicated OR as directed.
6. Approval Criteria: Allowable load shall be the load acting on the test pile when the lesser of, as directed, the following criteria are met, divided by a factor of safety of 2:
 a. Net settlement, after deducting rebound, of not more than 0.01 inch/ton (0.25 mm/907 kg) of test load.
 b. Total settlement exceeds the pile elastic compression by 0.15 inch (4 mm), plus 1.0 percent of the tip diagonal dimension.
 c. A plunging failure or sharp break in the load settlement curve.
7. Test Pile-Driving Records: Prepare driving records for each test pile, compiled and attested to by a qualified professional engineer, as directed. Include same data as required for driving records of permanent piles.
8. Test piles that comply with requirements, including location tolerances, may be used on Project.

D. Steel Reinforcement
2. Clean reinforcement of loose rust and mill scale, earth, and other materials that reduce or destroy bond with concrete.

3. Fabricate and install reinforcement cages symmetrically about axis of pile shell OR pipe, as directed, in a single unit.

4. Accurately position, support, and secure reinforcement against displacement during concreting. Maintain minimum cover on reinforcement.

5. Protect exposed ends of extended reinforcement, dowels, or anchor bolts from mechanical damage and exposure to weather.

E. Concrete Placement
1. Do not place concrete until other piles within a radius of 20 feet (6 m) have been driven and approved.

2. Inspection: Before placing concrete, allow testing and inspecting agency to visually inspect and verify that each pile shell OR pipe, as directed, is clean, watertight, plumb, and free of distortion or other defects.

3. Place concrete in a continuous operation and without segregation immediately after cleaning out pile shell OR pipe, as directed.

4. Place concrete by means of bottom discharge bucket, flexible drop chute, steep-sided funnel hopper, or tremie or pump concrete into place.

5. Place concrete in a dry pile shell OR pipe, as directed, unless placement underwater is approved by the Owner.
 a. Place concrete underwater by tremie method or pumping. Control placement operations to ensure tremie is embedded no less than 60 inches (1.52 m) into concrete, and flow of tremied concrete is continuous from bottom to top of pile shell OR pipe, as directed.
 b. Other methods of depositing concrete may be used if approved by the Owner.

6. Consolidate final 10 feet (3 m) of concrete during placement to ensure that concrete is thoroughly worked around steel reinforcement and into corners.

7. Screed concrete level at cutoff elevation and apply a scoured, rough finish.

F. Driving Piles
1. General: Continuously drive piles to elevations or penetration resistance indicated or established by static load testing of piles, as directed. Establish and maintain axial alignment of leads and piles before and during driving.

2. Predrilling, as directed: Provide pre-excavated holes where indicated, to depths indicated. Drill holes with a diameter less than the largest cross-section dimension of pile.
 a. Firmly seat pile in predrilled hole by driving with reduced energy before starting final driving.

3. Heaved Piles: Redrive heaved piles to tip elevation at least as deep as original tip elevation with a driving resistance at least as great as original driving resistance.

4. Pile Splices: Splice piles during installation and align pile segments concentrically.

5. Driving Tolerances: Drive piles without exceeding the following tolerances, measured at pile heads:
 a. Location: 4 inches (102 mm) from location indicated after initial driving, and 6 inches (152 mm) after pile driving is completed.
 b. Plumb: Maintain 1 inch (25 mm) in 4 feet (1.2 m) from vertical, or a maximum of 4 inches (102 mm), measured when pile is aboveground in leads.
 c. Batter Angle: Maximum 1 inch (25 mm) in 4 feet (1.2 m) from required angle, measured when pile is aboveground in leads.

6. Excavation: Clean out steel pipe pile by removing soil and debris from inside pile before placing steel reinforcement or concrete.

7. Withdraw damaged or defective piles and piles that exceed driving tolerances and install new piles within driving tolerances.
a. Fill holes left by withdrawn piles using cohesionless soil material such as gravel, broken stone, and gravel-sand mixtures. Place and compact in lifts not exceeding 72 inches (1.83 m).

OR

Fill holes left by withdrawn piles as directed by the Owner.

OR

Abandon and cut off rejected piles as directed by the Owner. Leave rejected piles in place and install new piles in locations as directed by the Owner.

8. Cutting Off: Cut off tops of driven piles square with pile axis and at elevations indicated.

9. Pile-Driving Records: Maintain accurate driving records for each pile, compiled and attested to by a qualified professional engineer, as directed. Include the following data:

a. Project name and number.
b. Name of Contractor.
c. Pile location in pile group and designation of pile group.
d. Sequence of driving in pile group.
e. Pile dimensions.
f. Ground elevation.
g. Elevation of tips after driving.
h. Final tip and cutoff elevations of piles after driving pile group.
i. Records of redriving.
j. Elevation of splices.
k. Type, make, model, and rated energy of hammer.
l. Weight and stroke of hammer.
m. Type of pile-driving cap used.
n. Cushion material and thickness.
o. Actual stroke and blow rate of hammer.
p. Pile-driving start and finish times, and total driving time.
q. Time, pile-tip elevation, and reason for interruptions.
r. Number of blows for every 12 inches (305 mm) of penetration, and number of blows per 1 inch (25 mm) for the last 6 inches (152 mm) of driving.
s. Pile deviations from location and plumb.
t. Preboring, jetting, or special procedures used.
u. Unusual occurrences during pile driving.

G. Field Quality Control

1. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 a. Pile foundations.

2. Testing Agency: Engage a qualified independent testing agency to perform tests and inspections.

3. Tests and Inspections:
 a. Dynamic Pile Testing: High-strain dynamic monitoring shall be performed and reported according to ASTM D 4945 during initial driving and during restriking on 5 single piles OR 3 percent of piles, as directed.
 b. Low-strain integrity measurement shall be performed and reported for each pile.
 c. Weld Testing: In addition to visual inspection, welds shall be tested and inspected according to AWS D1.1/D1.1M and the inspection procedures listed in subparagraphs below, at testing agency's option. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.
 1) Liquid Penetrant Inspection: ASTM E 165.
 2) Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 3) Radiographic Inspection: ASTM E 94; minimum quality level "2-2T."
 4) Ultrasonic Inspection: ASTM E 164.
 d. Concrete: Sampling and testing of concrete for quality control shall include the following:
1) Sampling Fresh Concrete: ASTM C 172, except modified for slump to comply with ASTM C 94/C 94M.
 a) Slump: ASTM C 143/C 143M; one test at point of placement for each compressive-strength test, but no fewer than one test for each concrete load.
 b) Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (5 deg C) and below or when 80 deg F (27 deg C) and above, and one test for each set of compressive-strength specimens.
 c) Compression Test Specimens: ASTM C 31/C 31M; one set of four standard cylinders for each compressive-strength test unless otherwise indicated. Mold and store cylinders for laboratory-cured test specimens unless field-cured test specimens are required.
 d) Compressive-Strength Tests: ASTM C 39/C 39M; one set for each truck load. One specimen shall be tested at seven days, two specimens shall be tested at 28 days, and one specimen shall be retained in reserve for later testing if required.

2) When frequency of testing will provide fewer than five strength tests for a given class of concrete, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.

3) When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, evaluate current operations and provide corrective procedures for protecting and curing in-place concrete.

4) Strength level of concrete will be considered satisfactory if averages of sets of three consecutive strength test results equal or exceed specified compressive strength and no individual strength test result falls below specified compressive strength by more than 500 psi (3.45 MPa).

5) Test results shall be reported in writing to the Owner, concrete manufacturer, and Contractor within 24 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, concrete type and class, location of concrete batch in piles, design compressive strength at 28 days, concrete-mix proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

6) Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted but shall not be used as sole basis for acceptance or rejection.

7) Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate concrete strengths or other requirements have not been met.

H. Touchup Painting, as directed
 1. Clean field welds, splices, and abraded painted areas and field-apply paint according to SSPC-PA 1. Use same paint and apply same number of coats as specified for shop painting.
 a. Apply touchup paint before driving piles to surfaces that will be immersed or inaccessible after driving.

I. Disposal
 1. Remove withdrawn piles and cutoff sections of piles from site and legally dispose of them off Owner’s property.

END OF SECTION 31 62 23 13
SECTION 32 01 11 53 - ASPHALT PAVING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for asphalt paving. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Cold milling of existing hot-mix asphalt pavement.
 b. Hot-mix asphalt patching.
 c. Hot-mix asphalt paving.
 d. Hot-mix asphalt paving overlay.
 e. Asphalt surface treatments.
 f. Pavement-marking paint.
 g. Traffic-calming devices.
 h. Imprinted asphalt.

C. Definition
1. Hot-Mix Asphalt Paving Terminology: Refer to ASTM D 8 for definitions of terms.

D. Submittals
1. Product Data: For each type of product indicated. Include technical data and tested physical and performance properties.
 a. Job-Mix Designs: Certification, by authorities having jurisdiction, of approval of each job mix proposed for the Work.
 b. Job-Mix Designs: For each job mix proposed for the Work.
2. Material Certificates: For each paving material, from manufacturer.

E. Quality Assurance
1. Manufacturer Qualifications: A paving-mix manufacturer registered with and approved by authorities having jurisdiction or the DOT of state in which Project is located.
2. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of State or local DOT for asphalt paving work.
 a. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

F. Delivery, Storage, And Handling
1. Deliver pavement-marking materials to Project site in original packages with seals unbroken and bearing manufacturer’s labels containing brand name and type of material, date of manufacture, and directions for storage.
2. Store pavement-marking materials in a clean, dry, protected location within temperature range required by manufacturer. Protect stored materials from direct sunlight.

G. Project Conditions
1. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:
 a. Prime Coat: Minimum surface temperature of 60 deg F (15.6 deg C).
b. Tack Coat: Minimum surface temperature of 60 deg F (15.6 deg C).
c. Slurry Coat: Comply with weather limitations in ASTM D 3910.
d. Asphalt Base Course: Minimum surface temperature of 40 deg F (4.4 deg C) and rising at time of placement.
e. Asphalt Surface Course: Minimum surface temperature of 60 deg F (15.6 deg C) at time of placement.

2. Pavement-Marking Paint: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F (4.4 deg C) for oil-based materials OR 55 deg F (12.8 deg C) for water-based materials, as directed, and not exceeding 95 deg F (35 deg C).

3. Imprinted Asphalt Paving: Proceed with coating imprinted pavement only when air temperature is at least 50 deg F (10 deg C) and rising and will not drop below 50 deg F (10 deg C) within 8 hours of coating application. Proceed only if no precipitation is expected within two hours after applying the final layer of coating.

1.2 PRODUCTS

A. Aggregates
1. General: Use materials and gradations that have performed satisfactorily in previous installations.
2. Coarse Aggregate: ASTM D 692, sound; angular crushed stone, crushed gravel, or cured, crushed blast-furnace slag.
3. Fine Aggregate: ASTM D 1073 or AASHTO M 29, sharp-edged natural sand or sand prepared from stone, gravel, cured blast-furnace slag, or combinations thereof.
a. For hot-mix asphalt, limit natural sand to a maximum of 20 percent by weight of the total aggregate mass.
4. Mineral Filler: ASTM D 242 or AASHTO M 17, rock or slag dust, hydraulic cement, or other inert material.

B. Asphalt Materials
1. Asphalt Binder: AASHTO M 320 or AASHTO MP 1a, PG 64-22 OR PG 58-28 OR PG 70-22, as directed.
2. Asphalt Cement: ASTM D 3381 for viscosity-graded material OR ASTM D 946 for penetration-graded material, as directed.
3. Prime Coat:
a. ASTM D 2027, medium-curing cutback asphalt, MC-30 or MC-70 OR MC-250, as directed.
 OR
 Asphalt emulsion prime coat complying with State or local DOT requirements.
4. Tack Coat: ASTM D 977 or AASHTO M 140 emulsified asphalt, or ASTM D 2397 or AASHTO M 208 cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.
5. Fog Seal: ASTM D 977 or AASHTO M 140 emulsified asphalt, or ASTM D 2397 or AASHTO M 208 cationic emulsified asphalt, slow setting, factory diluted in water, of suitable grade and consistency for application.

C. Auxiliary Materials
1. Herbicide: Commercial chemical for weed control, registered by the EPA. Provide in granular, liquid, or wettable powder form.
2. Sand: ASTM D 1073 or AASHTO M 29, Grade Nos. 2 or 3.
3. Paving Geotextile: AASHTO M 288, nonwoven polypropylene; resistant to chemical attack, rot, and mildew; and specifically designed for paving applications.

4. Joint Sealant: ASTM D 6690 or AASHTO M 324, Type I OR Type II or III OR Type IV, as directed, hot-applied, single-component, polymer-modified bituminous sealant.

5. Pavement-Marking Paint: Color shall be White OR Yellow OR Blue, as directed.
 a. Alkyd-resin type, lead and chromate free, ready mixed, complying with AASHTO M 248, Type N OR Type F OR Type S, as directed; colors complying with FS TT-P-1952.
 OR
 MPI #32 Alkyd Traffic Marking Paint.
 OR
 Latex, waterborne emulsion, lead and chromate free, ready mixed, complying with FS TT-P-1952, Type II, with drying time of less than three OR 45, as directed, minutes.
 OR
 MPI #97 Latex Traffic Marking Paint.

7. Wheel Stops:
 a. Precast, air-entrained concrete, 2500-psi (17.2-MPa) minimum compressive strength, 4-1/2 inches (115 mm) high by 9 inches (225 mm) wide by 72 inches (1800 mm) long. Provide chamfered corners, drainage slots on underside, and holes for anchoring to substrate.
 OR
 Solid, integrally colored, 96 percent recycled HDPE or commingled postconsumer and postindustrial recycled plastic; UV stabilized; 4 inches (100 mm) high by 6 inches (150 mm) wide by 72 inches (1800 mm) long. Provide chamfered corners, drainage slots on underside, and holes for anchoring to substrate.
 b. Dowels: Galvanized steel, 3/4-inch (19-mm) diameter, 10-inch (254-mm) minimum length.
 c. Adhesive: As recommended by wheel-stop manufacturer for application to asphalt pavement.

D. Preformed Traffic-Calming Devices

1. Speed Bumps OR Humps OR Cushions, as directed: Solid, integrally colored, 100 percent postconsumer or commingled postconsumer and postindustrial recycled rubber OR plastic, as directed; UV stabilized. Provide holes for anchoring to substrate.
 a. Size: Modular bumps 2 inches (51 mm) high by 10 inches (254 mm) wide by 72 inches (1800 mm) long, with overall length as dimensioned on Drawings.
 b. Size: Modular assemblies 3 inches (76 mm) high by 12 feet (3.7 m) in overall width OR 4 inches (102 mm) high by 14 feet (4.3 m) in overall width, as directed, with overall length as dimensioned on Drawings.
 c. Mounting Hardware: Galvanized-steel spike, 1/2-inch (13-mm) diameter, 10-inch (254-mm) minimum length OR lag screw, shield, and washers; 1/2-inch (13-mm) diameter, 8-inch (203-mm) minimum length OR hardware as standard with device manufacturer, as directed.
 d. Adhesive: As recommended by device manufacturer.

E. Imprinted Asphalt Materials

1. Templates: Imprinted-asphalt manufacturer's standard flexible templates for imprinting pattern into hot asphalt paving.
 a. Pattern: Running bond brick OR Cobblestone OR Custom pattern indicated on Drawings, as directed.

2. Coating System: Imprinted-asphalt manufacturer's standard system formulated for exterior application on asphalt paving surfaces.
 a. Base Coating: Portland cement and epoxy-modified acrylic polymer blended with sand and aggregate, formulated for exterior application on asphalt paving surfaces.
 b. Top Coating: Epoxy-modified acrylic polymer blended with sand and aggregate, formulated for exterior application on asphalt paving surfaces.
 c. Colorant: UV-stable pigment blend, added to each coating layer.
d. Color: White OR Yellow, as directed.

3. Precut Marking Material: Imprinted-asphalt manufacturer's standard, reflectorized, thermoplastic, 90-mil (2.3-mm) minimum thickness, formulated for exterior application on asphalt paving surfaces, and matching the imprinted pattern of templates.

F. Mixes
1. Hot-Mix Asphalt: Dense, hot-laid, hot-mix asphalt plant mixes approved by authorities having jurisdiction; designed according to procedures in AI MS-2, “Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types”; and complying with the following requirements:
 a. Provide mixes with a history of satisfactory performance in geographical area where Project is located.
 b. Base Course: In accordance with state or local DOT specifications.
 c. Surface Course: In accordance with state or local DOT specifications.
2. Hot-Mix Asphalt Based on ASTM D 3515 Requirements: Dense, hot-laid, hot-mix asphalt plant mixes approved by authorities having jurisdiction and designed according to procedures in AI MS-2, “Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types.”
 a. Provide mixes with a history of satisfactory performance in geographical area where Project is located.
 b. Provide mixes complying with composition, grading, and tolerance requirements in ASTM D 3515 for the following nominal, maximum aggregate sizes:
 1) Base Course: 1 inch (25 mm).
 2) Surface Course: 1/2 inch (13 mm).
3. Emulsified-Asphalt Slurry: ASTM D 3910, Type 1 OR Type 2 OR Type 3, as directed.

1.3 EXECUTION

A. Examination
1. Verify that subgrade is dry and in suitable condition to begin paving.
2. Proof-roll subgrade below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 a. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph (5 km/h).
 b. Proof roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons (13.6 tonnes).
 c. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by the Owner, and replace with compacted backfill or fill as directed.
3. Proceed with paving only after unsatisfactory conditions have been corrected.
4. Verify that utilities, traffic loop detectors, and other items requiring a cut and installation beneath the asphalt surface have been completed and that asphalt surface has been repaired flush with adjacent asphalt prior to beginning installation of imprinted asphalt.

B. Cold Milling
1. Clean existing pavement surface of loose and deleterious material immediately before cold milling. Remove existing asphalt pavement by cold milling to grades and cross sections indicated.
 a. Mill to a depth of 1-1/2 inches (38 mm) OR 2 inches (50 mm) OR 3 inches (75 mm), as directed.
 b. Mill to a uniform finished surface free of excessive gouges, grooves, and ridges.
 c. Control rate of milling to prevent tearing of existing asphalt course.
 d. Repair or replace curbs, manholes, and other construction damaged during cold milling.
 e. Excavate and trim unbound-aggregate base course, if encountered, and keep material separate from milled hot-mix asphalt.
 f. Transport milled hot-mix asphalt to asphalt recycling facility.
g. Keep milled pavement surface free of loose material and dust.

C. Patching
 1. Hot-Mix Asphalt Pavement: Saw cut perimeter of patch and excavate existing pavement section to sound base. Excavate rectangular or trapezoidal patches, extending 12 inches (300 mm) into adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Remove excavated material. Recompact existing unbound-aggregate base course to form new subgrade.
 2. Portland Cement Concrete Pavement: Break cracked slabs and roll as required to reseat concrete pieces firmly.
 a. Pump hot undersealing asphalt under rocking slab until slab is stabilized or, if necessary, crack slab into pieces and roll to reseat pieces firmly.
 b. Remove disintegrated or badly cracked pavement. Excavate rectangular or trapezoidal patches, extending into adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Recompact existing unbound-aggregate base course to form new subgrade.
 3. Tack Coat: Apply uniformly to vertical surfaces abutting or projecting into new, hot-mix asphalt paving at a rate of 0.05 to 0.15 gal./sq. yd. (0.2 to 0.7 L/sq. m).
 a. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 b. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.
 4. Patching:
 a. Fill excavated pavements with hot-mix asphalt base mix for full thickness of patch and, while still hot, compact flush with adjacent surface.
 OR
 b. Partially fill excavated pavements with hot-mix asphalt base mix and, while still hot, compact. Cover asphalt base course with compacted, hot-mix surface layer finished flush with adjacent surfaces.

D. Repairs
 1. Leveling Course: Install and compact leveling course consisting of hot-mix asphalt surface course to level sags and fill depressions deeper than 1 inch (25 mm) in existing pavements.
 a. Install leveling wedges in compacted lifts not exceeding 3 inches (75 mm) thick.
 2. Crack and Joint Filling: Remove existing joint filler material from cracks or joints to a depth of 1/4 inch (6 mm).
 a. Clean cracks and joints in existing hot-mix asphalt pavement.
 b. Use emulsified-asphalt slurry to seal cracks and joints less than 1/4 inch (6 mm) wide. Fill flush with surface of existing pavement and remove excess.
 c. Use hot-applied joint sealant to seal cracks and joints more than 1/4 inch (6 mm) wide. Fill flush with surface of existing pavement and remove excess.

E. Surface Preparation
 1. General: Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.
 2. Herbicide Treatment: Apply herbicide according to manufacturer's recommended rates and written application instructions. Apply to dry, prepared subgrade or surface of compacted-aggregate base before applying paving materials.
 a. Mix herbicide with prime coat if formulated by manufacturer for that purpose.
 3. Prime Coat: Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.15 to 0.50 gal./sq. yd. (0.7 to 2.3 L/sq. m). Apply enough material to penetrate and seal but not flood surface. Allow prime coat to cure.
 a. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
 b. Protect primed substrate from damage until ready to receive paving.
4. **Tack Coat**: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd. (0.2 to 0.7 L/sq. m).
 a. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 b. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

F. **Paving Geotextile Installation**
 1. Apply tack coat OR asphalt binder OR asphalt cement, as directed, uniformly to existing pavement surfaces at a rate of 0.20 to 0.30 gal./sq. yd. (0.8 to 1.2 L/sq. m).
 2. Place paving geotextile promptly according to manufacturer's written instructions. Broom or roll geotextile smooth and free of wrinkles and folds. Overlap longitudinal joints 4 inches (100 mm) and transverse joints 6 inches (150 mm).
 a. Protect paving geotextile from traffic and other damage and place hot-mix asphalt paving overlay the same day.

G. **Hot-Mix Asphalt Placing**
 1. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand to areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.
 a. Place hot-mix asphalt base course in number of lifts and thicknesses indicated.
 b. Place hot-mix asphalt surface course in single lift.
 c. Spread mix at minimum temperature of 250 deg F (121 deg C).
 d. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.
 e. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.
 2. Place paving in consecutive strips not less than 10 feet (3 m) wide unless infill edge strips of a lesser width are required.
 a. After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Complete a section of asphalt base course before placing asphalt surface course.
 3. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

H. **Joints**
 1. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.
 a. Clean contact surfaces and apply tack coat to joints.
 b. Offset longitudinal joints, in successive courses, a minimum of 6 inches (150 mm).
 c. Offset transverse joints, in successive courses, a minimum of 24 inches (600 mm).
 d. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method according to AI MS-22, for both "Ending a Lane" and "Resumption of Paving Operations" OR as shown on Drawings, as directed.
 e. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.
 f. Compact asphalt at joints to a density within 2 percent of specified course density.

I. **Compaction**
 1. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.
a. Complete compaction before mix temperature cools to 185 deg F (85 deg C).

2. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.

3. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:
 a. Average Density:
 1) 96 percent of reference laboratory density according to ASTM D 6927 or AASHTO T 245, but not less than 94 percent nor greater than 100 percent.
 OR
 92 percent of reference maximum theoretical density according to ASTM D 2041, but not less than 90 percent nor greater than 96 percent.

4. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.

5. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.

6. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.

7. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.

8. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

J. Asphalt Curbs
1. Construct hot-mix asphalt curbs over compacted pavement surfaces. Apply a light tack coat unless pavement surface is still tacky and free from dust. Spread mix at minimum temperature of 250 deg F (121 deg C).
 a. Asphalt Mix: Same as pavement surface-course mix.

2. Place hot-mix asphalt to curb cross section indicated or, if not indicated, to local standard shapes, by machine or by hand in wood or metal forms. Tamp hand-placed materials and screed to smooth finish. Remove forms after hot-mix asphalt has cooled.

K. Asphalt Traffic-Calming Devices
1. Construct hot-mix asphalt speed bumps, humps, cushions, and tables over compacted pavement surfaces. Apply a tack coat unless pavement surface is still tacky and free from dust. Spread mix at minimum temperature of 250 deg F (121 deg C).
 a. Tack Coat Application: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd. (0.2 to 0.7 L/sq. m).
 b. Asphalt Mix: Same as pavement surface-course mix.
 c. Before installation, mill pavement that will be in contact with bottom of traffic-calming device. Mill to a depth of 1 inch (25 mm) from top of pavement to a clean, rough profile.

2. Place hot-mix asphalt to cross section indicated, by machine or by hand in wood or metal forms. Tamp hand-placed materials and screed to smooth finish. Remove forms after hot-mix asphalt has cooled.

L. Installation Tolerances
1. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:
 a. Base Course: Plus or minus 1/2 inch (13 mm).
 b. Surface Course: Plus 1/4 inch (6 mm), no minus.

2. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot (3-m) straightedge applied transversely or longitudinally to paved areas:
a. Base Course: 1/4 inch (6 mm).
b. Surface Course: 1/8 inch (3 mm).
c. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch (6 mm).

3. Traffic-Calming Devices: Compact and form asphalt to produce the contour indicated and within a tolerance of plus or minus 1/8 inch (3 mm) of height indicated above pavement surface.

M. Surface Treatments
1. Fog Seals: Apply fog seal at a rate of 0.10 to 0.15 gal./sq. yd. (0.45 to 0.7 L/sq. m) to existing asphalt pavement and allow to cure. With fine sand, lightly dust areas receiving excess fog seal.
2. Slurry Seals: Apply slurry coat in a uniform thickness according to ASTM D 3910 and allow to cure.
 a. Roll slurry seal to remove ridges and provide a uniform, smooth surface.

N. Pavement Marking
1. Do not apply pavement-marking paint until layout, colors, and placement have been verified with the Owner.
2. Allow paving to age for 30 OR 90, as directed, days before starting pavement marking.
3. Sweep and clean surface to eliminate loose material and dust.
4. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils (0.4 mm).
 a. Broadcast glass beads uniformly into wet pavement markings at a rate of 6 lb/gal. (0.72 kg/L).

O. Wheel Stops
1. Install wheel stops in bed of adhesive as recommended by manufacturer.
2. Securely attach wheel stops to pavement with not less than two galvanized-steel dowels embedded at one-quarter to one-third points. Securely install dowels into pavement and bond to wheel stop. Recess head of dowel beneath top of wheel stop.

P. Preformed Traffic-Calming Devices
1. Install preformed speed bumps OR humps OR cushions, as directed, in bed of adhesive as recommended by manufacturer for heavy traffic.
2. Securely attach preformed speed bumps OR humps OR cushions, as directed, to pavement with hardware spaced as recommended by manufacturer for heavy traffic. Recess head of hardware beneath top surface.

Q. Imprinting Asphalt
1. General: Imprint asphalt according to manufacturer's written instructions, using manufacturer's recommended equipment.
2. Freshly Laid Asphalt: Immediately after asphalt has been laid and compacted but still plastic, begin the surface imprinting process.
 a. Monitor asphalt surface temperature in compliance with manufacturer's written recommendations to ensure required temperature to perform surface imprinting.
 b. Reheat asphalt if surface temperature drops below that required.
3. Reheating Asphalt: Soften asphalt pavement surface by heating to a depth of at least 1/2 inch (13 mm) without burning asphalt.
 a. Heat to a temperature of 300 to 325 deg F (149 to 163 deg C) immediately before applying templates.
 b. Regularly monitor the pavement temperature to prevent overheating.
 c. Direct flame heaters are not permitted.
d. If pavement is overheated and begins to emit black smoke, remove damaged pavement by milling down 1 inch (25 mm) and replace removed pavement with new, compacted surface course prior to resuming imprinting work.

4. Surface Imprinting: Apply and imprint templates to a minimum depth of 1/4 inch (6 mm) OR as required to embed precut marking material flush or barely beneath pavement surface, as directed.

5. Coating Application: After imprinted surface has cooled, apply two layers of base coating followed by two layers of top coating OR four layers of top coating, as directed. Do not allow traffic until coating has completely dried and cured.

6. Precut Marking Material Application: Position precut marking material aligned with imprinted pattern and slowly heat to a temperature no higher than 325 deg F (163 deg C) until marking material begins to liquefy and flow. Do not allow traffic until installed marking material has cooled to ambient temperature.

R. Field Quality Control

1. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

2. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D 3549.

3. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances.

4. Traffic-Calming Devices: Finished height of asphalt speed bumps, humps, cushions, and tables above pavement will be measured for compliance with tolerances.

5. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to ASTM D 979 or AASHTO T 168.

 a. Reference maximum theoretical density will be determined by averaging results from four samples of hot-mix asphalt-paving mixture delivered daily to site, prepared according to ASTM D 2041, and compacted according to job-mix specifications.

 b. In-place density of compacted pavement will be determined by testing core samples according to ASTM D 1188 or ASTM D 2726.

 1) One core sample will be taken for every 1000 sq. yd. (836 sq. m) or less of installed pavement, with no fewer than 3 cores taken.

 2) Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D 2950 and correlated with ASTM D 1188 or ASTM D 2726.

6. Replace and compact hot-mix asphalt where core tests were taken.

7. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

S. Disposal

1. Except for material indicated to be recycled, remove excavated materials from Project site and legally dispose of them in an EPA-approved landfill.

 a. Do not allow milled materials to accumulate on-site.
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 32 01 11 53a - CEMENT CONCRETE PAVEMENT

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for cement concrete pavement. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Driveways.
 b. Roadways.
 c. Parking lots.
 d. Curbs and gutters.
 e. Walks.

C. Definitions
1. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, and ground granulated blast-furnace slag.

D. Submittals
1. Product Data: For each type of product indicated.
2. LEED Submittals:
 a. Product Data for Credit MR 4.1 and Credit MR 4.2: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating costs for each product having recycled content.
 b. Design Mixtures for Credit ID 1.1: For each concrete mixture containing fly ash as a replacement for portland cement or other portland cement replacements. For each design mixture submitted, include an equivalent concrete mixture that does not contain portland cement replacements, to determine amount of portland cement replaced.
3. Shop Drawings: Indicate pavement markings, lane separations, and defined parking spaces. Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.
4. Samples: For each type of product or exposed finish, prepared as Samples of size indicated below:
 a. Exposed Aggregate: 10-lb (4.5-kg) Sample of each mix.
 b. Wheel Stops: 6 inches (150 mm) long showing cross section; with fasteners.
 c. Preformed Traffic-Calming Devices: 6 inches (150 mm) long showing cross section; with fasteners.
5. Other Action Submittals:
 a. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
6. Qualification Data: For qualified Installer of detectable warnings, ready-mix concrete manufacturer and testing agency.
7. Material Certificates: For the following, from manufacturer:
 a. Cementitious materials.
 b. Steel reinforcement and reinforcement accessories.
 c. Fiber reinforcement.
 d. Admixtures.
 e. Curing compounds.
f. Applied finish materials.
g. Bonding agent or epoxy adhesive.
h. Joint fillers.

8. Material Test Reports: For each of the following:
a. Aggregates. Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.

E. Quality Assurance
1. Detectable Warning Installer Qualifications: An employer of workers trained and approved by manufacturer of stamped concrete paving systems.
2. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
a. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual - Section 3, "Plant Certification Checklist").
3. Testing Agency Qualifications: Qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
a. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
4. Concrete Testing Service: Engage a qualified testing agency to perform material evaluation tests and to design concrete mixtures.
5. ACI Publications: Comply with ACI 301 (ACI 301M) unless otherwise indicated.

F. Project Conditions
1. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.
2. Pavement-Marking Paint: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F (4.4 deg C) for oil-based materials OR 55 deg F (12.8 deg C) for water-based materials, as directed, and not exceeding 95 deg F (35 deg C).

1.2 PRODUCTS

A. Forms
1. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
a. Use flexible or uniformly curved forms for curves with a radius of 100 feet (30.5 m) or less. Do not use notched and bent forms.
2. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

B. Steel Reinforcement
1. Recycled Content: Provide steel reinforcement with an average recycled content of steel so postconsumer recycled content plus one-half of preconsumer recycled content is not less than 25 percent.
2. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, fabricated from as-drawn steel OR galvanized-steel, as directed, wire into flat sheets.
5. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420); deformed.
6. Galvanized Reinforcing Bars: ASTM A 767/A 767M, Class II zinc coated, hot-dip galvanized after fabrication and bending; with ASTM A 615/A 615M, Grade 60 (Grade 420) deformed bars.

7. Epoxy-Coated Reinforcing Bars: ASTM A 775/A 775M or ASTM A 934/A 934M; with ASTM A 615/A 615M, Grade 60 (Grade 420) deformed bars.

8. Steel Bar Mats: ASTM A 184/A 184M; with ASTM A 615/A 615M, Grade 60 (Grade 420), deformed bars; assembled with clips.

9. Plain-Steel Wire: ASTM A 82/A 82M, as drawn OR galvanized, as directed.

10. Deformed-Steel Wire: ASTM A 496/A 496M.

11. Epoxy-Coated-Steel Wire: ASTM A 884/A 884M, Class A coated, plain OR deformed, as directed.

12. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420) plain-steel bars; zinc coated (galvanized) after fabrication according to ASTM A 767/A 767M, Class I coating, as directed. Cut bars true to length with ends square and free of burrs.

13. Epoxy-Coated, Joint Dowel Bars: ASTM A 775/A 775M; with ASTM A 615/A 615M, Grade 60 (Grade 420), plain-steel bars.

14. Tie Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.

 OR

 Hook Bolts: ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6), internally and externally threaded. Design hook-bolt joint assembly to hold coupling against paving form and in position during concreting operations, and to permit removal without damage to concrete or hook bolt.

15. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:

 a. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.

 b. For epoxy-coated reinforcement, use epoxy-coated or other dielectric-polymer-coated wire bar supports.

C. Concrete Materials

1. Cementitious Material: Use the following cementitious materials, of same type, brand, and source throughout Project:
 a. Portland Cement: ASTM C 150, gray OR white, as directed, portland cement Type I OR Type II OR Type I/II OR Type III OR Type V, as directed. Supplement with the following, as directed:
 1) Fly Ash: ASTM C 618, Class C or Class F.
 2) Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
 b. Blended Hydraulic Cement: ASTM C 595, Type IS, portland blast-furnace slag OR Type IP, portland-pozzolan, as directed, cement.

2. Normal-Weight Aggregates: ASTM C 33, Class 4S OR Class 4M OR Class 1N, as directed, uniformly graded. Provide aggregates from a single source with documented service-record data of at least 10 years' satisfactory service in similar paving applications and service conditions using similar aggregates and cementitious materials, as directed.
 a. Maximum Coarse-Aggregate Size: 1-1/2 inches (38 mm) OR 1 inch (25 mm) OR 3/4 inch (19 mm), as directed, nominal.
 b. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

3. Exposed Aggregate: Selected, hard, and durable; washed; free of materials with deleterious reactivity to cement or that cause staining; from a single source, with gap-graded coarse aggregate as follows:
 a. Aggregate Sizes: 3/4 to 1 inch (19 to 25 mm) OR 1/2 to 3/4 inch (13 to 19 mm) OR 3/8 to 5/8 inch (10 to 16 mm), as directed, nominal.
 b. Aggregate Source, Shape, and Color: As required to meet Project requirements.
4. Water: Potable and complying with ASTM C 94/C 94M.
6. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
 a. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 b. Retarding Admixture: ASTM C 494/C 494M, Type B.
 c. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 d. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 e. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 f. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
7. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, free of carbon black, as directed, nonfading, and resistant to lime and other alkalis.

D. Fiber Reinforcement
1. Synthetic Fiber: Monofilament or fibrillated polypropylene fibers engineered and designed for use in concrete paving, complying with ASTM C 1116/C 1116M, Type III, 1/2 to 1-1/2 inches (13 to 38 mm) long.

E. Curing Materials
1. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) dry or cotton mats.
5. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.

F. Related Materials
1. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber or ASTM D 1752, cork or self-expanding cork in preformed strips.
2. Slip-Resistive Aggregate Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of fused aluminum-oxide granules or crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials.
3. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
4. Epoxy Bonding Adhesive: ASTM C 881/C 881M, two-component epoxy resin capable of humid curing and bonding to damp surfaces; of class suitable for application temperature, of grade complying with requirements, and of the following types:
 a. Types I and II, non-load bearing OR Types IV and V, load bearing, as directed, for bonding hardened or freshly mixed concrete to hardened concrete.
5. Chemical Surface Retarder: Water-soluble, liquid, set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to a depth of 1/8 to 1/4 inch (3 to 6 mm).
6. Pigmented Mineral Dry-Shake Hardener: Factory-packaged, dry combination of portland cement, graded quartz aggregate, color pigments, and plasticizing admixture. Use color pigments that are finely ground, nonfading mineral oxides interground with cement.
7. Rock Salt: Sodium chloride crystals, kiln dried, coarse gradation with 100 percent passing 3/8-inch (9.5-mm) sieve and 85 percent retained on a No. 8 (2.36-mm) sieve.
G. Detectable Warning Materials
1. Detectable Warning Stamp: Semirigid polyurethane mats with formed underside capable of imprinted detectable warning pattern on plastic concrete; perforated with a vent hole at each dome.
 a. Size of Stamp: One piece matching detectable warning area shown on Drawings OR 24 by 24 inches (610 by 610 mm) OR 24 by 36 inches (610 by 914 mm) OR 24 by 48 inches (610 by 1220 mm) OR 26 by 26 inches (660 by 660 mm) OR 26 by 36 inches (660 by 914 mm), as directed.
2. Liquid Release Agent: Manufacturer's standard, clear, evaporating formulation designed to facilitate release of stamp mats.

H. Pavement Markings
1. Pavement-Marking Paint: Alkyd-resin type, lead and chromate free, ready mixed, complying with AASHTO M 248, Type N OR Type F OR Type S, as directed; colors complying with FS TT-P-1952.
 a. Color: White OR Yellow OR Blue OR As indicated, as directed.
 a. Color: White OR Yellow OR Blue OR As indicated, as directed.
3. Pavement-Marking Paint: Latex, waterborne emulsion, lead and chromate free, ready mixed, complying with FS TT-P-1952, Type II, with drying time of less than three OR 45, as directed, minutes.
 a. Color: White OR Yellow OR Blue OR As indicated, as directed.
 a. Color: White OR Yellow OR Blue OR As indicated, as directed.
5. Glass Beads: AASHTO M 247, Type 1 OR FS TT-B-1325, Type 1A, as directed.

I. Wheel Stops
1. Wheel Stops: Precast, air-entrained concrete, 2500-psi (17.2-MPa) minimum compressive strength, 4-1/2 inches (115 mm) high by 9 inches (225 mm) wide by 72 inches (1820 mm) long. Provide chamfered corners and drainage slots on underside and holes for anchoring to substrate.
 a. Dowels: Galvanized steel, 3/4 inch (19 mm) in diameter, 10-inch (254-mm) minimum length.
2. Wheel Stops: Solid, integrally colored, 96 percent recycled HDPE, or commingled postconsumer and postindustrial recycled rubber or plastic; UV stabilized; 4 inches (100 mm) wide by 6 inches (150 mm) wide by 72 inches (1820 mm) long. Provide chamfered corners and drainage slots on underside and holes for anchoring to substrate.
 a. Color: Black OR Yellow OR Gray OR Green OR Blue, as directed.
 b. Dowels: Galvanized steel, 3/4 inch (19 mm) in diameter, 10-inch (254-mm) minimum length.
 c. Adhesive: As recommended by wheel stop manufacturer for application to concrete pavement.

J. Preformed Traffic-Calming Devices
1. Speed Bumps OR Humps OR Cushions, as directed: Solid, integrally colored, 100 percent postconsumer or commingled postconsumer and postindustrial recycled rubber or plastic; UV stabilized. Provide holes for anchoring to substrate.
 a. Bump Size: Modular 2 inches (50 mm) high by 10 inches (254 mm) wide by 72 inches (1800 mm) long, with overall length as dimensioned on Drawings.
 b. Hump OR Cushion, as directed, Size: Modular assemblies 3 inches (75 mm) high by 12 feet (3.7 m) in overall width OR 4 inches (100 mm) high by 14 feet (4.3 m) in overall width, as directed, with overall length as dimensioned on Drawings.
 c. Color: Black OR Yellow, as directed.
 d. Mounting Hardware: Galvanized-steel lag screw, shield, and washers; 1/2-inch (13-mm) diameter, 8-inch (200-mm) minimum length OR hardware as standard with device manufacturer for use with concrete paving, as directed.
32 - Exterior Improvements

Cement Concrete Pavement

K. Concrete Mixtures
1. Prepare design mixtures, proportioned according to ACI 301 (ACI 301M), for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.
 a. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
 b. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that meet or exceed requirements.
2. Proportion mixtures to provide normal-weight concrete with the following properties:
 a. Compressive Strength (28 Days): 4500 psi (31 MPa) OR 4000 psi (27.6 MPa) OR 3500 psi (24.1 MPa) OR 3000 psi (20.7 MPa), as directed.
 b. Maximum Water-Cementitious Materials Ratio at Point of Placement: 0.45 OR 0.50, as directed.
 c. Slump Limit: 4 inches (100 mm) OR 5 inches (125 mm) OR 8 inches (200 mm), as directed, plus or minus 1 inch (25 mm).
3. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 a. Air Content: 5-1/2 OR 4-1/2 OR 2-1/2, as directed, percent plus or minus 1.5 percent for 1-1/2-inch (38-mm) nominal maximum aggregate size.
 b. Air Content: 6 OR 4-1/2 OR 3, as directed, percent plus or minus 1.5 percent for 1-inch (25-mm) nominal maximum aggregate size.
 c. Air Content: 6 OR 5 OR 3-1/2, as directed, percent plus or minus 1.5 percent for 3/4-inch (19-mm) nominal maximum aggregate size.
4. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 OR 0.30, as directed, percent by weight of cement.
5. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
 a. Use water-reducing admixture OR high-range, water-reducing admixture OR high-range, water-reducing and retarding admixture OR plasticizing and retarding admixture, as directed, in concrete as required for placement and workability.
 b. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
6. Cementitious Materials: Limit percentage by weight of cementitious materials other than portland cement according to ACI 301 (ACI 301M) requirements for concrete exposed to deicing chemicals OR as follows, as directed:
 a. Fly Ash or Pozzolan: 25 percent.
 b. Ground Granulated Blast-Furnace Slag: 50 percent.
 c. Combined Fly Ash or Pozzolan, and Ground Granulated Blast-Furnace Slag: 50 percent, with fly ash or pozzolan not exceeding 25 percent.
7. Synthetic Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than 1.0 lb/cu. yd. (0.60 kg/cu. m) OR 1.5 lb/cu. yd. (0.90 kg/cu. m), as directed.
8. Color Pigment: Add color pigment to concrete mixture according to manufacturer's written instructions and to result in hardened concrete color consistent with approved mockup.

L. Concrete Mixing
1. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M and ASTM C 1116/C 1116M, as directed. Furnish batch certificates for each batch discharged and used in the Work.
 a. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.
2. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
a. For concrete batches of 1 cu. yd. (0.76 cu. m) or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.

b. For concrete batches larger than 1 cu. yd. (0.76 cu. m), increase mixing time by 15 seconds for each additional 1 cu. yd. (0.76 cu. m).

c. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

1.3 EXECUTION

A. Examination

1. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.

2. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.
 a. Completely proof-roll subbase in one direction and repeat in perpendicular direction, as directed. Limit vehicle speed to 3 mph (5 km/h).
 b. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 15 tons (13.6 tonnes).
 c. Correct subbase with soft spots and areas of pumping or rutting exceeding depth of 1/2 inch (13 mm) according to requirements in Division 31 Section "Earth Moving".

3. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Preparation

1. Remove loose material from compacted subbase surface immediately before placing concrete.

C. Edge Forms And Screed Construction

1. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.

2. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

D. Steel Reinforcement

2. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.

3. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.

4. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

6. Epoxy-Coated Reinforcement: Use epoxy-coated steel wire ties to fasten epoxy-coated reinforcement. Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D 3963/D 3963M.

7. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch (50-mm) overlap of adjacent mats.

E. Joints
1. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
 a. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.

2. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
 a. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
 b. Provide tie bars at sides of paving strips where indicated.
 c. Butt Joints: Use bonding agent OR epoxy bonding adhesive, as directed, at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
 d. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches (38 mm) into concrete.
 e. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

3. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
 a. Locate expansion joints at intervals of 50 feet (15.25 m) unless otherwise indicated.
 b. Extend joint fillers full width and depth of joint.
 c. Terminate joint filler not less than 1/2 inch (13 mm) or more than 1 inch (25 mm) below finished surface if joint sealant is indicated.
 d. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
 e. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
 f. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.

4. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows, to match jointing of existing adjacent concrete paving:
 a. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/4-inch (6-mm) OR 3/8-inch (10-mm), as directed, radius. Repeat grooving of contraction joints after applying surface finishes. Eliminate grooving-tool marks on concrete surfaces, as directed.
 1) Tolerance: Ensure that grooved joints are within 3 inches (75 mm) either way from centers of dowels.
 b. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3-mm-) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
 1) Tolerance: Ensure that sawed joints are within 3 inches (75 mm) either way from centers of dowels.
 c. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.
 d. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 1/4-inch (6-mm) OR 3/8-inch (10-mm), as directed, radius. Repeat tooling of edges after applying surface finishes. Eliminate edging-tool marks on concrete surfaces, as directed.

F. Concrete Placement
1. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.
2. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.
3. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.
4. Comply with ACI 301 (ACI 301M) requirements for measuring, mixing, transporting, and placing concrete.
5. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.
6. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.
7. Consolidate concrete according to ACI 301 (ACI 301M) by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.
 a. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels, and joint devices.
8. Screed paving surface with a straightedge and strike off.
9. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.
10. Curbs and Gutters: Use design mixture for automatic machine placement. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing.
11. Slip-Form Paving: Use design mixture for automatic machine placement. Produce paving to required thickness, lines, grades, finish, and jointing.
 a. Compact subbase and prepare subgrade of sufficient width to prevent displacement of slip-form paving machine during operations.
12. Cold-Weather Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
 a. When air temperature has fallen to or is expected to fall below 40 deg F (4.4 deg C), uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F (10 deg C) and not more than 80 deg F (27 deg C) at point of placement.
 b. Do not use frozen materials or materials containing ice or snow.
 c. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.
13. Hot-Weather Placement: Comply with ACI 301 (ACI 301M) and as follows when hot-weather conditions exist:
 a. Cool ingredients before mixing to maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 b. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 c. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

G. Float Finishing
1. General: Do not add water to concrete surfaces during finishing operations.
2. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true
planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

a. Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture.

b. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across float-finished concrete surface perpendicular to line of traffic to provide a uniform, fine-line texture.

c. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch (1.6 to 3 mm) deep with a stiff-bristled broom, perpendicular to line of traffic.

H. Special Finishes

1. Monolithic Exposed-Aggregate Finish: Expose coarse aggregate in paving surface as follows:
 a. Immediately after float finishing, spray-apply chemical surface retarder to paving according to manufacturer's written instructions.
 b. Cover paving surface with plastic sheeting, sealing laps with tape, and remove when ready to continue finishing operations.
 c. Without dislodging aggregate, remove mortar concealing the aggregate by lightly brushing surface with a stiff, nylon-bristle broom. Do not expose more than one-third of the average diameter of the aggregate and not more than one-half of the diameter of the smallest aggregate.
 d. Fine-spray surface with water and brush. Repeat cycle of water flushing and brushing until cement film is removed from aggregate surfaces to depth required.

2. Seeded Exposed-Aggregate Finish: Immediately after initial floating, spread a single layer of aggregate uniformly on paving surface. Tamp aggregate into plastic concrete and float finish to entirely embed aggregate with mortar cover of 1/16 inch (1.6 mm).
 a. Spray-apply chemical surface retarder to paving according to manufacturer's written instructions.
 b. Cover paving surface with plastic sheeting, sealing laps with tape, and remove when ready to continue finishing operations.
 c. Without dislodging aggregate, remove mortar concealing the aggregate by lightly brushing surface with a stiff, nylon-bristle broom. Do not expose more than one-third of the average diameter of the aggregate and not more than one-half of the diameter of the smallest aggregate.
 d. Fine-spray surface with water and brush. Repeat cycle of water flushing and brushing until cement film is removed from aggregate surfaces to depth required.

3. Slip-Resistive Aggregate Finish: Before final floating, spread slip-resistive aggregate finish on paving surface according to manufacturer's written instructions and as follows:
 a. Uniformly spread 25 lb/100 sq. ft. (12 kg/10 sq. m) OR 40 lb/100 sq. ft. (19.5 kg/10 sq. m) OR 60 lb/100 sq. ft. (29 kg/10 sq. m), as directed, of dampened, slip-resistive aggregate over paving surface in two applications. Tamp aggregate flush with surface using a steel trowel, but do not force below surface.
 b. Uniformly distribute approximately two-thirds of slip-resistive aggregate over paving surface with mechanical spreader, allow to absorb moisture, and embed by power floating. Follow power floating with a second slip-resistive aggregate application, uniformly distributing remainder of material at right angles to first application to ensure uniform coverage, and embed by power floating.
 c. Cure concrete with curing compound recommended by slip-resistive aggregate manufacturer. Apply curing compound immediately after final finishing.
 d. After curing, lightly work surface with a steel wire brush or abrasive stone and water to expose nonslip aggregate.

4. Rock-Salt Finish: After initial floating OR troweling OR brooming, as directed, uniformly spread rock salt over paving surface at the rate of 5 lb/100 sq. ft. (0.2 kg/10 sq. m).
 a. Embed rock salt into plastic concrete with roller or magnesium float.
b. Cover paving surface with 1-mil- (0.025-mm-) thick polyethylene sheet and remove sheet when concrete has hardened and seven-day curing period has elapsed.

c. After seven-day curing period, saturate concrete with water and broom-sweep surface to dissolve remaining rock salt, thereby leaving pits and holes.

5. Pigmented Mineral Dry-Shake Hardener Finish: After initial floating, apply dry-shake materials to paving surface according to manufacturer's written instructions and as follows:
 a. Uniformly spread dry-shake hardener at a rate of 100 lb/100 sq. ft. (49 kg/10 sq. m), unless greater amount is recommended by manufacturer to match paving color required.
 b. Uniformly distribute approximately two-thirds of dry-shake hardener over the concrete surface with mechanical spreader; allow hardener to absorb moisture and embed it by power floating. Follow power floating with a second application of pigmented mineral dry-shake hardener, uniformly distributing remainder of material at right angles to first application to ensure uniform color, and embed hardener by final power floating.
 c. After final power floating, apply a hand-trowel finish followed by a broom finish.

 d. Cure concrete with curing compound recommended by dry-shake hardener manufacturer. Apply curing compound immediately after final finishing.

I. Detectable Warnings
 1. Blockouts: Form blockouts in concrete for installation of detectable paving units specified in Division 32 Section "Unit Paving".
 a. Tolerance for Opening Size: Plus 1/4 inch (6 mm), no minus.

 2. Stamped Detectable Warnings: Install stamped detectable warnings as part of a continuous concrete paving placement and according to stamp-mat manufacturer's written instructions.
 a. Before using stamp mats, verify that the vent holes are unobstructed.
 b. Apply liquid release agent to the concrete surface and the stamp mat.
 c. Stamping: While initially finished concrete is plastic OR After application and final floating of pigmented mineral dry-shake hardener, as directed, accurately align and place stamp mats in sequence. Uniformly load, gently vibrate, and press mats into concrete to produce imprint pattern on concrete surface. Load and tamp mats directly perpendicular to the stamp-mat surface to prevent distortion in shape of domes. Press and tamp until mortar begins to come through all of the vent holes. Gently remove stamp mats.
 d. Trimming: After 24 hours, cut off the tips of mortar formed by the vent holes.
 e. Remove residual release agent according to manufacturer's written instructions, but no fewer than three days after stamping concrete. High-pressure-wash surface and joint patterns, taking care not to damage stamped concrete. Control, collect, and legally dispose of runoff.

J. Concrete Protection And Curing
 1. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
 2. Comply with ACI 306.1 for cold-weather protection.
 3. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.
 4. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.
 5. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound, or a combination of these as follows:
 a. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 1) Water.
 2) Continuous water-fog spray.
 3) Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.
b. **Moisture-Retaining-Cover Curing:** Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm) and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period using cover material and waterproof tape.

c. **Curing Compound:** Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas that have been subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

K. **Paving Tolerances**

1. Comply with tolerances in ACI 117 and as follows:
 a. **Elevation:** 3/4 inch (19 mm).
 b. **Thickness:** Plus 3/8 inch (10 mm), minus 1/4 inch (6 mm).
 c. **Surface:** Gap below 10-foot- (3-m-) long, unleveled straightedge not to exceed 1/2 inch (13 mm).
 d. **Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge:** 1/2 inch per 12 inches (13 mm per 300 mm) of tie bar.
 e. **Lateral Alignment and Spacing of Dowels:** 1 inch (25 mm).
 f. **Vertical Alignment of Dowels:** 1/4 inch (6 mm).
 g. **Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge:** 1/4 inch per 12 inches (6 mm per 300 mm) of dowel.
 h. **Joint Spacing:** 3 inches (75 mm).
 i. **Contraction Joint Depth:** Plus 1/4 inch (6 mm), no minus.
 j. **Joint Width:** Plus 1/8 inch (3 mm), no minus.

L. **Pavement Marking**

1. Do not apply pavement-marking paint until layout, colors, and placement have been verified with the Owner.
2. Allow concrete paving to cure for a minimum of 28 days and be dry before starting pavement marking.
3. Sweep and clean surface to eliminate loose material and dust.
4. Apply paint with mechanical equipment to produce markings of dimensions indicated with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils (0.4 mm).
 a. Apply graphic symbols and lettering with paint-resistant, die-cut stencils, firmly secured to concrete surface. Mask an extended area beyond edges of each stencil to prevent paint application beyond stencil. Apply paint so that it cannot run beneath stencil.
 b. Broadcast glass beads uniformly into wet markings at a rate of 6 lb/gal. (0.72 kg/L).

M. **Wheel Stops**

1. Install wheel stops in bed of adhesive applied as recommended by manufacturer.
2. Securely attach wheel stops to paving with not less than two steel or galvanized-steel, as directed, dowels located at one-quarter to one-third points. Install dowels in drilled holes in the paving and bond dowels to wheel stop. Recess head of dowel beneath top of wheel stop.

N. **Preformed Traffic-Calming Devices**

1. Install preformed speed bumps OR humps OR cushions, as directed, in bed of adhesive applied as recommended by manufacturer for heavy traffic.
2. Securely attach preformed speed bumps OR humps OR cushions, as directed, to paving with hardware spaced as recommended by manufacturer for heavy traffic. Recess head of hardware beneath top surface.

O. **Field Quality Control**

1. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
2. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 a. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. (76 cu. m) OR 5000 sq. ft. (465 sq. m), as directed, or fraction thereof of each concrete mixture placed each day.
 1) When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 b. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 c. Air Content: ASTM C 231, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 d. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and when it is 80 deg F (27 deg C) and above, and one test for each composite sample.
 e. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.
 f. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at seven days and two specimens at 28 days.
 1) A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.

3. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).

4. Test results shall be reported in writing to the Owner, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

5. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by the Owner but will not be used as sole basis for approval or rejection of concrete.

6. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by the Owner.

7. Concrete paving will be considered defective if it does not pass tests and inspections.

8. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

9. Prepare test and inspection reports.

P. Repairs And Protection
 1. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by the Owner.
 2. Drill test cores, where directed by the Owner, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.
 3. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.
 4. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.
END OF SECTION 32 01 11 53a
SECTION 32 01 11 53b - TRAFFIC COATINGS

1.1 GENERAL

A. Description Of Work:
1. This specification covers the furnishing and installation of materials for traffic coating. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes traffic coatings for the following applications:
 a. Interior and exterior pedestrian traffic.
 b. Vehicular traffic.
 c. Pavement markings.

C. Submittals
1. Product Data: For each product indicated.
2. Shop Drawings: Show extent of each traffic coating. Include details for treating substrate joints and cracks, flashings, deck penetrations, and other termination conditions.
3. Samples: For each type of finish indicated.
4. Material test reports.
5. Material certificates.
6. Qualification data.
7. Maintenance data.
8. Warranty.
9. LEED Submittal:
 a. Product Data for Credit EQ 4.2: For interior field-applied traffic coatings and pavement marking paints, including printed statement of VOC content.

D. Quality Assurance
1. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of traffic coatings required for this Project.
2. Fire-Test-Response Characteristics: Provide traffic coating materials with the fire-test-response characteristics as determined by testing identical products per test method below for deck type and slopes indicated by an independent testing and inspecting agency that is acceptable to authorities having jurisdiction.
 a. Class A OR B OR C, as directed, roof covering per ASTM E 108 or UL 790.

E. Delivery, Storage, And Handling
1. Deliver materials in original packages and containers with seals unbroken and bearing manufacturer's labels showing the following information:
 a. Manufacturer's brand name.
 b. Type of material.
 c. Directions for storage.
 d. Date of manufacture and shelf life.
 e. Lot or batch number.
 f. Mixing and application instructions.
 g. Color.
2. Store materials in a clean, dry location protected from exposure to direct sunlight. In storage areas, maintain environmental conditions within range recommended in writing by manufacturer.
F. Project Conditions
1. Environmental Limitations: Apply traffic coatings within the range of ambient and substrate temperatures recommended in writing by manufacturer. Do not apply traffic coatings to damp or wet substrates, when temperatures are below 40 deg F (5 deg C), when relative humidity exceeds 85 percent, or when temperatures are less than 5 deg F (3 deg C) above dew point.
 a. Do not apply traffic coatings in snow, rain, fog, or mist, or when such weather conditions are imminent during the application and curing period. Apply only when frost-free conditions occur throughout the depth of substrate.
2. Do not install traffic coating until items that will penetrate membrane have been installed.

G. Warranty
1. Special Warranty: Manufacturer's standard form in which traffic coating manufacturer agrees to repair or replace traffic coatings that deteriorate during the specified warranty period. Warranty does not include deterioration or failure of traffic coating due to unusual weather phenomena, failure of prepared and treated substrate, formation of new substrate cracks exceeding 1/16 inch (1.6 mm) in width, fire, vandalism, or abuse by snowplow, maintenance equipment, and truck traffic.
 a. Deterioration of traffic coatings includes the following:
 1) Adhesive or cohesive failures.
 2) Abrasion or tearing failures.
 3) Surface crazing or spalling.
 4) Intrusion of water, oils, gasoline, grease, salt, deicer chemicals, or acids into deck substrate.
 b. Warranty Period: Five years from date of Substantial Completion.

1.2 PRODUCTS
A. Materials
2. Material Compatibility: Provide primers; base, intermediate, and topcoats; and miscellaneous materials that are compatible with one another and with substrate under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.
3. VOC Content: Provide traffic coatings and pavement marking paints, for use inside the weatherproofing system, with VOC content of 150 g/L when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Traffic Coating
1. Primer: Manufacturer's standard factory-formulated primer recommended for substrate and conditions indicated.
 a. Material: Epoxy OR Urethane, as directed.
2. Preparatory and Base Coats: Single- or multicomponent, aromatic liquid urethane elastomer.
3. Intermediate Coat: Single- or multicomponent, aromatic liquid urethane elastomer OR Single- or multicomponent, aliphatic liquid urethane elastomer OR Liquid epoxy, as directed.
4. Topcoat: Single- or multicomponent, aromatic liquid urethane elastomer OR Single- or multicomponent, aliphatic liquid urethane elastomer OR Single- or multicomponent, aromatic liquid urethane elastomer with UV inhibitors OR Liquid epoxy, as directed.
 a. Color: As selected by the Owner from manufacturer's full range.
5. Aggregate: Uniformly graded, washed silicon carbide sand OR Uniformly graded, washed silica sand OR Uniformly graded, washed flint shot silica OR Walnut shell granules OR Aluminum-oxide grit, as directed, of particle sizes, shape, and minimum hardness recommended in writing by traffic coating manufacturer.
 a. Spreading Rate: As recommended by manufacturer for substrate and service conditions indicated, but not less than the following:
1) Intermediate Coat: 8 to 10 lb/100 sq. ft. (3.6 to 4.5 kg/10 sq. m) OR To refusal, as directed.
2) Topcoat: 8 to 10 lb/100 sq. ft. (3.6 to 4.5 kg/10 sq. m) OR As required to achieve slip-resistant finish, as directed.

C. Miscellaneous Materials
1. Joint Sealants: As specified in Division 07 Section "Joint Sealants".
2. Sheet Flashing: Nonstaining.
 a. Minimum Thickness: 60 mils (1.5 mm) OR 50 mils (1.3 mm), as directed.
 b. Material: Sheet material recommended in writing by traffic coating manufacturer OR Uncured neoprene sheet OR Cured neoprene sheet, as directed.
3. Adhesive: Contact adhesive recommended in writing by traffic coating manufacturer.
4. Reinforcing Strip: Fiberglass mesh recommended in writing by traffic coating manufacturer.

D. Pavement Markings
1. Pavement-Marking Paint: Alkyd-resin ready mixed, complying with AASHTO M 248, Type S OR N OR F, as directed.
 a. Color: White OR Yellow OR As indicated, as directed.
 1) Use blue for spaces accessible to people with disabilities.
2. Pavement-Marking Paint: Latex, waterborne emulsion, lead and chromate free, ready mixed, complying with FS TT-P-1952, with drying time of less than three OR 45, as directed, minutes.
 a. Color: White OR Yellow OR As indicated, as directed.
 1) Use blue for spaces accessible to people with disabilities.

1.3 EXECUTION

A. Examination
1. Examine substrates, with Installer present, for compliance with requirements and for other conditions affecting performance of traffic coatings.
 a. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance.
 b. Verify compatibility with and suitability of substrates.
 c. Begin coating application only after minimum concrete curing and drying period recommended by traffic coating manufacturer has passed, after unsatisfactory conditions have been corrected, and after surfaces are dry.
 d. Verify that substrates are visibly dry and free of moisture.
 1) Test for moisture vapor transmission by plastic sheet method according to ASTM D 4263.
 2) Test for moisture content by measuring with an electronic moisture meter OR method recommended in writing by manufacturer, as directed.
 e. Application of coating indicates acceptance of surfaces and conditions.

B. Preparation
1. Clean and prepare substrates according to ASTM C 1127 and manufacturer's written recommendations to produce clean, dust-free, dry substrate for traffic coating application.
2. Mask adjoining surfaces not receiving traffic coatings, deck drains, and other deck substrate penetrations to prevent spillage, leaking, and migration of coatings.
3. Concrete Substrates: Mechanically abrade concrete surfaces to a uniform profile according to ASTM D 4259. Do not acid etch.
 a. Remove grease, oil, paints, and other penetrating contaminants from concrete.
 b. Remove concrete fins, ridges, and other projections.
 c. Remove laitance, glaze, efflorescence, curing compounds, concrete hardeners, form-release agents, and other incompatible materials that might affect coating adhesion.
d. Remove remaining loose material to provide a sound surface, and clean surfaces according to ASTM D 4258.

C. Terminations And Penetrations
1. Prepare vertical and horizontal surfaces at terminations and penetrations through traffic coatings and at expansion joints, drains, and sleeves according to ASTM C 1127 and manufacturer's written recommendations.
2. Provide sealant cants at penetrations and at reinforced and nonreinforced, deck-to-wall butt joints.
3. Terminate edges of deck-to-deck expansion joints with preparatory base-coat strip.
4. Install sheet flashings at deck-to-wall expansion and dynamic joints, and bond to deck and wall substrates according to manufacturer's written recommendations.

D. Joint And Crack Treatment
1. Prepare, treat, rout, and fill joints and cracks in substrates according to ASTM C 1127 and manufacturer's written recommendations. Before coating surfaces, remove dust and dirt from joints and cracks according to ASTM D 4258.

E. Traffic Coating Application
1. Apply traffic coating material according to ASTM C 1127 and manufacturer's written recommendations.
 a. Start traffic coating application in presence of manufacturer's technical representative.
 b. Verify that wet film thickness of each component coat complies with requirements every 100 sq. ft. (9 sq. m).
2. Apply traffic coatings to prepared wall terminations and vertical surfaces to height indicated, and omit aggregate on vertical surfaces.
3. Cure traffic coatings according to manufacturer's written recommendations. Prevent contamination and damage during application and curing stages.

F. Pavement Markings
1. Do not apply traffic paint for striping and other markings until traffic coating has cured according to manufacturer's written recommendations.
2. Apply traffic paint for striping and other markings with mechanical equipment to produce uniform straight edges. Apply at manufacturer's recommended rates for a 15-mil- (0.38-mm-) minimum wet film thickness.
3. Spread glass beads uniformly into wet traffic paint at a rate of 6 lb/gal. (0.72 kg/L).

G. Field Quality Control
1. Testing: Engage a qualified testing agency to perform the following field tests and inspections and prepare test reports:
 a. Samples of material delivered to Project site shall be taken, identified, sealed, and certified in presence of Owner and Contractor.
 b. Testing agency shall perform tests for characteristics specified, using applicable referenced testing procedures.
 c. Testing agency shall verify thickness of coatings during traffic coating application.
 d. If test results show traffic coating materials do not comply with requirements, remove noncomplying materials, prepare surfaces, and reapply traffic coatings.
2. Flood Testing: Flood test each deck area for leaks, according to recommendations in ASTM D 5957, after traffic coating has completely cured. Install temporary containment assemblies, plug or dam drains, and flood with potable water.
 a. Flood to an average depth of 2-1/2 inches (65 mm) with a minimum depth of 1 inch (25 mm) and not exceeding a depth of 4 inches (100 mm).
 b. Flood each area for 24 OR 48 OR 72, as directed, hours.
c. After flood testing, repair leaks, repeat flood tests, and make further repairs until traffic coating installation is watertight.
d. Engage an independent testing agency to observe flood testing and examine underside of decks and terminations for evidence of leaks during flood testing.

3. Final Traffic Coating Inspection: Arrange for traffic coating manufacturer's technical personnel to inspect membrane installation on completion.
 a. Notify the Owner or Owner 48 hours in advance of date and time of inspection.

4. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

H. Protecting And Cleaning
1. Protect traffic coatings from damage and wear during remainder of construction period.
2. Clean spillage from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 32 01 11 53b
SECTION 32 01 16 71 - COLD MIX RECYCLING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of cold mix recycling of existing paving and the addition of new materials. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Aggregates:
1. General: Aggregates shall consist of material obtained from milling, or removing and crushing the existing in situ material, and/or new aggregate material as needed.
2. Aggregate Quality and Gradation: Aggregate for bituminous mixture shall be of such size that the material can be spread with a paver to the desired thickness and compacted to meet the specified smoothness, grade, and density requirements. New aggregates shall be approved and be equal to or better than the reclaimed aggregate in quality. Maximum size of new aggregate shall not exceed one-half of the layer thickness and in no case shall the maximum aggregate size exceed 1 inch.

B. Bituminous Materials: Bituminous materials, if required, shall be an emulsified asphalt conforming to ASTM D 977 or ASTM D 2397, grade as required.

C. Job-Mix Formula: The Job-Mix Formula (JMF) for the recycled mixture will be furnished by the Contractor to the Owner. The formula will indicate a definite percentage of water and asphalt to be added to the mixture. The JMF will be allowed an asphalt content tolerance of 0.3 percent. The asphalt content may be adjusted by the Owner to improve paving mixture, without adjustment in contract unit price. When asphalt is added, the optimum asphalt content will be selected to provide the following properties when samples are compacted at 250 F with 75 blows of standard Marshall hammer on each side of the specimen.

<table>
<thead>
<tr>
<th>Property Requirement</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability minimum, pounds</td>
<td>1,800</td>
</tr>
<tr>
<td>Flow maximum, 1/100-inch units</td>
<td>16</td>
</tr>
<tr>
<td>Voids in total mix, percent</td>
<td>3-5</td>
</tr>
<tr>
<td>Voids filled with bitumen, percent</td>
<td>70-80</td>
</tr>
</tbody>
</table>

The water content will be selected to provide maximum density when samples are prepared at the optimum asphalt content and compacted with 75 blows of Marshall hammer at ambient temperature. When no asphalt binder is added to the mixture, the water content will be selected by the Owner to provide maximum density.

1.3 EXECUTION
A. Preparation of Bituminous Mixtures: The required amount of bituminous material for each batch, or calibrated amount of continuous mixing, shall be introduced into the mixer. Aggregates, asphalt emulsion, and water shall be mixed for 35 seconds or longer, as necessary, to thoroughly coat all particles with bituminous material. When longer mixing time is necessary, additional mixing time shall be determined by the Owner.

B. Conditioning of Existing Surface: Ruts or soft yielding spots that appear in the existing pavement areas and deviations of surface from requirements specified shall be corrected. An asphalt tack coat shall be applied to all contact surfaces in advance of the recycled overlayment. The asphalt tack shall be placed at an asphalt residue coverage rate of 0.05 gal/sq. yd.

C. Placing:
1. Layer Thickness and Curing: Each layer of compacted mixture shall be no more than 2-1/2 inches in thickness; each layer of bituminous mixture shall be allowed to cure for at least 5 days before placing a succeeding layer.
2. Compaction of Mixture: Bituminous mixtures shall be rolled until all roller marks are eliminated and a density of at least 86 percent of the theoretical maximum density has been obtained when tested in accordance with MIL-STD-620, Method 101 or ASTM D 2041. When bituminous material is not added to the cold recycled mixture, the material shall be compacted to 100 percent of density determined by MIL-STD-621, Method 100, compaction effort designation CE-55.
3. Joints: Longitudinal joints shall be offset at least 1 foot from existing joints. Transverse joints shall be offset at least 2 feet from existing transverse joints.
4. Surface Smoothness: After final rolling, the pavement surface shall not vary in excess of 1/8 inch from a straightedge laid on the surface.

END OF SECTION 32 01 16 71
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 01 16 71</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 01 16 73</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 01 16 73</td>
<td>32 01 16 71</td>
<td>Cold Mix Recycling</td>
</tr>
</tbody>
</table>
SECTION 32 01 17 61 - CRACK SEALING OF BITUMINOUS PAVEMENTS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for crack sealing of bituminous pavements. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Manufacturer's Recommendations: Where installation procedures, or any part thereof, are required to be in accordance with the manufacturer's recommendations, printed copies of these recommendations shall be submitted to the Owner. Installation of the material will not be allowed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
2. Schedules/Construction Equipment List: List of proposed equipment to be used in performance of construction work including descriptive data shall be submitted to the Owner.
3. Samples: Samples of the materials (sealant, primer if required, and backup material), in sufficient quantity for testing and approval shall be submitted to the Owner. No material will be allowed to be used until it has been approved.

C. Safety: Joint sealant shall not be placed within 25 feet of any liquid oxygen (LOX) equipment, LOX storage, or LOX piping. Joints in this area shall be thoroughly cleaned and left unsealed.

D. Test Requirements: The joint sealant and backup or separating material shall be tested for conformance with the referenced applicable material specification. Testing of the materials shall be performed in an approved independent laboratory and certified copies of the test reports shall be submitted and approved prior to the use of the materials at the job site. Samples will be retained by the Owner for possible future testing should the materials appear defective during or after application. Conformance with the requirements of the laboratory tests specified will not constitute final acceptance of the materials. Final acceptance will be based on the performance of the in-place materials.

E. Equipment: Machines, tools, and equipment used in the performance of the work required by this section shall be approved before the work is started and shall be maintained in satisfactory condition at all times.

1.2 PRODUCTS

A. Materials
5. Fine Aggregate: Natural sand or crusher dust having a maximum size of not more than 1/8 inch and be free of clay or organic-matter.

1.3 EXECUTION
A. Preparation:
1. All cracks to be sealed shall be cleaned of dirt and debris, and moisture shall be removed.
2. Crack Cleaning Equipment shall consist of a portable air compressor with hose and nozzles for directing air directly into cracks and stiff bristle brooms.
3. Heating Equipment for Liquid Asphalt shall be mobile and shall be equipped with an agitating device for stirring material during heating, a thermometer, regulating equipment for heat control, and a gravity-type draw-off valve.
4. Heating Equipment for Sealing Compound: Unless otherwise required by the manufacturer's recommendations, the equipment shall be mobile and shall consist of double-boiler, agitator-type kettles with oil medium in the outer space for heat transfer. The applicator unit shall be so designed that the sealant will circulate through the delivery hose and return to the inner kettle when not sealing cracks.
5. Application Equipment shall have a spout or nozzle of such size that the sealing material will be placed in the cracks without entrapping air in cracks or spreading material on adjacent pavement surface.

B. Installation:
1. Backer Rod: Install backer in accordance with manufacturer's instructions where required under sealing compound.
2. Sealing Compound: All cracks 1/8 inch wide and wider shall be sealed. The application temperature for sealing compound shall comply with ASTM C 1193. Cracks 1/2 inch wide and wider shall be filled with a slurry of fine sand and an emulsified asphalt or liquid asphalt. After the slurry has cured, cracks shall be sealed with liquid asphalt or emulsified asphalt and lightly sanded.
3. Liquid and Emulsified Asphalt Sealer: The temperature shall be varied so that it flows freely into cracks and completely fills cracks without entrapping air. Cracks shall be free of moisture before filling and shall be filled slightly above the pavement surface. When excess sealer has been removed, the sealer shall be covered with fine sand.
4. Traffic Control: Traffic will not be permitted over sealed cracks until the sealer has cooled so that it is not picked up by vehicle tires. The Contractor will be responsible for all barricades and flagmen necessary to control traffic.

END OF SECTION 32 01 17 61
SECTION 32 01 17 61a - SPRAY APPLICATIONS, SEAL COATS, AND SURFACE TREATMENTS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for the spray applications, seal coats, and surface treatments of asphalt concrete pavements. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Bituminous Material: Bituminous material shall be liquid asphalt complying with ASTM D 2028, Grade RC-25O, or tar complying with ASTM D 490, Grade RT-6.

B. Aggregate: Aggregates shall consist of crushed stone, crushed gravel, or crushed slag. The moisture content of the aggregate shall be such that the aggregate will be readily coated with the bituminous material. Aggregate gradations shall be in compliance with ASTM C 136.

C. Construction Equipment
1. Bituminous Distributor shall be designed and equipped to distribute the bituminous material uniformly at even heat on variable widths of surface at readily determined and controlled rates and pressures recommended by the manufacturer and with an allowable variation from any specified rate not exceeding 5 percent.
2. Single-Pass Surface Treatment Machine shall be capable of distributing the bituminous material and aggregates uniformly in controlled amounts in a single-pass operation over the surface to be sealed.
3. Heating Equipment for Storage Tanks shall consist of steam coils, hot oil coils, or electrical coils. If steam or hot oil coils are used, the coils must be so designed and maintained that the bituminous material cannot become contaminated.
4. Power Rollers shall be the self-propelled tandem and three-wheel type rollers, weighing not less than 5 tons and shall be suitable for rolling bituminous pavements.
5. Self-Propelled Pneumatic-Tired rollers shall have a total compacting width of not less than 60 inches. The gross weight shall be adjustable within the ranges of 200 to 350 lb/in. of compacting width.
6. Spreading Equipment: Aggregate spreading equipment shall be adjustable and capable of spreading aggregate at controlled amounts per square yard.
7. Drags: Broom drags shall consist of brooms mounted on a frame, designed to spread fine aggregate uniformly over the surface of a bituminous pavement. Towing equipment shall have pneumatic tires.
8. Brooms and Blowers shall be of the power type and shall be suitable for cleaning surfaces of bituminous pavements.

1.3 EXECUTION

A. Installation
1. Spreading Aggregate: Application of seal aggregate shall immediately follow the application of bituminous material, and in no case shall the time to application exceed 15 minutes.

2. Brooming and Rolling: Begin the rolling operations immediately following the application of cover aggregate. Rolling shall be accomplished with pneumatic-tired rollers; steel-wheeled rollers shall be used in a supplementary capacity only. All surplus aggregate shall be swept off the surface and removed not less than 26 hours or more than four days after rolling is completed.
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 01 17 61</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 01 17 63</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
</tbody>
</table>
SECTION 32 01 26 71 - GRINDING/GROOVING PAVEMENT

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of grinding/grooving pavement. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.

1.2 PRODUCTS - Not Used

1.3 EXECUTION

A. Grinding: This covers grinding asphalt concrete or portland cement concrete pavement and roadway surfaces of structures as shown on the plans and as specified in these specifications and the special provisions
1. Grinding shall be performed with abrasive grinding equipment utilizing diamond cutting blades.
2. Existing portland cement concrete pavement not constructed as part of the project shall be ground as follows:
 a. Grinding shall be performed so that the pavement surface on both sides of all transverse joints and cracks has essentially the same depth of texture and does not vary from a true plane enough to permit a 1.9 mm thick shim 75 mm wide to pass under a one-meter straightedge adjacent to either side of the joint or crack when the straightedge is laid on the pavement parallel to centerline with its midpoint at the joint or crack. After grinding has been completed, the pavement shall conform to the straightedge and profile requirements specified in paving specification, paragraph “Final Finishing,” except that pavement on tangent alignment and on horizontal curves of any radius shall have a profile index of 19 mm or less per 0.1-km.
 b. Abnormally depressed areas due to subsidence or other localized causes will be excluded from testing with the profilograph and 3.6-m±0.06-m straightedge. The accumulated total of the excluded areas shall not exceed 5 percent of the total area to be ground. Profilograph testing shall end 8 m prior to excluded areas and shall resume 8 m following the excluded areas.
3. Existing asphalt concrete pavement not constructed as part of the project shall be ground so that the finished surface shall not vary from a true plane enough to permit a 3-mm thick shim 75 mm wide to pass under a straightedge 3.6 m±0.06-m long when the straightedge is laid on the finished surface parallel with the centerline. The transverse slope of the finished surface shall be uniform to a degree such that a 6 mm thick shim 75 mm wide will not pass under a straightedge 3.6 m±0.06-m long when the straightedge is laid on the finished surface in a direction transverse to the centerline and extending from edge to edge of a 3.6-m traffic lane.
4. Ground areas on structures, approach slabs and the adjacent 15 m of approach pavement shall conform to the provisions for smoothness and concrete cover over reinforcing steel.
5. Ground surfaces shall not be smooth or polished and, except as otherwise specified, shall have a coefficient of friction of not less than 0.30.
6. Residue from grinding operations shall be picked up by means of a vacuum attachment to the grinding machine and shall not be allowed to flow across the pavement nor be left on the surface.
of the pavement. Residue from grinding portland cement concrete pavement shall be disposed of as directed. Residue from grinding asphalt concrete shall be disposed of outside the highway right of way.

7. At the option of the Contractor, the residue from grinding portland cement concrete pavement may be disposed of as directed by the authorities having jurisdiction over the site. A copy of the approval shall be delivered to the Engineer before disposing of residue at the site.

8. The noise level created by the combined grinding operation shall not exceed 86 dBA at a distance of 15 m at right angles to the direction of travel.

B. Grooving: This work shall consist of grooving the surface of asphalt concrete or Portland cement concrete pavement and bridge decks as shown on the plans and as specified in these specifications and the special provisions

1. Grooved areas shall begin and end at lines normal to the pavement center line and shall be centered within the lane width. If new concrete pavement is grooved, the grooving in any lane shall cover the full lane width.

2. Grooving blades shall be 2.41 mm ± 0.13-mm wide and shall be spaced 19 mm on centers. The grooves shall be cut not less than 3 mm nor more than 7 mm deep. The grooves on bridge decks shall be cut not less than 3 mm nor more than 5 mm deep. Grooves over inductive loop detectors shall be cut not less than 2 mm nor more than 3 mm deep.

3. At the beginning of each work shift, all grooving machines shall be equipped with a full complement of grooving blades that are capable of cutting grooves of the specified width, depth and spacing.

4. If during the course of work a single grooving blade on any individual grooving machine becomes incapable of cutting a groove, work will be permitted to continue for the remainder of the work shift, and the Contractor will not be required to otherwise cut the groove omitted because of the failed blade. Should 2 or more grooving blades on any individual grooving machine become incapable of cutting grooves the Contractor shall either:
 a. Discontinue work with the affected grooving machine within 15 m of the location where more than one blade became incapable, in which event the Contractor will not be required to otherwise cut the grooves omitted because of the failed blades; OR
 b. Continue work with the affected grooving machine for the remainder of the work shift and by other means cut all grooves omitted, including grooves omitted because a single blade was incapable, by the affected grooving machine within that work shift. The omitted grooves shall be cut before any of the grooving work performed during the time the grooves were omitted will be accepted.

5. The actual grooved area of any selected 0.6-m by 30 m longitudinal area of pavement specified to be grooved shall be not less than 95 percent of the selected area. Grooves which are omitted as permitted for blades which become incapable will be measured as being actually grooved. No area will be measured until omitted grooves, which are required to be cut before the area is accepted, have been cut. Except as provided for omitted grooves due to an incapable blade, any area within the selected area not grooved shall be due only to irregularities in the pavement surface and for no other reason.

6. Residue from grooving operations shall be picked up by means of a vacuum attachment to the grooving machine and shall not be allowed to flow across the pavement nor be left on the surface of the pavement. Residue from grooving portland cement concrete pavement shall be disposed of as directed. Residue from grooving asphalt concrete shall be disposed of outside the highway right of way.

7. At the option of the Contractor, the residue from grooving portland cement concrete pavement may be disposed of as directed by the authorities having jurisdiction over the site. A copy of the approval shall be delivered to the Engineer before disposing of residue at the site.

8. The noise level created by the combined grooving operation shall not exceed 86 dBA at a distance of 15 m at right angles to the direction of travel.
C. Highway or Street Grooving: AASHTO recommends the following groove specifications: 2.4 mm wide; depth of 3.2 to 4.8 mm, and a center-to-center spacing of 19.1 mm (0.75 inches) (7). The center 10-foot portion of a 12-foot lane is typically grooved, leaving a 1-foot strip ungrooved at the edge of each lane.

D. Boat Ramp Grooving: Grooves shall be non-skid V-grooves spaced 2 inches on center, 1/2-inch deep.

E. Runway Grooving
1. General
 a. The grooving dimensions shall be as follows:
 1) Depth - One-quarter (1/4) inch ± one sixteenth (1/16) inch
 2) Width - One-quarter (1/4) inch ± one sixteenth (1/16) inch
 3) Center to center - One and one-half (1 1/2) inch ± one eight (1/8) inch
 b. Grooving shall not begin until new pavement has properly cooled/cured and permission is given.
 c. In no case shall final painted pavement markings be applied prior to grooving.

2. The pavement must be grooved by approved diamond bladed saw-cutting equipment. Variations in the grooving contour will not be permitted without approval. All reasonable precautions shall be taken to avoid breaking or chipping the pavement surfaces between grooves. Excessive spalling of the grooved edges will not be permitted.

3. The Contractor shall groove bituminous concrete and portland cement concrete pavements according to the following specifications (from FAA Advisory Circular 150/5320-12B, Section IV):
 a. The depth of 90 percent or more of the groove shall not be less than 1/4 inch.
 b. The grooves shall be continuous for the entire runway length and transverse (perpendicular) to the direction of aircraft landing and takeoff operations.
 c. The grooves shall be continued to the end of the runway where the concrete meets the asphalt.
 d. The grooves shall not vary more than 3 inches in alignment for 75 feet, allowing for realignment every 500 feet.
 e. Grooves shall not be closer than 3 inches or more than 9 inches from transverse joints in concrete pavements.
 f. Grooving through longitudinal or diagonal saw kerfs where lighting cables are installed shall be avoided. Grooves may be continued through longitudinal construction joints.
 g. Grooves shall be sawed no closer than 6 inches and no more than 18 inches from in-pavement light fixtures.

4. Cleanup is extremely important and should be continuous throughout the grooving operations. Accumulation of debris resulting from the grooving operations shall be cleaned from the grooves and removed from the pavement by air jets, high pressure water streams, or other approved methods, after each grooving operation at hourly intervals. The Contractor shall provide water for cleanup operations. The waste material shall not be flushed into the storm or sanitary sewer system. The waste material shall not be allowed to drain onto the shoulders or left on the runway surface in order to prevent foreign object damage.

END OF SECTION 32 01 26 71
SECTION 32 11 16 00 - CRUSHED STONE PAVING

1.1 GENERAL

A. Description Of Work

1. This specification covers the furnishing and installation of crushed stone paving. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

1.2 PRODUCTS

A. Aggregates: Aggregates shall consist of crushed stone or slag, crushed gravel, angular sand, or other approved materials. Aggregates shall be durable, sound, and free from foreign material.

1. Coarse Aggregates, consisting of angular fragments of uniform density and quality, shall have a percentage of wear not to exceed 50 percent after 500 revolutions when tested in accordance with ASTM C131. The amount of flat and elongated particles (length to width greater than 3 to 1) shall not exceed 30 percent.

2. Crushed Gravel shall be manufactured from gravel particles with the following gradation:

- 100% passing 2” sieve
- 25 - 60% passing 1/4” sieve
- 5 - 40% passing #40 sieve
- 0 - 10% #200 sieve

3. Crushed Stone shall contain at least 50 percent by weight of crushed pieces having two or more freshly fractured faces for each range of sizes.

4. Slag shall be an air-cooled blast-furnace product having a dry weight of not less than 65 pcf.

B. Binder Material shall consist of screenings, angular sand, or other finely divided mineral matter processed or naturally combined with the coarse aggregate.

1.3 EXECUTION

A. Installation:

1. Mixing and Placing: Materials shall be mixed in such a manner as to obtain a uniform stabilized-aggregate material and a uniform optimum water content for compaction. Mixing and placing procedures shall produce true grades, minimize segregation and degradation, optimize water content, and ensure a satisfactory base course.

2. Compaction: Each layer of stabilized-aggregate paving shall be compacted. Water content shall be maintained at optimum. Areas inaccessible to the rollers shall be compacted, with mechanical tampers and shall be shaped and finished by hand methods.

3. Layer Thickness: No layer shall be in excess of 8 inches nor less than 3 inches in compacted thickness.

4. Proof Rolling: Materials in paving or underlying materials that produce unsatisfactory results by rolling shall be removed and replaced with satisfactory materials and recompacted.

5. Edges of Paving: Approved materials shall be placed along edges of stabilized-aggregate paving course in such quantities as will compact to thickness of the course being constructed, allowing at least a 1-foot width of the shoulder to be rolled and compacted simultaneously with rolling and compacting of each layer of the paving course.

6. Finishing: Finished surface shall be of uniform grade and texture.

7. Thickness Control: Compacted thickness of the stabilized paving course shall be within 1/2 inch of the thickness required.

July 2012

Crushed Stone Paving

County of Santa Clara Roads and Airports Department,

RAD-2012-01
END OF SECTION 32 11 16 00
SECTION 32 11 16 00a - CRUSHED STONE

1.1 GENERAL

A. Description Of Work
1. The work under this section consists of furnishing, placing and compacting crushed stone where called for and as detailed, in conformance with lines, grades and typical as follows or as directed by the Owner.

1.2 PRODUCTS

A. Materials
1. Material shall consist of clean, coating free, durable, sharp angled fragments of crushed stone, crushed ledge rock, or blends thereof that conform to the specific requirements of the following table. Shale will not be acceptable.
2. Crushed Stone used in Absorption Beds shall be washed and free of fines.
3. Gradation: Crushed stone sizes shall meet the gradation requirements of Table 1-1.

<table>
<thead>
<tr>
<th>TABLE 1-1 (1) GRADATION OF CRUSHED STONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size Designation</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Scree-</td>
</tr>
<tr>
<td>1B</td>
</tr>
<tr>
<td>1A</td>
</tr>
<tr>
<td>1-St</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3A</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4A</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

a. Percentage by weight passing the following square openings.
b. Screenings shall include all of the fine material passing a 1/4-inch screen.
4. All crushing plants shall be fitted with tailing chutes so that no aggregate will reach the bins other than that which passes through the proper screens.
B. Soundness: Material furnished under this item shall be substantially free of shale or other soft, poor durability particles. A visual inspection of particle composition by the Owner will generally be the basis for acceptance. Where the State elects to test for this requirement, a Magnesium Sulfate Soundness Loss exceeding 35 percent will be cause for rejection.

C. Contamination: Contamination of the crushed stone with any deleterious material, such as silt, clay, mud, ice, snow or organic materials, through any cause whatsoever, shall be corrected by the Contractor by excavation and replacement of the material in the affected areas.

D. Sampling: Samples and certified gradations shall be furnished by the Contractor to the Owner and approval of these samples must be received prior to delivery or placement of the material.

1.3 EXECUTION

A. Compaction: All material shall be placed in uniform horizontal layers not exceeding 6-inches thickness before compaction. All portions of each layer shall be mechanically compacted to the satisfaction of the Owner. Compaction equipment shall be approved by the Owner.
SECTION 32 11 16 00b - SELECT GRAVEL

1.1 GENERAL

A. Description Of Work
1. The work under this section consists of furnishing, placing and compacting select gravel where called for and as detailed, in conformance with lines, grades and typical sections as provided or directed by the Owner.

1.2 PRODUCTS

A. Materials
1. Material shall consist of clean, durable gravel or crushed stone free from coating.
2. Select Gravel used for stone paving shall be manufactured from crushed stone and contain no gravel.
3. Gradation of gravel or stone shall be as follows with percent passing calculated by weight:

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>100</td>
</tr>
<tr>
<td>1/4"</td>
<td>30 - 65</td>
</tr>
<tr>
<td>No. 40</td>
<td>5 - 40</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 10</td>
</tr>
</tbody>
</table>

1.3 EXECUTION

A. Soundness: Materials furnished under this item shall be substantially free of shale, organic or other soft, poor durability particles. A visual inspection of particle composition by the Owner will generally be the basis for acceptance. Where the Owner elects to test for this requirement, a Magnesium Sulfate Soundness Loss exceeding 35 percent will be cause for rejection.

B. Contamination: Contamination of the Select Gravel with any deleterious material, such as silt, clay, mud, ice, snow or organic material, through any cause whatsoever, shall be corrected by the Contractor by excavation and replacement of the material in the affected area.

C. Sampling: Samples and certified gradations shall be furnished by the Contractor to the Owner and approval of these samples must be received prior to delivery or placement of the material.

D. Compaction:
1. All material shall be placed in uniform horizontal layers not exceeding 6-inches thickness before compaction. All portions of each layer shall be mechanically compacted to the percentage of the Standard Proctor Maximum Density (AASHTO T-99) as follows, unless noted otherwise. Compaction equipment approval shall be made by the Owner.
2. Density determination.
 a. Structures (entire area within 10 feet outside perimeter) 95%
 b. Building Slabs and Steps: 95%
 c. Lawn or Unpaved Areas: 90%
 d. Pavements and Walkways: 95%
 e. Pipes and Tunnels: 95%
 f. Pipe Bedding: 100%
END OF SECTION 32 11 16 00b
SECTION 32 11 16 00c - BITUMINOUS PAVING-REPAIR AND RESURFACING

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of materials repair and resurfacing of bituminous pavements. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
 1. Reports: Copies of test results, within 24 hours after completion of tests.
 2. Waybills and Delivery Tickets: Copies of waybills or delivery tickets, during the progress of the work.

1.2 PRODUCTS:

A. Asphaltic Concrete:
 1. Hot-Mixed, Hot-Mixed Asphaltic Concrete and Emulsified asphalt shall comply with requirements of ASTM D 3515.
 2. Plant-Mixed, Stockpiled Asphalt Cold Mixes shall comply with the requirements of Asphalt Institute Specification PM-2.

B. Bituminous Prime: Bituminous primer shall comply with ASTM D 2027.

C. Base Course: Base course material shall comply with State highway department specification for dense-graded, high-quality material.

D. Bituminous Tack Coat: Bituminous tack coat shall comply with ASTM D 2027.

1.3 EXECUTION:

A. Preparation of Areas for Patching:
 1. Pot Holes: Trim the perimeter of each hole to a vertical face with a carborundum blade in a square or rectangular pattern at least 18 inches from ragged edge. Remove material to a depth that provides a uniform well-compacted bottom surface. Remove all loose material resulting from trimming or otherwise existing in the hole. If subbase is disturbed, reestablish in a like manner to adjacent substrate. Areas to be repaired shall be dry before repair is started.
 2. Alligator-Cracked and Rutted Areas: The pavement shall be sawed or cut with pavement breakers to a smooth vertical face 18 inches outside of the alligator-cracked area. Unsatisfactory material shall be removed in a manner not to disturb the sides of the excavated area.
 3. Slippage Areas: Saw a rectangular area around the slippage area that overlaps into the well-bonded material by at least 18 inches. The depth of the saw cut shall be equal to the thickness of the layer of material that is slipping. The surface where slipping is occurring shall be broomed clean and all loose material removed.

B. Installation:
 1. Application Temperatures: Application temperatures for all asphalt material shall comply with provisions of the Asphalt Institute Publications and the applicable ASTM Standards.
2. **Base Course:** Place base course material in layers not exceeding a compacted thickness of 6 inches. After placing, compact each layer by mechanical compactors to a density of not less than the density of the corresponding layer of the adjacent pavement structure.

3. **Prime Coat:** Prime base course with MC-70 liquid asphalt at a rate of 0.20 to 0.30 gallon per sq. yd. Bolt excess prime with sand before the surfacing material is applied.

4. **Tack Coat:** Give the edges of existing asphaltic concrete or surfaces of Portland cement concrete and asphaltic concrete a tack coat of MC-70 liquid asphalt at a rate of 0.05 to 0.15 gallon per sq. yd. Allow the material to cure before placing the surfacing material.

5. **Hot-Mixed Asphaltic Concrete:** Place the material in layers not exceeding 2-1/2 inches in thickness and compact to a density equal to the density of the adjacent asphaltic concrete.

6. **Stockpiled Cold Mixes:** The compacted thickness of each layer of material shall not exceed 2 inches. Before compaction, the material shall be allowed to aerate, if necessary, until the proper amount of cohesion has developed to obtain adequate compaction. When more than one layer is used, each layer shall be thoroughly cured before the succeeding layer is placed.

END OF SECTION 32 11 16 00c
SECTION 32 11 16 00d - PAVEMENT JOINT SEALANTS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for pavement joint sealants. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Cold-applied joint sealants.
 b. Cold-applied, jet-fuel-resistant joint sealants.
 c. Hot-applied joint sealants.
 d. Hot-applied, jet-fuel-resistant joint sealants.

C. Preconstruction Testing
1. Preconstruction Compatibility and Adhesion Testing: Submit to joint-sealant manufacturers, eight, Samples of materials that will contact or affect joint sealants. Use ASTM C 1087 OR manufacturer's standard test method, as directed, to determine whether priming and other specific joint-preparation techniques are required to obtain rapid, optimum adhesion of joint sealants to joint substrates.

D. Submittals
1. Product Data: For each joint-sealant product indicated.
2. Samples: For each kind and color of joint sealant required.
3. Pavement-Joint-Sealant Schedule: Include the following information:
 a. Joint-sealant application, joint location, and designation.
 b. Joint-sealant manufacturer and product name.
 c. Joint-sealant formulation.
 d. Joint-sealant color.
4. Product certificates.
5. Product test reports.
6. Preconstruction compatibility and adhesion test reports.

E. Quality Assurance
1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021.
2. Preinstallation Conference: Conduct conference at Project site.

F. Project Conditions
1. Do not proceed with installation of joint sealants under the following conditions:
 a. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F (5 deg C).
 b. When joint substrates are wet.
 c. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 d. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.
1.2 PRODUCTS

A. Materials
1. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer based on testing and field experience.
2. Colors of Exposed Joint Sealants: As selected from manufacturer's full range.

B. Cold-Applied Joint Sealants
1. Single-Component, Nonsag, Silicone Joint Sealant for Concrete: ASTM D 5893, Type NS.
2. Single-Component, Self-Leveling, Silicone Joint Sealant for Concrete: ASTM D 5893, Type SL.
3. Multicomponent, Pourable, Traffic-Grade, Urethane Joint Sealant for Concrete: ASTM C 920, Type M, Grade P, Class 25, for Use T.

C. Cold-Applied, Jet-Fuel-Resistant Joint Sealants
2. Jet-Fuel-Resistant, Multicomponent, Pourable, Traffic-Grade, Modified-Urethane Joint Sealant for Concrete: ASTM C 920, Type M, Grade P, Class 12-1/2, for Use T.

D. Hot-Applied Joint Sealants

E. Hot-Applied, Jet-Fuel-Resistant Joint Sealants

F. Joint-Sealant Backer Materials
1. General: Provide joint-sealant backer materials that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by joint-sealant manufacturer based on field experience and laboratory testing.
2. For use in joints such as contraction joints cut partially through paving material:
 a. Round Backer Rods for Cold- and Hot-Applied Joint Sealants: ASTM D 5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.
 b. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D 5249, Type 3, of diameter and density required to control joint-sealant depth and prevent bottom-side adhesion of sealant.
3. For use in joints such as expansion joints extending through the full depth of the pavement:
 a. Backer Strips for Cold- and Hot-Applied Joint Sealants: ASTM D 5249; Type 2; of thickness and width required to control joint-sealant depth, prevent bottom-side adhesion of sealant, and fill remainder of joint opening under sealant.

G. Primers
1. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
1.3 EXECUTION

A. Installation Of Joint Sealants
 1. General: Comply with joint-sealant manufacturer's written installation instructions for products
 and applications indicated unless more stringent requirements apply.
 2. Cleaning of Joints: Clean out joints immediately before installing joint sealants.
 3. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of
 joint sealants as applicable to materials, applications, and conditions indicated.
 4. Install joint-sealant backings of kind indicated to support joint sealants during application and at
 position required to produce cross-sectional shapes and depths of installed sealants relative to
 joint widths that allow optimum sealant movement capability.
 a. Do not leave gaps between ends of joint-sealant backings.
 b. Do not stretch, twist, puncture, or tear joint-sealant backings.
 c. Remove absorbent joint-sealant backings that have become wet before sealant application
 and replace them with dry materials.
 5. Install joint sealants using proven techniques that comply with the following and at the same time
 backings are installed:
 a. Place joint sealants so they directly contact and fully wet joint substrates.
 b. Completely fill recesses in each joint configuration.
 c. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow
 optimum sealant movement capability.
 6. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning
 or curing begins, tool sealants according to the following requirements to form smooth, uniform
 beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of
 sealant with sides of joint:
 a. Remove excess joint sealant from surfaces adjacent to joints.
 b. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do
 not discolor sealants or adjacent surfaces.
 7. Provide joint configuration to comply with joint-sealant manufacturer's written instructions unless
 otherwise indicated.

B. Cleaning
 1. Clean off excess joint sealant or sealant smears adjacent to joints as the Work progresses, by
 methods and with cleaning materials approved in writing by manufacturers of joint sealants and of
 products in which joints occur.

C. Protection
 1. Protect joint sealants, during and after curing period, from contact with contaminating substances
 and from damage resulting from construction operations or other causes so sealants are without
 deterioration or damage at time of Substantial Completion. If, despite such protection, damage or
 deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and
 replace with joint sealant so installations in repaired areas are indistinguishable from the original
 work.

END OF SECTION 32 11 16 00d
SECTION 32 12 13 13 - ASPHALTIC CONCRETE OVERLAYS

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of asphaltic concrete overlays. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
 1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Asphalt Cement: The asphalt cement shall comply with ASTM D 946 penetration grade 85-100 requirements and shall show a negative spot test when tested in compliance with AASHTO T 102.

C. Test Properties: The bituminous mixture shall meet the following requirements when tested in compliance with MIL-STD 620.

 Stability minimum, lb: 500
 Flow maximum, 1/100-in. units: 20
 Voids total mix, %: 3-5
 Voids filled with bitumen, %: 75-85

1.3 EXECUTION

A. Preparation of Existing Surface: The Contractor shall raise and reset all structures such as manhole frames, valve boxes, drainage structures, etc., to meet the required grade. An asphalt tack coat shall be applied to all contact surfaces in advance of the asphalt concrete overlay placement. The asphalt tack shall be placed at an asphalt residue coverage rate of 0.05 gal/sq yd.

B. Installation:
 1. Joints: Longitudinal joints of the overlay shall be offset at least 1 foot from existing joints. Transverse joints shall be offset at least 2 feet from existing transverse joints.
 2. All Asphalt Concrete Mixture and Pavement that are contaminated, damaged, or defective shall be removed and replaced by the Contractor. Skin patching of rolled pavement will not be permitted.
 3. Compaction of Mixture: The asphalt concrete mixture shall be rolled until a density of not less than 95 percent and not more than 100 percent of laboratory compacted specimen is obtained.
 4. Surface Smoothness: After final rolling, the pavement surface shall not vary in excess of 1/8 inch from a 10-foot straightedge laid on the surface.

END OF SECTION 32 12 13 13
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 12 13 13</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 12 13 13</td>
<td>32 11 16 00c</td>
<td>Bituminous Paving-Repair And Resurfacing</td>
</tr>
<tr>
<td>32 12 13 19</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 12 13 19</td>
<td>32 11 16 00c</td>
<td>Bituminous Paving-Repair And Resurfacing</td>
</tr>
<tr>
<td>32 12 13 13</td>
<td>32 12 13 13</td>
<td>Asphaltic Concrete Overlays</td>
</tr>
<tr>
<td>32 12 16 13</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 12 16 13</td>
<td>32 11 16 00c</td>
<td>Bituminous Paving-Repair And Resurfacing</td>
</tr>
<tr>
<td>32 12 16 13</td>
<td>32 11 16 00d</td>
<td>Pavement Joint Sealants</td>
</tr>
<tr>
<td>32 12 16 13</td>
<td>32 12 13 13</td>
<td>Asphaltic Concrete Overlays</td>
</tr>
<tr>
<td>32 12 16 39</td>
<td>32 01 17 61a</td>
<td>Spray Applications, Seal Coats, And Surface Treatments</td>
</tr>
<tr>
<td>32 12 33 00</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 12 33 00</td>
<td>32 11 16 00c</td>
<td>Bituminous Paving-Repair And Resurfacing</td>
</tr>
<tr>
<td>32 12 36 00</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 12 36 00</td>
<td>32 01 17 61</td>
<td>Crack Sealing Of Bituminous Pavements</td>
</tr>
<tr>
<td>32 12 36 00</td>
<td>32 01 17 61a</td>
<td>Spray Applications, Seal Coats, And Surface Treatments</td>
</tr>
<tr>
<td>32 12 73 00</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
</tbody>
</table>
SECTION 32 13 13 00 - ROLLER COMPACTED CONCRETE PAVEMENT

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of roller compacted concrete pavement. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
 1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Cementitious Materials:
 1. Portland cement shall conform to ASTM C 150, Type I. Low alkali is to be used with aggregates when directed. In lieu of low-alkali cement, the Contractor may use a combination of Portland cement that does not meet the low-alkali requirement with a suitable pozzolan or ground granulated blast-furnace slag (GGBFS) provided the following requirement is met. The expansion of the proposed combination shall be equal to or less than the expansion of a low-alkali cement meeting the requirements of ASTM C 150 when tested in conformance with ASTM C 441. These two tests shall be performed concurrently at an independent certified laboratory at the Contractor’s expense. the Owner reserves the right to confirm the test results and to adjust the percentage of pozzolan or GGBFS in the combination to suit other requirements at no additional cost to the Owner. Portland cement shall be furnished in bulk.
 2. Pozzolan shall conform to ASTM C 618, and, in addition, limits in Table 2A, Uniformity Requirements (for air content) shall apply to all fly ash. Table 1A, Supplementary Optional Chemical Requirement for Maximum Alkalies, shall apply when it is to be used with aggregates listed to require low-alkali cement. Pozzolan shall be furnished in bulk.
 3. The temperature of the cementitious materials as delivered to the site shall not exceed 150 degrees F.

B. Admixtures: All chemical admixtures furnished as liquids shall be in a solution of suitable viscosity and dilution for field use as determined by the Owner.
 1. Water-Reducing Admixture (WRA) shall meet the requirements of ASTM C 494, Type D.

C. Water for washing aggregates and for mixing and curing concrete shall be free from injurious amounts of oil, acid, salt, alkali, organic matter, or other deleterious substances and shall comply with COE CRD-C 400.

D. Aggregates
 1. Composition: Fine aggregate shall consist of natural sand, manufactured sand, or a combination of natural and manufactured sands. Coarse aggregate shall consist of gravel, crushed gravel, crushed stone, air-cooled blast-furnace slag, or a combination thereof.

OR
 All concrete mixtures will be proportioned by the Owner except that proportions for the slipformed facing concrete mixture will be selected by the Contractor. RCC shall be composed of cementitious materials, water, fine and coarse aggregates, and possibly admixtures. The cementitious material shall be portland cement, or portland cement in combination with pozzolan.
1.3 EXECUTION

A. Concrete Mixing Plant: A continuous mixing plant(s) shall be capable of producing RCC of the same quality and uniformity as would be produced in a conventional redi-mix batch plant and shall be capable of producing a uniform continuous product (at both maximum and minimum production rates) that is mixed so that complete intermingling of all ingredients occurs without balling, segregation, and wet or dry portions.

B. Trucks: Truck mixers or agitators used for transporting central-mixed conventional concrete shall conform to the applicable requirements of ASTM C 94. Truck mixers shall not be used to transport concrete with larger than 37.5 mm (1-1/2-inch) nominal maximum size aggregate (NMSA) or 2 inch slump, or less. Nonagitating trucks may be used for transporting conventional central-mixed concrete over a smooth road when the hauling time is less than 15 minutes and the slump is less than 3 inches. Bodies of nonagitating trucks shall be smooth, water-tight, metal containers specifically designed to transport concrete, shaped with rounded corners to minimize segregation.

C. Belt Conveyors: Belt conveyors shall be designed and operated to assure a uniform flow of concrete from mixer or delivery truck to final place of deposit without segregation of ingredients or loss of mortar and shall be provided with positive means for preventing segregation of the concrete or loss of mortar at transfer points and the point of placing. The NMSA required in mixture proportions furnished by the Owner will not be changed to accommodate the belt width.

D. Spreading and Remixing Equipment: The primary spreading procedure shall be accomplished by dozer. Graders or other equipment not specified may be used to facilitate the RCC spreading process only when approved. For open, unrestricted areas, the dozer shall be a minimum size and weight equivalent to a Caterpillar D-6. For restricted placement areas, such as placement of RCC near the dam crest or next to abutments, the dozer shall have as a minimum a size and weight equivalent to a Caterpillar D-4. There shall be a minimum of one operating dozer for each 200 cubic yards of RCC placed each hour. The dozers shall be equipped with well-maintained grousers. A front-end loader with operator shall be available to assist with deposition and spreading of RCC as needed in confined areas. The equipment shall be maintained in good operating condition. The equipment shall not leak or drip oil, grease, or other visible contaminants onto the RCC surface. All equipment used for spreading and remixing that leaves the surface of the structure for maintenance or repairs or, for any other reason, must be cleaned of all contaminants by an approved method before returning to the structure surface. Under no conditions shall a dozer or other tracked vehicle be operated on other than fresh uncompacted RCC except to facilitate startup operations for each lift and by approved procedures.

E. Compaction Equipment:

1. Self-propelled vibratory rollers shall be used for primary rolling and shall be double-drum. They shall transmit a dynamic impact to the surface through a smooth steel drum by means of revolving weights, eccentric shafts, or other equivalent methods. The compactor shall have a minimum gross mass of 20,000 pounds and shall produce a minimum dynamic force of 350 pounds per linear inch of drum width. The operating frequency shall be variable in the approximate range of 1,700 to 3,000 cycles per minute. The amplitude shall be adjustable between 0.015 and 0.04 inches. The roller shall be capable of full compaction in both forward and reverse directions. The roller shall be operated at speeds not exceeding 2.2 ft/s. Within the range of the operating capability of the equipment, the Owner may direct or approve variations to the frequency, amplitude, and speed of operation which result in the specified density at the fastest production rate.
2. Small vibratory rollers shall be used to compact the RCC where the larger vibratory rollers specified above cannot maneuver. The rollers shall compact the RCC to the required density and shall be so demonstrated during construction of the test section. Small vibratory rollers cannot compact the RCC to the same density and thickness as the primary rollers. When small rollers are used, total lift thickness of the RCC layer or lift shall be reduced to not over 6 inches uncompacted thickness to permit adequate compaction. Rollers shall have independent speed and vibration controls and shall be capable of a wide range of speed adjustments.

3. The tampers shall compact the RCC to the required density and shall be so demonstrated during construction of the test section. Tampers cannot compact the RCC to the same density and thickness as the primary rollers. When tampers are used, thickness of each RCC layer that is to be compacted shall be reduced to not more than 6 inches uncompacted thickness to assure adequate compaction.

F. Placing During Rain: RCC shall not be placed during rainfall of 0.1 inch/hr or more. During periods of lesser rainfall, placement of RCC may continue if, in the opinion of the Owner, no damage to the RCC is occurring. Work shall commence only after excess free surface water and contaminated paste or RCC have been removed. The surface shall have gained sufficient strength (no less than 4 hours after the RCC placement was suspended) to prevent rutting, pumping, intermixing of rainwater with the RCC, or other damage to the RCC. When the RCC surface has been contaminated or damaged in any manner, the RCC surface shall be washed to break up and remove laitance and/or mud-like coatings from the surface. Any undercut coarse aggregate shall be removed. All waste shall be removed and disposed of in an approved manner.

G. Hot-Weather Placement: In hot-weather placement the temperature of the RCC shall be controlled so that it does not exceed 75.0 degrees F when placed. Placement shall be suspended as soon as the RCC temperature exceeds 75 degrees F. Measures that can be taken to prevent temperatures exceeding 75 degrees F include, but are not limited to; 1.) chilling mixing water, 2.) sprinkling aggregate stockpiles, 3.) use of a canopy to shade the RCC placement areas, 4.) placing during nighttime and early morning hours, or 5.) restricting placements to cloudy days. Use of any of these systems shall not be reason for extension of completion dates specified in these specifications. In addition, to prevent potential damage to the RCC due to hot-weather related placement conditions, all RCC operation shall be suspended between June 15 and October 31, unless directed otherwise.

END OF SECTION 32 13 13 00
SECTION 32 13 13 00a - DECORATIVE CEMENT CONCRETE PAVEMENT

1.1 GENERAL

A. Description Of Work

1. This specification covers the furnishing and installation of materials for decorative cement concrete pavement. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary

1. Section includes colored, stamped, stenciled, and stained concrete paving.

C. Definitions

1. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, and ground granulated blast-furnace slag.

D. Submittals

1. Product Data: For each type of product indicated.
2. LEED Submittals:
 a. Product Data for Credit MR 4.1 and Credit MR 4.2, as directed: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating costs for each product having recycled content.
 b. Design Mixtures for Credit ID 1.1: For each concrete mixture containing fly ash as a replacement for portland cement or other portland cement replacements. For each design mixture submitted, include an equivalent concrete mixture that does not contain portland cement replacements, to determine amount of portland cement replaced.
3. Samples: For each type of exposed color, pattern, or texture indicated.
4. Other Action Submittals:
 a. Design Mixtures: For each decorative concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
5. Qualification Data: For qualified Installer, ready-mix concrete manufacturer, and testing agency.
6. Material Certificates: For the following, from manufacturer:
 a. Cementitious materials.
 b. Steel reinforcement and reinforcement accessories.
 c. Fiber reinforcement.
 d. Admixtures.
 e. Curing compounds.
 f. Applied finish materials.
 g. Bonding agent or epoxy adhesive.
 h. Joint fillers.
7. Material Test Reports: For each of the following:
 a. Aggregates. Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.
8. Field quality-control reports.

E. Quality Assurance

1. Installer Qualifications: An employer of workers trained and approved by manufacturer of decorative concrete paving systems.
2. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 a. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual - Section 3, "Plant Certification Checklist").
3. Testing Agency Qualifications: Qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
 a. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
4. Source Limitations: Obtain decorative concrete paving products and each type or class of cementitious material of the same brand from same manufacturer's plant, and obtain each aggregate from single source.
5. Concrete Testing Service: Engage a qualified testing agency to perform material evaluation tests and to design concrete mixtures.
6. ACI Publications: Comply with ACI 301 (ACI 301M) unless otherwise indicated.

F. Project Conditions
1. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

1.2 PRODUCTS

A. Forms
1. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
 a. Use flexible or uniformly curved forms for curves of a radius of 100 feet (30.5 m) or less. Do not use notched and bent forms.
2. Forms for Textured Finish Concrete: Units of face design, size, arrangement, and configuration indicated. Provide solid backing and form supports to ensure stability of textured form liners.
3. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

B. Steel Reinforcement
1. Recycled Content: Provide steel reinforcement with an average recycled content of steel so postconsumer recycled content plus one-half of preconsumer recycled content is not less than 25 percent.
2. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, fabricated from as-drawn steel wire into flat sheets.
3. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420); deformed.
4. Steel Bar Mats: ASTM A 184/A 184M; with ASTM A 615/A 615M, Grade 60 (Grade 420), deformed bars; assembled with clips.
5. Plain-Steel Wire: ASTM A 82/A 82M, as drawn.
6. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420) plain-steel bars. Cut bars true to length with ends square and free of burrs.
7. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:
 a. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.
C. Concrete Materials
1. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 a. Portland Cement: ASTM C 150, gray OR white, as directed, portland cement Type I OR Type II OR Type I/II OR Type III OR Type V, as directed. Supplement with the following, as directed:
 1) Fly Ash: ASTM C 618, Class C or F.
 2) Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
 b. Blended Hydraulic Cement: ASTM C 595, Type IS, portland blast-furnace slag OR Type IP, portland-pozzolan, as directed, cement.
2. Normal-Weight Aggregates: ASTM C 33, Class 4S OR Class 4M OR Class 1N, as directed, uniformly graded. Provide aggregates from a single source with documented service-record data of at least 10 years' satisfactory service in similar paving applications and service conditions using similar aggregates and cementitious materials, as directed.
 a. Maximum Aggregate Size: 1-1/2 inches (38 mm) OR 1 inch (25 mm) OR 3/4 inch (19 mm), as directed, nominal.
 b. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
3. Water: Potable and complying with ASTM C 94/C 94M.
5. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
 a. Water-Reducing Admixture: ASTM C 494/C 494M, Type A, colored, as directed.
 b. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D, colored, as directed.
 c. Water-Reducing and Accelerating Admixture: ASTM C 494/C 494M, Type E.
6. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, free of carbon black, as directed, nonfading, and resistant to lime and other alkalis.

D. Fiber Reinforcement
1. Synthetic Fiber: Monofilament or fibrillated polypropylene fibers engineered and designed for use in decorative concrete paving, complying with ASTM C 1116/C 1116M, Type III, 1/2 to 1-1/2 inches (13 to 38 mm) long.

E. Surface Coloring Materials
1. Pigmented Mineral Dry-Shake Hardener: Factory-packaged, dry combination of portland cement, graded quartz aggregate, color pigments, and plasticizing admixture. Use color pigments that are finely ground, nonfading mineral oxides interground with cement.
2. Pigmented Powder Release Agent: Factory-packaged, dry combination of surface-conditioning and dispersing agents interground with color pigments that facilitates release of stamp mats. Use color pigments that are finely ground, nonfading mineral oxides interground with cement.
3. Liquid Release Agent: Manufacturer's standard, clear, evaporating formulation that facilitates release of stamp mats and texture rollers.

F. Stamping Devices
1. Stamp Mats: Semirigid polyurethane mats with projecting textured and ridged underside capable of imprinting texture and joint patterns on plastic concrete.
2. Stamp Tools: Open-grid, aluminum or rigid-plastic stamp tool capable of imprinting joint patterns on plastic concrete.
3. Rollers: Manually controlled, water-filled aluminum rollers with projecting ridges on drum capable of imprinting texture and joint patterns on plastic concrete.
4. Texture Rollers: Manually controlled, abrasion-resistant polyurethane rollers capable of imprinting texture on plastic concrete.
G. Stencil Materials
1. Stencils: Manufacturer's standard, moisture-resistant paper or reusable plastic stencils, designed for use on plastic concrete.

H. Stain Materials
1. Reactive Stain: Acidic-based stain with wetting agents and high-grade, UV-stable metallic salts that react with calcium hydroxide in cured concrete to produce permanent, variegated, or translucent color effects.
2. Penetrating Stain: Water-based, acrylic latex, penetrating stain with colorfast pigments.

I. Curing And Sealing Materials
2. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.
 a. For integrally colored concrete, curing compound shall be pigmented type approved by coloring admixture manufacturer.
 b. For concrete indicated to be sealed, curing compound shall be compatible with sealer.
7. Slip-Resistance-Enhancing Additive: Manufacturer's standard finely graded aggregate or polymer additive, designed to be added to clear acrylic sealer to enhance slip resistance of sealed paving surface.

J. Related Materials
1. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber or ASTM D 1752, cork or self-expanding cork in preformed strips.
2. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
3. Epoxy Bonding Adhesive: ASTM C 881/C 881M, two-component epoxy resin capable of humid curing and bonding to damp surfaces; of class suitable for application temperature, of grade complying with requirements, and of the following types:
 a. Types I and II, non-load bearing OR Types IV and V, load bearing, as directed, for bonding hardened or freshly mixed concrete to hardened concrete.
4. Polyethylene Film: ASTM D 4397, 1 mil (0.025 mm) thick, clear.

K. Concrete Mixtures
1. Prepare design mixtures, proportioned according to ACI 301 (ACI 301M), for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.
 a. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
2. Proportion mixtures to provide normal-weight concrete with the following properties:
 a. Compressive Strength (28 Days): 4500 psi (31 MPa) OR 4000 psi (27.6 MPa) OR 3500 psi (24.1 MPa) OR 3000 psi (20.7 MPa), as directed.
 b. Maximum Water-Cementitious Materials Ratio at Point of Placement: 0.45 OR 0.50, as directed.
c. Slump Limit: 4 inches (100 mm) OR 5 inches (125 mm), as directed, plus or minus 1 inch (25 mm).

3. Add air-entraining admixture at manufacturer’s prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 a. Air Content: 5-1/2 OR 4-1/2 OR 2-1/2, as directed, percent plus or minus 1.5 percent for 1-1/2-inch (38-mm) nominal maximum aggregate size.
 b. Air Content: 6 OR 4-1/2 OR 3, as directed, percent plus or minus 1.5 percent for 1-inch (25-mm) nominal maximum aggregate size.
 c. Air Content: 6 OR 5 OR 3-1/2, as directed, percent plus or minus 1.5 percent for 3/4-inch (19-mm) nominal maximum aggregate size.

4. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 OR 0.30, as directed, percent by weight of cement.

5. Chemical Admixtures: Use admixtures according to manufacturer’s written instructions.
 a. Use water-reducing admixture OR water-reducing and retarding admixture OR water-reducing and accelerating admixture, as directed, in concrete as required for placement and workability.
 b. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.

6. Cementitious Materials: Limit percentage by weight of cementitious materials other than portland cement according to ACI 301 (ACI 301M) requirements for concrete exposed to deicing chemicals OR as follows, as directed:
 a. Fly Ash or Pozzolan: 25 percent.
 b. Ground Granulated Blast-Furnace Slag: 50 percent.
 c. Combined Fly Ash or Pozzolan, and Ground Granulated Blast-Furnace Slag: 50 percent, with fly ash or pozzolan not exceeding 25 percent.

7. Synthetic Fiber: Uniformly disperse in concrete mixture at manufacturer’s recommended rate, but not less than 1.0 lb/cu. yd. (0.60 kg/cu. m).

8. Color Pigment: Add color pigment to concrete mixture according to manufacturer’s written instructions and to result in hardened concrete color consistent with approved mockup.

L. Concrete Mixing
 1. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M and ASTM C 1116/C 1116M, as directed. Furnish batch certificates for each batch discharged and used in the Work.
 a. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.
 2. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 a. For concrete batches of 1 cu. yd. (0.76 cu. m) or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 b. For concrete batches larger than 1 cu. yd. (0.76 cu. m), increase mixing time by 15 seconds for each additional 1 cu. yd. (0.76 cu. m).
 c. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

1.3 EXECUTION

A. Examination
 1. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.
2. Proof-roll prepared subbase surface below decorative concrete paving to identify soft pockets and areas of excess yielding.
 a. Completely proof-roll subbase in one direction and repeat in perpendicular direction. Limit vehicle speed to 3 mph (5 km/h).
 b. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 15 tons (13.6 tonnes).
 c. Correct subbase with soft spots and areas of pumping or rutting exceeding depth of 1/2 inch (13 mm) according to requirements in Division 31 Section "Earth Moving".

3. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Preparation
1. Remove loose material from compacted subbase surface immediately before placing concrete.
2. Protect adjacent construction from discoloration and spillage during application of color hardeners, release agents, stains, curing compounds, and sealers.

C. Edge Forms And Screed Construction
1. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
2. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

D. Steel Reinforcement
2. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.
3. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.
4. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.
5. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch (50-mm) overlap to adjacent mats.

E. Joints
1. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
 a. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.
2. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
 a. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
 b. Butt Joints: Use bonding agent OR epoxy bonding adhesive, as directed, at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
 c. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches (38 mm) into concrete.
 d. Dowelled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.
3. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, walks, other fixed objects, and where indicated.
 a. Locate expansion joints at intervals of 50 feet (15.25 m) unless otherwise indicated.
 b. Extend joint fillers full width and depth of joint.
 c. Terminate joint filler not less than 1/2 inch (13 mm) or more than 1 inch (25 mm) below finished surface if joint sealant is indicated.
 d. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
 e. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
 f. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.

4. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows, to match jointing of existing adjacent decorative concrete paving, as directed:
 a. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/4-inch (6-mm) OR 3/8-inch (10-mm), as directed, radius. Repeat grooving of contraction joints after applying surface finishes. Eliminate grooving-tool marks on concrete surfaces.
 1) Tolerance: Ensure that grooved joints are within 3 inches (75 mm) either way from centers of dowels.
 b. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3-mm-) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
 1) Tolerance: Ensure that sawed joints are within 3 inches (75 mm) in both directions from center of dowels.
 c. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

5. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 1/4-inch (6-mm) OR 3/8-inch (10-mm), as directed, radius. Repeat tooling of edges after applying surface finishes. Eliminate edging tool marks on concrete surfaces.

F. Concrete Placement
1. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.
2. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.
3. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.
4. Comply with ACI 301 (ACI 301M) requirements for measuring, mixing, transporting, and placing concrete.
5. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.
6. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.
7. Consolidate concrete according to ACI 301 (ACI 301M) by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.
 a. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels, and joint devices.
8. Screed paving surface with a straightedge and strike off.
9. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.
10. Cold-Weather Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
 a. When air temperature has fallen to or is expected to fall below 40 deg F (4.4 deg C), uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F (10 deg C) and not more than 80 deg F (27 deg C) at point of placement.
 b. Do not use frozen materials or materials containing ice or snow.
 c. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.
11. Hot-Weather Placement: Comply with ACI 301 (ACI 301M) and as follows when hot-weather conditions exist:
 a. Cool ingredients before mixing to maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 b. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 c. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

G. Float Finishing
1. General: Do not add water to concrete surfaces during finishing operations.
2. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

H. Integrally Colored Concrete Finish
1. Integrally Colored Concrete Finish: After final floating, apply the following finish:
 a. Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture.
 b. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across float-finished concrete surface, perpendicular to line of traffic, to provide a uniform, fine-line texture.
 c. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch (1.6 to 3 mm) deep with a stiff-bristled broom, perpendicular to line of traffic.

I. Stenciling
1. Cut stencils to slab width and lay on wet concrete. Overlap "mortar joint" on trailing edge of each section of stencil onto leading "mortar joint" of previous section.
2. Trim stencils to fit slab and adjacent patterns.
3. Slightly embed stencil into concrete by rolling with stencil roller.
4. Apply pigmented mineral dry-shake hardener materials to concrete surfaces according to manufacturer's written instructions.
5. Stencil Rolling:
 a. Apply pigmented powder release agent OR liquid release agent, as directed, according to manufacturer's written instructions prior to applying texture roller to surface of concrete.
 b. Perform rolling operation to produce required texture on concrete surface.
6. Remove stencils when concrete has sufficiently cured to bear weight. Do not leave stencils in concrete overnight.
7. Remove debris with mechanical blower prior to application of curing compound. If release agent is applied, delay removal of debris for 24 hours, then flood area with low-pressure water hose, wetting release agent, and follow by cleaning surface with pressure washer.

J. Pigmented Mineral Dry-Shake Hardener
1. Pigmented Mineral Dry-Shake Hardener Finish: After initial floating, apply dry-shake materials to paving surfaces according to manufacturer's written instructions and as follows:
 a. Uniformly apply dry-shake hardener at a rate of 100 lb/100 sq. ft. (49 kg/10 sq. m) unless greater amount is recommended by manufacturer to match paving color required.
 b. Uniformly distribute approximately two-thirds of dry-shake hardener over the concrete surface with mechanical spreader; allow hardener to absorb moisture and embed it by power floating. Follow power floating with a second application of pigmented mineral dry-shake hardener, uniformly distributing remainder of material at right angles to first application to ensure uniform color, and embed hardener by final power floating.
 c. After final power floating, apply the following finish:
 1) Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture.
 2) Medium-to-Fine-Textured Broom Finish: Draw a soft bristle broom across float-finished concrete surface, perpendicular to line of traffic, to provide a uniform, fine-line texture.
 3) Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch (1.6 to 3 mm) deep with a stiff-bristled broom, perpendicular to line of traffic.

2. Pigmented Powder Release Agent: Uniformly distribute onto dry-shake-hardened and still-plastic concrete at a rate of 3 to 4 lb/100 sq. ft. (1.5 to 2 kg/10 sq. m).

3. Liquid Release Agent: Uniformly mist surface of dry-shake-hardened and still-plastic concrete at a rate of 5 gal/1000 sq. ft. (0.2 L/sq. m).

K. Stamping
1. Mat Stamping: After floating and while concrete is plastic, apply mat-stamped finish.
 a. Pigmented Powder Release Agent: Uniformly distribute onto concrete at a rate of 3 to 4 lb/100 sq. ft. (1.5 to 2 kg/10 sq. m).
 b. Liquid Release Agent: Apply liquid release agent to the concrete surface and the stamp mat. Uniformly mist surface of concrete at a rate of 5 gal/1000 sq. ft. (0.2 L/sq. m).
 c. After application of release agent, accurately align and place stamp mats in sequence.
 d. Uniformly load mats and press into concrete to produce required imprint pattern and depth of imprint on concrete surface. Gently remove stamp mats. Hand stamp edges and surfaces unable to be imprinted by stamp mats.
 e. Remove residual release agent according to manufacturer's written instructions, but no fewer than three days after stamping concrete. High-pressure-wash surface and joint patterns, taking care not to damage stamped concrete. Control, collect, and legally dispose of runoff.

2. Tool Stamping: After floating and while concrete is plastic, apply tool-stamped finish.
 a. Cover surface with polyethylene film, stretch taut to remove wrinkles, lap sides and ends 3 inches (75 mm), and secure to edge forms. Lightly broom surface to remove air bubbles.
 b. Accurately align and place stamp tools in sequence and tamp into concrete to produce required imprint pattern and depth of imprint on concrete surface. Gently remove stamp tools. Hand stamp edges and surfaces unable to be imprinted by stamp tools.
 c. Carefully remove polyethylene film immediately after tool stamping.

3. Roller Stamping: After floating and while concrete is plastic, apply roller-stamped finish.
 a. Cover surface with polyethylene film, stretch taut to remove wrinkles, lap sides and ends 3 inches (75 mm), and secure to edge forms. Lightly broom surface to remove air bubbles.
b. Accurately align roller and perform rolling operation to produce required imprint pattern and depth of imprint on concrete surface. Hand stamp surfaces inaccessible to roller.

c. Carefully remove polyethylene film immediately after roller stamping.

L. Concrete Protection And Curing
1. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
2. Comply with ACI 306.1 for cold-weather protection.
3. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer’s written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.
4. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.
5. Curing Compound: Apply curing compound immediately after final finishing. Apply uniformly in continuous operation by power spray or roller according to manufacturer’s written instructions. Recoil areas that have been subjected to heavy rainfall within three hours after application. Maintain continuity of coating, and repair damage during curing period.
 a. Cure integrally colored concrete with a pigmented, as directed, curing compound.
 b. Cure concrete finished with pigmented mineral dry-shake hardener with a pigmented, as directed, curing compound.
6. Curing and Sealing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoil areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.
7. Curing Paper: Cure with unwrinkled curing paper in pieces large enough to cover the entire width and edges of slab. Do not lap sheets. Fold curing paper down over paving edges and secure with continuous banks of earth to prevent displacement or billowing due to wind. Immediately repair holes or tears in paper.

M. Staining
1. Newly placed concrete paving shall be at least 14 OR 30, as directed, days old before staining.
2. Prepare surfaces according to manufacturer's written instructions and as follows:
 a. Clean concrete thoroughly by scraping, applying solvents or stripping agents, sweeping and pressure washing, or scrubbing with a rotary floor machine and detergents recommended by stain manufacturer. Rinse until water is clear and allow surface to dry.
 1) Do not use acidic solutions to clean surfaces.
 b. Test surfaces with droplets of water. If water beads and does not penetrate surface, or penetrates only in some areas, profile surfaces by acid etching, grinding, sanding, or abrasive blasting. Retest and continue profiling surface until water droplets immediately darken and uniformly penetrate concrete surfaces.
 c. Apply acidic solution to dampened concrete surfaces, scrubbing with uncolored, acid-resistant nylon-bristle brushes until bubbling stops and concrete surface has texture of 120-grit sandpaper. Do not allow solution to dry on concrete surfaces. Rinse until water is clear. Control, collect, and legally dispose of runoff.
 d. Neutralize concrete surfaces and rinse until water is clear. Test surface for residue with clean white cloth. Test surface according to ASTM F 710 to ensure pH is between 7 and 8.
3. Scoring: Score decorative jointing in paving surfaces 1/16 inch (1.6 mm) deep with diamond blades to match pattern indicated. Rinse until water is clear. Score after OR before, as directed, staining.
 a. Joint Width: 3/8 inch (10 mm).
4. Allow paving surface to dry before applying stain. Verify readiness of paving to receive stain according to ASTM D 4263 by tightly taping 18-by-18-inch (450-by-450-mm), 4-mil- (0.1-mm-)
thick polyethylene sheet to a representative area of paving surface. Apply stain only if no evidence of moisture has accumulated under sheet after 16 hours.

5. Reactive Stain: Apply reactive stain to paving surfaces according to manufacturer's written instructions and as follows:
 a. Apply stain by uncolored bristle brush, roller, or high-volume, low-pressure sprayer and immediately scrub into concrete surface with uncolored, acid-resistant nylon-bristle brushes in continuous, circular motion. Do not spread stain after fizzing stops. Allow to dry four hours and repeat application of stain in sufficient quantity to obtain color consistent with approved mockup.
 b. Remove stain residue after four hours by wet scrubbing with commercial-grade detergent recommended by stain manufacturer. Rinse until water is clear. Control, collect, and legally dispose of runoff.

6. Penetrating Stain: Apply penetrating stain to paving surfaces according to manufacturer's written instructions and as follows:
 a. Apply first coat of stain to dry, clean surfaces by airless sprayer or by high-volume, low-pressure sprayer.
 b. Allow to dry four hours and repeat application of stain in sufficient quantity to obtain color consistent with approved mockup.
 c. Rinse until water is clear. Control, collect, and legally dispose of runoff.

N. Sealer
 1. Clear Acrylic Sealer: Apply uniformly in two coats in continuous operations according to manufacturer's written instructions. Allow first coat to dry before applying second coat, at 90 degrees to the direction of the first coat using same application methods and rates.
 a. Begin sealing dry surface no sooner than 14 days after concrete placement.
 b. Allow stained concrete surfaces to dry before applying sealer.
 c. Thoroughly mix slip-resistance-enhancing additive into sealer according to manufacturer's written instructions. Stir sealer occasionally during application to maintain even distribution of additive.

O. Paving Tolerances
 1. Comply with tolerances in ACI 117 and as follows:
 a. Elevation: 3/4 inch (19 mm).
 b. Thickness: Plus 3/8 inch (10 mm), minus 1/4 inch (6 mm).
 c. Surface: Gap below 10-foot- (3-m-) long, unleveled straightedge not to exceed 1/2 inch (13 mm).
 d. Lateral Alignment and Spacing of Dowels: 1 inch (25 mm).
 e. Vertical Alignment of Dowels: 1/4 inch (6 mm).
 f. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches (6 mm per 300 mm) of dowel.
 g. Joint Spacing: 3 inches (75 mm).
 h. Contraction Joint Depth: Plus 1/4 inch (6 mm), no minus.
 i. Joint Width: Plus 1/8 inch (3 mm), no minus.

P. Field Quality Control
 1. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 2. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 a. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. (76 cu. m) OR 5000 sq. ft. (465 sq. m), as directed, or fraction thereof of each concrete mixture placed each day.
 1) When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
b. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

c. Air Content: ASTM C 231, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

d. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and when it is 80 deg F (27 deg C) and above, and one test for each composite sample.

e. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.

f. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at seven days and two specimens at 28 days.

1) A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.

3. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).

4. Test results shall be reported in writing to the Owner, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

5. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by the Owner but will not be used as sole basis for approval or rejection of concrete.

6. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by the Owner.

7. Decorative concrete paving will be considered defective if it does not pass tests and inspections.

8. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

9. Prepare test and inspection reports.

Q. Repairs And Protection

1. Remove and replace decorative concrete paving that is broken or damaged or does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by the Owner.

2. Detailing: Grind concrete “squeeze” left from tool placement. Color ground areas with slurry of color hardener mixed with water and bonding agent. Remove excess release agent with high-velocity blower.

3. Protect decorative concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.

4. Maintain decorative concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 32 13 13 00a
SECTION 32 13 13 00b - PORTLAND CEMENT CONCRETE OVERLAYS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of Portland cement concrete overlays. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Coarse Aggregate:
1. Composition: Coarse aggregate shall consist of gravel, crushed gravel, crushed stone, a combination thereof, or crushed blast-furnace slag.
2. Particle Shape: Particles of the coarse aggregate shall be generally spherical or cubical in shape. The quantity of flat and elongated particles in any size group shall not exceed 20 percent by weight as determined by ASTM D 3398.
3. Gradation: The maximum size of coarse aggregate shall be the lesser of 1/4 of the pavement thickness or 2 inches nominal size. Gradation limits are specified in ASTM C 136.
4. Deleterious Substances: The amount of deleterious substances in the coarse aggregate shall not exceed the limits, defined in ASTM C 117 and C 123.

B. Fine Aggregate shall consist of natural sand, manufactured sand, or a combination of natural and manufactured sand and shall be composed of clean, hard, durable particles. Particles of the fine aggregate shall be generally spherical or cubical in shape. Gradation limits are specified in ASTM C 136.

C. Portland Cement shall be Type I in compliance with ASTM C 150.

D. Air-Entraining Admixture shall be in compliance with ASTM C 260. Concrete mixtures shall have air content by volume of concrete of 4 to 7 percent based on measurements made immediately after discharge from the mixer.

E. Concrete Mixture shall have a nominal slump of 2 inches with a maximum of 3 inches and a 28-day flexural strength of not less than 650 psi.

F. Joint and Crack Sealing Materials: Joint filler, joint sealant, and crack sealant shall comply with the following:
1. Expansion Joint Fillers shall comply with ASTM D 1751 or D 1752 or shall be resin impregnated fiberboard in compliance with the physical requirements of ASTM D 1752.
2. Type I Sealant shall comply with Fed. Spec. SS-S-200, except that sealant may be furnished as a ready-mixed liquid.
3. Type II Sealant shall comply with Fed. Spec. SS-S-1401.
4. Type V Sealant shall comply with COE CRD-C-527 and may be either a single- or multiple-component material.
G. Epoxy-Resin Materials: Materials used in epoxy-resin grout, mortar, and concrete shall comply with the following:
 1. Epoxy-Resin Grout shall be a two-compound material formulated to comply with ASTM C 881.
 2. Epoxy-Resin Concrete shall be composed of epoxy-resin binder and uniformly graded aggregate in compliance with ASTM C 144. The maximum size of aggregate shall be 3/8 or 1/2 inch.

H. Dowels shall be plain steel bars complying with ASTM A 499.

1.3 EXECUTION

A. Preparation of Existing Surface: The Contractor shall raise and reset all structures such as manhole frames, valve boxes, drainage structures, etc. to meet the required grade. Bonding course shall be applied to the area prepared to receive overlay and shall be of epoxy-resin grout and Portland cement mortar.

B. Concrete Placement: Concrete shall be placed within 45 minutes from the time all ingredients are charged into the mixing drum.

C. Vibration: In the final phases of placing, surface vibrating equipment shall be used, and the duration of vibration shall not exceed 20 seconds.

D. Joints shall be saw cut and in alignment with underlying existing joints.

E. Finishing:
 1. Transverse Finishing: Immediately after placement, concrete shall be accurately struck off and screeded to such elevation that when consolidated and finished, the surface of the pavement will be free from porous places and will be at the required grade. The finishing machine shall make at least two trips over each area of pavement to compact the concrete and produce a surface of uniform texture, true to grade.
 2. Longitudinal Floating: After completion of the transverse finishing, the longitudinal mechanical float shall be operated to smooth and finish the pavement to grade.
 3. Hand Finishing shall be with an approved strike and tamping template and a longitudinal float.
 4. Straightedge Finishing: After the longitudinal floating is completed but while the concrete is still plastic, minor irregularities and score marks in the pavement surface shall be eliminated by means of long-handled wood floats and straightedges. The final finish shall be made with the straightedges, which shall be used to float the entire pavement surface.
 5. Burlap Drag Finishing: When most of the water glaze or sheen has disappeared and before the concrete becomes nonplastic, drag the surface of the pavement in the direction of the concrete placement with a multiple-ply burlap drag.
 6. Edging: After other finishing has been completed, the edges of slabs along the forms and at the joints shall be carefully finished with an edging tool to form a smooth rounded surface of the required radius.

F. Concrete Curing and Protection:
 1. Concrete Curing Methods shall consist of mat method, impervious sheeting method, or liquid membrane curing method.
 2. Concrete Protection: Protect repaired areas against damage prior to final acceptance. Traffic shall be excluded from repaired areas.
SECTION 32 13 13 00c - STEEL REINFORCED PORTLAND CEMENT CONCRETE OVERLAYS

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of steel reinforced Portland cement concrete overlays. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
 1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Coarse Aggregate:
 1. Composition: Coarse aggregate shall consist of gravel, crushed gravel, crushed stone, a combination thereof, or crushed blast-furnace slag.
 2. Particle Shape: Particles of the coarse aggregate shall be generally spherical or cubical in shape. The quantity of flat and elongated particles in any size group shall not exceed 20 percent by weight as determined by ASTM D 3398.
 3. Gradation: The maximum size of coarse aggregate shall be the lesser of 1/4 of the pavement thickness or 2 inches nominal size. Gradation limits are specified in ASTM C 136.
 4. Deleterious Substances: The amount of deleterious substances in the coarse aggregate shall not exceed the limits, defined in ASTM C 117 and C 123.

B. Fine Aggregate shall consist of natural sand, manufactured sand, or a combination of natural and manufactured sand and shall be composed of clean, hard, durable particles. Particles of the fine aggregate shall be generally spherical or cubical in shape. Gradation limits are specified in ASTM C 136.

C. Portland Cement shall be Type I in compliance with ASTM C 150.

D. Air-Entraining Admixture shall be in compliance with ASTM C 260. Concrete mixtures shall have air content by volume of concrete of 4 to 7 percent based on measurements made immediately after discharge from the mixer.

E. Concrete Mixture shall have a nominal slump of 2 inches with a maximum of 3 inches and a 28-day flexural strength of not less than 650 psi.

F. Joint and Crack Sealing Materials: Joint filler, joint sealant, and crack sealant shall comply with the following:
 1. Expansion Joint Fillers shall comply with ASTM D 1751 or D 1752 or shall be resin impregnated fiberboard in compliance with the physical requirements of ASTM D 1752.
 2. Type I Sealant shall comply with Fed. Spec. SS-S-200, except that sealant may be furnished as a ready-mixed liquid.
 3. Type II Sealant shall comply with Fed. Spec. SS-S-1401.
 4. Type V Sealant shall comply with COE CRD-C-527 and may be either a single- or multiple-component material.
G. Epoxy-Resin Materials: Materials used in epoxy-resin grout, mortar, and concrete shall comply with the following:
1. Epoxy-Resin Grout shall be a two-compound material formulated to comply with ASTM C 881.
2. Epoxy-Resin Concrete shall be composed of epoxy-resin binder and uniformly graded aggregate in compliance with ASTM C 144. The maximum size of aggregate shall be 3/8 or 1/2 inch.

H. Steel Reinforcement: All reinforcement shall be free from loose flaky rust, loose scale, oil, grease, mud, or other coatings that might reduce bond. Bar mats shall comply with ASTM A 184. Welded steel wire fabric shall comply with ASTM A 185. Tie bars shall be deformed bars in compliance with ASTM A 615, A 616, or A 617. Dowels shall be plain steel bars complying with ASTM A 499.

1.3 EXECUTION

A. Preparation of Existing Surface: The Contractor shall raise and reset all structures such as manhole frames, valve boxes, drainage structures, etc. to meet the required grade. Bonding course shall be applied to the area prepared to receive overlay and shall be of epoxy-resin grout and Portland cement mortar.

B. Reinforcement Steel shall be installed by the strike-off method wherein the concrete is deposited on the subgrade and struck to the indicated elevation of the steel. The reinforcement shall be laid upon the prestruck surface.

C. Concrete Placement: Concrete shall be placed within 45 minutes from the time all ingredients are charged into the mixing drum.

D. Vibration: In the final phases of placing, surface vibrating equipment shall be used, and the duration of vibration shall not exceed 20 seconds.

E. Joints shall be saw cut and in alignment with underlying existing joints.

F. Finishing:
1. Transverse Finishing: Immediately after placement, concrete shall be accurately struck off and screeded to such elevation that when consolidated and finished, the surface of the pavement will be free from porous places and will be at the required grade. The finishing machine shall make at least two trips over each area of pavement to compact the concrete and produce a surface of uniform texture, true to grade.
2. Longitudinal Floating: After completion of the transverse finishing, the longitudinal mechanical float shall be operated to smooth and finish the pavement to grade.
3. Hand Finishing shall be with an approved strike and tamping template and a longitudinal float.
4. Straightedge Finishing: After the longitudinal floating is completed but while the concrete is still plastic, minor irregularities and score marks in the pavement surface shall be eliminated by means of long-handled wood floats and straightedges. The final finish shall be made with the straightedges, which shall be used to float the entire pavement surface.
5. Burlap Drag Finishing: When most of the water glaze or sheen has disappeared and before the concrete becomes nonplastic, drag the surface of the pavement in the direction of the concrete placement with a multiple-ply burlap drag.
6. Edging: After other finishing has been completed, the edges of slabs along the forms and at the joints shall be carefully finished with an edging tool to form a smooth rounded surface of the required radius.

G. Concrete Curing and Protection:
1. Concrete Curing Methods shall consist of mat method, impervious sheeting method, or liquid membrane curing method.
2. Concrete Protection: Protect repaired areas against damage prior to final acceptance. Traffic shall be excluded from repaired areas.

END OF SECTION 32 13 13 00c
SECTION 32 13 13 00d - FIBER REINFORCED PORTLAND CEMENT CONCRETE OVERLAYS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of fiber reinforced Portland cement concrete overlays. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Coarse Aggregate:
1. Composition: Coarse aggregate shall consist of gravel, crushed gravel, crushed stone, a combination thereof, or crushed blast-furnace slag.
2. Particle Shape: Particles of the coarse aggregate shall be generally spherical or cubical in shape. The quantity of flat and elongated particles in any size group shall not exceed 20 percent by weight as determined by ASTM D 3398.
3. Gradation: The maximum size of coarse aggregate shall be the lesser of 1/4 of the pavement thickness or 2 inches nominal size. Gradation limits are specified in ASTM C 136.
4. Deleterious Substances: The amount of deleterious substances in the coarse aggregate shall not exceed the limits, defined in ASTM C 117 and C 123.

B. Fine Aggregate shall consist of natural sand, manufactured sand, or a combination of natural and manufactured sand and shall be composed of clean, hard, durable particles. Particles of the fine aggregate shall be generally spherical or cubical in shape. Gradation limits are specified in ASTM C 136.

C. Portland Cement shall be Type I in compliance with ASTM C 150.

D. Air-Entraining Admixture shall be in compliance with ASTM C 260. Concrete mixtures shall have air content by volume of concrete of 4 to 7 percent based on measurements made immediately after discharge from the mixer.

E. Concrete Mixture shall have a nominal slump of 2 inches with a maximum of 3 inches and a 28-day flexural strength of not less than 650 psi.

F. Joint and Crack Sealing Materials: Joint filler, joint sealant, and crack sealant shall comply with the following:
1. Expansion Joint Fillers shall comply with ASTM D 1751 or D 1752 or shall be resin impregnated fiberboard in compliance with the physical requirements of ASTM D 1752.
2. Type I Sealant shall comply with Fed. Spec. SS-S-200, except that sealant may be furnished as a ready-mixed liquid.
3. Type II Sealant shall comply with Fed. Spec. SS-S-1401.
4. Type V Sealant shall comply with COE CRD-C-527 and may be either a single- or multiple-component material.
32 - Exterior Improvements

G. Epoxy-Resin Materials: Materials used in epoxy-resin grout, mortar, and concrete shall comply with the following:
1. Epoxy-Resin Grout shall be a two-compound material formulated to comply with ASTM C 881.
2. Epoxy-Resin Concrete shall be composed of epoxy-resin binder and uniformly graded aggregate in compliance with ASTM C 144. The maximum size of aggregate shall be 3/8 or 1/2 inch.

H. Steel Fibers: The fibers shall be made from low carbon steel. The following sizes of steel are acceptable:
1. 0.010-inch x 0.022-inch flat steel fiber,
2. 0.010-inch x 0.50-inch round steel fiber,
3. 0.016-inch x 1.0-inch round steel fiber,
4. 0.016-inch x 0.75-inch round steel fiber with 0.010-inch x 0.020-inch flat section along the length of the fiber
5. 2.5-inch x 0.025-inch round steel fibers.

1.3 EXECUTION

A. Preparation of Existing Surface: The Contractor shall raise and reset all structures such as manhole frames, valve boxes, drainage structures, etc. to meet the required grade. Bonding course shall be applied to the area prepared to receive overlay and shall be of epoxy-resin grout and Portland cement mortar.

B. Reinforcement Steel shall be installed by the strike-off method wherein the concrete is deposited on the subgrade and struck to the indicated elevation of the steel. The reinforcement shall be laid upon the prestruck surface.

C. Concrete Placement: Concrete shall be placed within 45 minutes from the time all ingredients are charged into the mixing drum.

D. Vibration: In the final phases of placing, surface vibrating equipment shall be used, and the duration of vibration shall not exceed 20 seconds.

E. Joints shall be saw cut and in alignment with underlying existing joints.

F. Finishing:
1. Transverse Finishing: Immediately after placement, concrete shall be accurately struck off and screeded to such elevation that when consolidated and finished, the surface of the pavement will be free from porous places and will be at the required grade. The finishing machine shall make at least two trips over each area of pavement to compact the concrete and produce a surface of uniform texture, true to grade.
2. Longitudinal Floating: After completion of the transverse finishing, the longitudinal mechanical float shall be operated to smooth and finish the pavement to grade.
3. Hand Finishing shall be with an approved strike and tamping template and a longitudinal float.
4. Straightedge Finishing: After the longitudinal floating is completed but while the concrete is still plastic, minor irregularities and score marks in the pavement surface shall be eliminated by means of long-handled wood floats and straightedges. The final finish shall be made with the straightedges, which shall be used to float the entire pavement surface.
5. Broom Finishing: Burlap drag finishing will not be allowed as this brings the steel fibers to the surface. Finishing shall be accomplished using a stiff broom.
6. Edging: After other finishing has been completed, the edges of slabs along the forms and at the joints shall be carefully finished with an edging tool to form a smooth rounded surface of the required radius.
G. Concrete Curing and Protection:
 1. Concrete Curing Methods shall consist of mat method, impervious sheeting method, or liquid membrane curing method.
 2. Concrete Protection: Protect repaired areas against damage prior to final acceptance. Traffic shall be excluded from repaired areas.

END OF SECTION 32 13 13 00d
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 13 13 00</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
<tr>
<td>32 13 16 13</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
<tr>
<td>32 13 43 00</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
<tr>
<td>32 13 73 00</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 13 73 00</td>
<td>32 01 17 61a</td>
<td>Spray Applications, Seal Coats, And Surface Treatments</td>
</tr>
<tr>
<td>32 14 40 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>32 15 40 00</td>
<td>32 11 16 00a</td>
<td>Crushed Stone</td>
</tr>
</tbody>
</table>
SECTION 32 16 13 13 - STEEL CURBS

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of steel curbs. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
 1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Standard Steel Curb Sections: Noncorrosive steel sections as required to match existing.

B. Coating: Steel curb sections shall be zinc coated.

C. Joint Materials

D. Concrete: Concrete shall have a minimum compressive strength of 3,000 psi. The maximum size of aggregate shall be 1-1/2 inches. Concrete shall have a slump of not more than 3 inches and an air content by volume of concrete of 3 to 6 percent.

1.3 EXECUTION

A. Preparation: The subgrade shall be constructed to grade and cross section. The subgrade shall be of materials equal in bearing quality to the subgrade under the adjacent pavement and shall be compacted. The subgrade shall be maintained in a smooth, compacted condition, in conformity with the required section and established grade until the concrete is placed. The subgrade shall be in a moist condition when concrete is placed.

B. Installation
 1. Steel Curb Setting: Steel curbs shall be carefully set to alignment and grade and to conform to the dimensions of the curb.
 2. Concrete Placement And Finishing: Concrete shall be placed in layers not to exceed 6 inches. Concrete shall be thoroughly consolidated. Floated surfaces shall then be brushed with longitudinal strokes. The top surface of the entrance shall be finished to grade with a wood float. Expansion joints and contraction joints shall be constructed at right angles to the line of curb. Contraction joints shall be constructed by means of 1/8-inch thick separators, of a section conforming to the cross section of the curb and gutter. Contraction joints shall match joints in abutting Portland cement concrete pavement. At other pavements, expansion joints shall be placed at not less than 5 feet nor greater than 15 feet apart. Expansion joints shall be formed by means of preformed expansion joint filler material cut and shaped to the cross section of curb. Expansion joints shall be provided in curb at the end of all returns. Expansion joints shall match expansion joints of abutting Portland cement concrete pavement. At other pavements, expansion...
joints at least 1/2 inch in width shall be provided at intervals not exceeding 45 feet. Exposed concrete surfaces shall be cured for not less than 7 days.

3. Backfilling: After curing, debris shall be removed and the area adjoining the concrete shall be backfilled, graded, and compacted.

4. Sealing Joints: Expansion joints and the top 1-inch depth of contraction joints shall be sealed with joint sealer. The joint opening shall be thoroughly cleaned before the sealing material is placed. Excess material on exposed surfaces of the concrete shall be removed immediately and exposed concrete surfaces cleaned.
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 16 13 13</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>32 16 13 13</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
<tr>
<td>32 16 13 14</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
<tr>
<td>32 16 13 16</td>
<td>32 16 13 13</td>
<td>Steel Curbs</td>
</tr>
<tr>
<td>32 16 13 16</td>
<td>32 16 13 13</td>
<td>Steel Curbs</td>
</tr>
<tr>
<td>32 16 13 19</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
</tbody>
</table>
SECTION 32 16 13 43 - POROUS UNIT PAVING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for porous unit paving. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes the following:
 a. Porous paving consisting of concrete pavers set in aggregate setting beds.
 b. Edge restraints.
 c. Cast-in-place concrete edge restraints.
 d. Precast concrete curbs.
 e. Granite curbs.

C. Submittals
1. Product Data: For materials other than aggregates.
2. Sieve Analyses: For aggregate materials, according to ASTM C 136.
3. Samples:
 a. Full-size units of each type of unit paver indicated.
 b. Exposed edge restraints.
 c. Precast concrete curbs.
 d. Granite curbs.
 e. Aggregate fill.
4. Material Certificates: For unit pavers. Include statements of material properties indicating compliance with requirements, including compliance with standards. Provide for each type and size of unit.

D. Quality Assurance
1. Preinstallation Conference: Conduct conference at Project site.

E. Delivery, Storage, And Handling
1. Store pavers on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied.
2. Store aggregates where grading and other required characteristics can be maintained and contamination can be avoided.

1.2 PRODUCTS

A. Concrete Unit Pavers
1. Concrete Grid Pavers: Grid paving units complying with ASTM C 1319, made from normal-weight aggregates.
2. Solid Concrete Pavers for Porous Paving: Solid interlocking paving units of shapes that provide openings between units, complying with ASTM C 936, resistant to freezing and thawing when tested according to ASTM C 67, as directed, and made from normal-weight aggregates.
 a. Thickness: 2-3/8 inches (60 mm) OR 3-1/8 inches (80 mm) OR 3-1/2 inches (90 mm) OR 4 inches (100 mm), as directed.
 b. Face Size and Shape: As indicated.
c. Color: As indicated by manufacturer's designations OR Match the Owner's sample OR As selected by the Owner from manufacturer's full range, as directed.

B. Accessories
1. Plastic Edge Restraints: Triangular PVC extrusions, 1-3/4 inches (45 mm) high by 3-1/2 inches (90mm) wide OR 3-1/8 inches (80 mm) high by 9-1/2 inches (240 mm) wide, as directed, designed to serve as edge restraints for unit pavers; rigid type for straight edges and flexible type for curved edges, with pipe connectors and 3/8-inch- (9.5-mm-) diameter by 12-inch- (300-mm-) long steel spikes.

2. Steel Edge Restraints: Painted steel edging, 3/16 inch (4.8 mm) thick by 4 inches (100 mm) high OR 1/4 inch (6.4 mm) thick by 5 inches (125 mm) high, as directed, with loops pressed from or welded to face to receive stakes at 36 inches (900 mm) o.c., and with steel stakes 15 inches (380 mm) long for each loop.
 a. Color: As indicated by manufacturer's designations OR Match the Owner's sample OR As selected by the Owner from manufacturer's full range, as directed.

3. Aluminum Edge Restraints: Straight, 1/8-inch- (3.2-mm-) thick by 4-inch- (100-mm-) high OR Straight, 3/16-inch- (4.8-mm-) thick by 4-inch- (100-mm-) high OR L-shaped, 1/8-inch- (3.2-mm-) thick by 1-3/8-inch- (35-mm-) high OR L-shaped, 3/16-inch- (4.8-mm-) thick by 2-1/4-inch- (57-mm-) high, as directed, extruded-aluminum edging, with loops pressed from face to receive stakes at 12 inches (300 mm) o.c., and with aluminum stakes 12 inches (300 mm) long for each loop.

4. Precast Concrete Curbs: Made from normal-weight concrete with a compressive strength not less than 5000 psi (35 MPa) OR 6000 psi (41 MPa), as directed, and water absorption not more than 5 percent, in shapes and sizes indicated.
 a. Color and Texture: As indicated by manufacturer's designations OR Match the Owner's sample OR As selected by the Owner from manufacturer's full range, as directed.

5. Granite Curbs: Granite curbing, with face battered 1 inch per foot (1:12), produced in random lengths not less than 36 inches (900 mm) from granite complying with ASTM C 615.
 a. Granite Color and Grain: Light gray OR Dark gray OR Buff OR White OR Black OR Pink, as directed, with fine OR medium OR coarse, as directed, grain.
 b. Top Width: 4 inches (100 mm) OR 5 inches (125 mm) OR 6 inches (150 mm), as directed.
 c. Face Height: 4 inches (100 mm) OR 6 inches (150 mm) OR 8 inches (200 mm), as directed.
 d. Total Height: 12 inches (300 mm) OR 16 inches (400 mm) OR 18 inches (450 mm), as directed.
 e. Top Finish: Sawed OR Thermal OR Bushhammered, as directed.
 f. Face Finish: Split OR Sawed OR Thermal OR Bushhammered, as directed.

C. Aggregate Setting-Bed Materials
1. Graded Aggregate for Subbase: Sound crushed stone or gravel complying with ASTM D 448 for Size No. 57 OR ASTM D 448 for Size No. 5 OR ASTM D 2940, subbase material OR requirements in Division 31 Section "Earth Moving" for subbase material, as directed.

2. Graded Aggregate for Base Course: Sound crushed stone or gravel complying with ASTM D 448 for Size No. 8 OR ASTM D 448 for Size No. 57 OR ASTM D 2940, base-course material OR requirements in Division 31 Section "Earth Moving" for base-course material, as directed.

3. Sand for Leveling Course: Sound, sharp, washed, natural sand or crushed stone complying with gradation requirements in ASTM C 33 for fine aggregate.

4. Soil Mix for Leveling Course: Sound, sharp, washed, natural sand or crushed stone complying with gradation requirements in ASTM C 33 for fine aggregate blended with planting soil mix complying with requirements in Division 32 Section(s) "Turf And Grasses" OR "Plants", as directed. Use blend consisting of 1/2 sand and 1/2 soil mix OR 2/3 sand and 1/3 soil mix, as directed.
5. Graded Aggregate for Leveling Course: Sound crushed stone or gravel complying with ASTM D 448 for Size No. 8 OR 9, as directed.

6. Soil for Porous Paver Fill: Planting soil mix complying with requirements in Division 32 Section(s) "Turf And Grasses" OR "Plants", as directed.

7. Graded Aggregate for Porous Paver Fill: Sound crushed stone or gravel complying with ASTM D 448 for Size No. 8 OR 9, as directed.
 a. Provide stone of color indicated OR to match the Owner's sample, as directed.

8. Grass Seed: Comply with requirements in Division 32 Section "Turf And Grasses".

9. Separation Geotextile: Woven geotextile fabric, manufactured for separation applications; made from polyolefins or polyesters, with elongation less than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:
 a. Survivability: Class 2; AASHTO M 288.
 b. Apparent Opening Size: No. 60 (0.250-mm) sieve, maximum; ASTM D 4751.
 c. Permittivity: 0.02 per second, minimum; ASTM D 4491.
 d. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.

10. Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:
 a. Survivability: Class 2; AASHTO M 288.
 b. Apparent Opening Size: No. 40 (0.425-mm) sieve, maximum; ASTM D 4751.
 c. Permittivity: 0.5 per second, minimum; ASTM D 4491.
 d. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.

1.3 EXECUTION

A. Preparation
 1. Proof-roll prepared subgrade according to requirements in Division 31 Section "Earth Moving" to identify soft pockets and areas of excess yielding. Proceed with porous paver installation only after deficient subgrades have been corrected and are ready to receive subbase and base OR base, as directed, course for porous paving.

B. Installation, General
 1. Do not use unit pavers with chips, cracks, voids, discolorations, and other defects that might be structurally unsound or visible in finished work.
 2. Cut unit pavers with motor-driven masonry saw equipment or a block splitter, as directed, to provide clean, sharp, unchipped edges. Cut units to provide pattern indicated and to fit adjoining work neatly. Use full units without cutting where possible. Hammer cutting is not acceptable.
 3. Tolerances:
 a. Variation in Plane between Adjacent Units (Lipping): Do not exceed 1/16-inch (1.5-mm) unit-to-unit offset from flush.
 b. Variation from Level or Indicated Slope: Do not exceed 1/8 inch in 24 inches (3 mm in 600 mm) and 1/4 inch in 10 feet (6 mm in 3 m) or a maximum of 1/2 inch (13 mm).
 4. Provide edge restraints as indicated. Install edge restraints before placing unit pavers.
 a. Install edge restraints to comply with manufacturer's written instructions. Install stakes at intervals required to hold edge restraints in place during and after porous paver installation.
 b. For metal edge restraints with top edge exposed, drive stakes at least 1 inch (25 mm) below top edge.
 c. Install job-built concrete edge restraints to comply with requirements in Division 32 Section "Concrete Paving".
 5. Provide curbs as indicated. Install curbs before placing unit pavers.
 a. Install precast concrete OR granite, as directed, curbs on a bedding of compacted base-course material over compacted subgrade. Install curbs before placing base course for
pavers. Set curbs at elevations indicated, accurately aligned, and place and compact base-course material behind curbs as indicated.

b. Install precast concrete curbs on aggregate base course after placing and compacting base course for pavers. Set curbs with top edge 1 inch (25 mm) below top of pavers. Anchor curbs with metal stakes driven through holes in curbs into base-course material.

c. Install precast concrete curbs on aggregate-base course after placing and compacting base course for pavers. Set curbs with top surface 1/2 inch (13 mm) \textbf{OR} 2 inches (50 mm) \textbf{OR} 4 inches (100 mm), as directed, above top of pavers. Anchor curbs with metal stakes driven behind curbs into base-course material.

C. Setting-Bed Installation

1. Compact soil subgrade uniformly to at least 95 percent of ASTM D 698 \textbf{OR} ASTM D 1557, as directed, laboratory density.
2. Proof-roll prepared subgrade to identify soft pockets and areas of excess yielding. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by the Owner, and replace with compacted backfill or fill as directed.
3. Place separation \textbf{OR} drainage, as directed, geotextile over prepared subgrade, overlapping ends and edges at least 12 inches (300 mm).
4. For light-traffic uses, place aggregate subbase \textbf{OR} subbase and base, as directed, compact by tamping with plate vibrator, and screed to depth indicated.
5. For heavy-duty applications, place aggregate subbase \textbf{OR} subbase and base, as directed, compact to 100 percent of ASTM D 1557 maximum laboratory density, and screed to depth indicated.
6. Place drainage geotextile over compacted subbase, overlapping ends and edges at least 12 inches (300 mm).
7. Place drainage geotextile over compacted base course, overlapping ends and edges at least 12 inches (300 mm).
8. Place leveling course and screed to a thickness of 1 to 1-1/2 inches (25 to 38 mm) \textbf{OR} 2 to 2-1/2 inches (50 to 64 mm) \textbf{OR} 3 inches (76 mm), as directed, taking care that moisture content remains constant and density is loose and constant until pavers are set and compacted.

D. Paver Installation

1. Set unit pavers on leveling course, being careful not to disturb leveling base. If pavers have lugs or spacer bars to control spacing, place pavers hand tight against lugs or spacer bars. If pavers do not have lugs or spacer bars, place pavers with a 1/16-inch- (1.6-mm-) minimum and 1/8-inch- (3.2-mm-) maximum joint width. Use string lines to keep straight lines. Fill gaps between units that exceed 3/8 inch (10 mm) with pieces cut to fit from full-size pavers.
 a. When installation is performed with mechanical equipment, use only unit pavers with lugs or spacer bars on sides of each unit.
2. Compact pavers into leveling course with a low-amplitude plate vibrator capable of a 3500- to 5000-lbf (16- to 22-kN) compaction force at 80 to 90 Hz. Use vibrator with neoprene mat on face of plate or other means as needed to prevent cracking and chipping of pavers. Perform at least three passes across paving with vibrator.
 a. Compact pavers when there is sufficient surface to accommodate operation of vibrator, leaving at least 36 inches (900 mm) of uncompacted pavers adjacent to temporary edges.
 b. Before ending each day’s work, compact installed concrete pavers except for 36-inch (900 mm) width of uncompacted pavers adjacent to temporary edges (laying faces).
 c. As work progresses to perimeter of installation, compact installed pavers that are adjacent to permanent edges unless they are within 36 inches (90 mm) of laying face.
 d. Before ending each day’s work and when rain interrupts work, cover pavers that have not been compacted and leveling course on which pavers have not been placed with nonstaining plastic sheets to protect them from rain.
3. Place soil fill as follows, immediately after vibrating pavers into leveling course. Spread and screed soil fill level with tops of pavers. Vibrate pavers and add soil fill until porous paving is filled to about 3/4 inch (19 mm) from top surface; remove excess soil fill if any.
 a. Before ending each day's work, place soil fill in installed porous paving except for 42-inch (1067-mm) width of unfilled paving adjacent to temporary edges (laying faces).
 b. As work progresses to perimeter of installation, place soil fill in installed paving that is adjacent to permanent edges unless it is within 42 inches (1067 mm) of laying face.
 c. Before ending each day's work and when rain interrupts work, cover paving that has not been filled with nonstaining plastic sheets to protect it from rain.

4. After filling pavers with soil, sow seed to comply with requirements in Division 32 Section "Turf And Grasses". except sow seed at half the rate specified for seeding lawns. Sweep seed from surfaces of pavers into voids and water with fine spray.
 a. Within 24 hours after sowing seed, spread an additional 3/16 inch (4.8 mm) of soil fill over seed and soak with water.

5. Place graded aggregate fill immediately after vibrating pavers into leveling course. Spread and screed aggregate fill level with tops of pavers.
 a. Before ending each day's work, place aggregate fill in installed porous paving except for 42-inch (1067-mm) width of unfilled paving adjacent to temporary edges (laying faces).
 b. As work progresses to perimeter of installation, place aggregate fill in installed paving that is adjacent to permanent edges unless it is within 42 inches (1067 mm) of laying face.
 c. Before ending each day's work and when rain interrupts work, cover paving that has not been filled with nonstaining plastic sheets to protect it from rain.

6. Remove and replace pavers that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Provide new units to match adjoining units and install in same manner as original units, with same joint treatment and with no evidence of replacement.

E. Maintenance And Protection
 1. Water newly planted grass and keep moist until grass is established. Maintain grass that is planted in paving to comply with requirements in Division 32 Section "Turf And Grasses".
 2. Erect barricades and warning signs as required to protect newly planted areas from traffic. Maintain barricades for 60 days after planting.

END OF SECTION 32 16 13 43
SECTION 32 16 23 00 - ASPHALT CONCRETE SIDEWALKS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of asphalt concrete sidewalks. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Asphaltic Concrete:

B. Bituminous Prime: ASTM D 2027, Grades MC-30 or MC-70; ASTM D 2028, Grade RC-70; or ASTM D 2026, Grade SC-70.

C. Base Course: ASTM D 2940.

D. Bituminous Tack Coat: ASTM D 977, Grades RS-1, MS-1 or SS-1h; ASTM D 2027, Grade MC-30; ASTM D 2028, Grade RC-70; ASTM D 2026, Grade SC-70; or ASTM D 2397, Grades CRS-1 or CSS-1.

E. Seal Coat: ASTM D 2027, Grade HC-250 or MC-800; or D 2028, Grade RC-250 or RC-800.

F. Slurry Coat Mixture shall be comprised of 70 percent sand or fine aggregate, 10 percent water, and 20 percent liquid or emulsified asphalt.
1. Fine Aggregate: ASTM D 1073, Grade 2.
2. Emulsified Asphalt: ASTM D 977, Grades SS-1 or SS-1h.

1.3 EXECUTION

A. Application Temperatures: Application temperatures for all asphalt materials shall comply with provisions of the Asphalt Institute publications and the applicable ASTM standards.

B. Subgrade: Construct the subgrade for walkway replacement true to grade and compact as required.

C. Base Course
1. Placing: Spread the base course material evenly upon the prepared subgrade, in a layer of such depth that when compacted the layer will be uniform and of the thickness required.
2. Compaction: Immediately following the spreading of the material, compact the base course with equipment to a density as required.

D. Surface Course
1. **Placing**: Apply prime coat, and allow it to cure. The placing of the mixture shall be continuous. Paint all contact surfaces of previously constructed sidewalk with a tack coat of rapid-setting liquid asphalt just before the fresh mixture is placed.

2. **Forms**: Set forms with the upper edge true to line and hold grade rigidly in place by stakes placed on the outside of the forms and set flush with the top edge of the forms.

3. **Compaction**: Immediately following the placement of the asphalt concrete mixture, compact the surface course with equipment to a density as required.

4. **Backfilling**: After removing the forms and debris, backfill the exposed or excavated area adjoining the sidewalk with granular material, grade, and compact to conform to the surrounding area.

E. Patching

1. **For Repair Operations Involving Raveling, Heaving, Spalling, and Alligating**: Cut asphalt concrete paving back to solid material, making cut area rectangular with vertical sides. Remove deteriorated pavement including base material if required. Replace base course, compact, and tack coat the base material and the vertical surfaces of cut area. Fill area with new asphalt concrete and compact level with existing walkway. Dust patched area with sand or mineral dust.

2. **Pothole Repair**: Cut rectangular hole around pothole back to solid pavement leaving straight, vertical edges. Remove loose material and water to firm base. Fill holes and compact to within 3 inches of the surface in layers not exceeding 6 inches with either base material or asphalt mixture. Apply tack coat to base material and vertical edges. On the surface layer, fill with asphalt mixture and mound to such height that when compacted the mix will be level with surrounding walkway surface. Dust patched area with sand or mineral dust.

3. **Low Spot or Depression Repair**: Determine limits of depression with straigntedge, and mark outline with crayon. Apply tack coat, 0.05 to 0.15 gallon per square yard, to the cleaned area, and allow to cure. Spread area with asphalt concrete mix and feather edge by raking and manipulation of the material. Roll and compact area to surrounding walkway level. Recheck with straigntedge. Apply a sand seal to the patched area to prevent entrance of water.

4. **Polished Aggregate Repair**: Clean and dry area thoroughly. Apply tack coat at a rate of 0.05 to 0.15 gallon per square yard; overlay area with new asphalt concrete mix to a minimum 1-1/2 inch thickness and feather to adjoining walkway surfaces. Roll with pneumatic or steel rollers.

5. **Damaged Edging Repair**: Remove damaged or deteriorated edging materials and replace.

6. **Prime Coat**: Prime new base course with MC-70 liquid asphalt at a rate of 0.20 to 0.30 gallon per square yard. Take care to apply to more asphalt than will penetrate into the base course during curing. Blot excess prime with sand before the surfacing material is applied.

7. **Tack Coat**: Surfaces and cut edges of existing asphalt concrete shall be given a tack coat of MC-70 liquid asphalt at a rate of 0.05 to 0.15 gallon per square yard. After application of the tack coat, allow time for the material to cure before surfacing and patching material is placed.

8. **Seal Coat Spray Application**: Walkway surfaces that are to be sealed shall receive a liquid asphalt coat applied at a rate of 0.15 to 0.20 gallon per square yard, along with a fine aggregate at a rate of 15 to 20 pounds per square yard.

F. Crack Repair: Fill cracks after drying with liquid asphalt, sand asphalt emulsion water mixture, or slurry seal. After thorough cleaning, work the mixture into cracks by broom or squeegee. Cracks 1/8 to 1/2 inch width shall be slurry sealed and filled with liquid asphalt. Dust repaired cracks with fine aggregate or mineral dust to prevent cracking. Final thickness of the slurry seal shall be 1/8 inch minimum.

END OF SECTION 32 16 23 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 16 23 00</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
</tbody>
</table>
SECTION 32 17 13 19 - PARKING CONTROL EQUIPMENT

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for parking control equipment. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Automatic barrier gates.
 b. Vehicle detectors.
 c. Traffic controllers.
 d. Entry terminal ticket dispensers.
 e. Exit terminals.
 f. Pay stations.
 g. Fee computers.
 h. Parking facility management software.
 i. Access control units.

C. System Description
1. Parking Control System: Intended to be used for the following types of parking management:
 a. Transient Parking: Hourly rated parking, with fee paid while entering OR exiting, as directed.
 b. Monthly Parking: Monthly rated parking, with fee paid by the month and access gained by access control card.
 c. Flat-Rate Parking: Unlimited-duration parking, with free gate entry and fixed-fee amount paid while exiting.
 d. Special-Event Parking: Duration-of-event parking, with fee paid while entering with gates up or down.
 e. Limited Date(s) and Time(s) Parking: Limited-duration parking, with predetermined fee access control card.
 f. Merchant Validated Parking: Fee set, reduced, or waived by merchant validation, with free gate entry and fee paid while exiting.
 g. Valet Parking: Assisted parking, with fee paid while entering or exiting.
 h. Hotel Guest Parking: Unlimited access for duration of stay, with access gained by access control card.

D. Submittals
1. Product Data: For each type of product indicated.
2. Shop Drawings: For parking control equipment. Include plans, elevations, sections, details, and attachments to other work.
 a. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 b. Wiring Diagrams: For power, signal, and control wiring.
3. Field quality-control reports.
4. Operation and Maintenance Data: For parking control equipment to include in emergency, operation, and maintenance manuals.
5. Software and Firmware Operational Documentation:
 a. Software operating and upgrade manuals.
 b. Program Software Backup: On magnetic media or compact disk, complete with data files.
32 - Exterior Improvements

E. Quality Assurance
1. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Software Service Agreement
1. Technical Support: Beginning with Substantial Completion, provide software support for two, as directed, years.
2. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two, as directed, years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
a. Provide 30, as directed, days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

1.2 PRODUCTS

A. Materials
1. Aluminum: Alloy and temper recommended by aluminum producer and manufacturer for type of use and finish indicated, and as follows:
2. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B.
3. Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, commercial quality, with G60 (Z180) coating designation; mill phosphatized.
4. Stainless-Steel Sheet: ASTM A 666, Type 304.

B. Automatic Barrier Gates
1. General: Provide UL-approved parking control device consisting of operator and controller housed in a weathertight, tamper-resistant cabinet enclosure with gate arm. Device shall be activated by a signal from access or revenue control device. Fabricate unit with gate-arm height in down position of not more than 35 inches (889 mm) above pavement to prevent even small vehicles from passing under gate arm.
2. Standard: Provide barrier gates and gate operators that are listed and labeled according to UL 325 by a qualified testing agency. Provide barrier gates that comply with ASTM F 2200, as directed.
a. Type: Noncommunicating.
1) Capable of logic for one- and two-way lanes.
2) Separate momentary contacts for transient patrons, monthly patrons, vehicle entries, and vehicle exits.
b. Type: Communicating.
1) Real-time communication of lane counts, status messages, and execute commands.
2) Monitor illegal entries and exits, tailgates, tickets, monthlies, and backouts.
3) Status messages for gate up too long, backouts, ticket in chute, and gate-arm rebound.
4) Communication commands for resetting loops, turning "Full" signs on/off, raising and lowering gate arm, and disabling ticket dispensers OR card readers, as directed.

c. Features: Equip unit with the following:
1) Able to store successive inputs and sequentially processing each one.
2) Automatic instant-reversing obstacle detector mechanism that stops downward motion of gate arm if arm contacts or nears an object and that immediately returns arm to upward position. Include a 0- to 60-second, variable-time reset device.
3) On-off power supply switch.
4) Automatic-manual switch.
5) Differential counter.
6) Directional arming logic.
7) RS-422 communication port.
8) Broken gate-arm monitoring.
9) Programmable automatic, as directed, timer.
10) Internal resettable OR non-resettable, as directed, counters.
11) Thermal-overload protection with manual reset.
12) Plug-in connectors for two OR three, as directed, vehicle loop detectors.
13) Thermostatically controlled heater with on/off/auto switch.
14) Diagnostic mode for on-site testing, with LEDs for inputs and outputs, as directed.
15) Automatic and continuous testing of inputs and outputs.
16) Switch to test motor and limit switches.
17) Emergency manual disconnect.
18) Battery backup.
19) Single, 115-V ac grounded power receptacle.
20) Reversible arm capability for right- or left-handed operation.

4. Cabinets: Fabricated from metal sheet with seams welded and ground smooth; approximately 15 inches square by 40 inches tall (381 mm square by 1016 mm tall). Provide single, gasketed access door for each cabinet with flush-mounted locks. Furnish two keys for each lock, all locks keyed alike, as directed. Fabricate cabinet with internal reinforcing and four mounting holes accessible only from inside cabinet.
a. Material: Not less than 0.097-inch- (2.5-mm-) thick, galvanized-, as directed, steel sheet or 0.125-inch- (3.2-mm-) thick aluminum sheet.
 1) Finish cabinet, interior and exterior, with manufacturer’s standard white OR yellow, as directed, baked-enamel finish over primer.

b. Material: Not less than 0.109-inch- (2.8-mm-) thick, stainless-steel sheet.
 1) Finish cabinet exterior with No. 4 finish.
 OR
 Finish cabinet, interior and exterior, with manufacturer’s standard white OR yellow, as directed, baked-enamel finish over primer.

5. Straight Gate Arm: 1-by-4-inch nominal- (19-by-89-mm actual-) size pine or redwood OR 0.097-inch- (2.5-mm-) thick steel OR Fiberglass, PVC, or polycarbonate OR Aluminum, as directed, with painted finish and black diagonal stripes on traffic-side face. Provide mounting flange with breakaway feature to ensure clean break if arm is struck by vehicle.
a. Length: 10 feet (3.0 m) OR 12 feet (3.7 m) OR As indicated on Drawings, as directed.

6. Folding Gate Arm: Two pieces of 1-by-4-inch nominal- (19-by-89-mm actual-) size pine or redwood joined together with metal side brackets; with painted finish and black diagonal stripes on traffic-side face. Provide mounting flange with breakaway feature to ensure clean break if arm is struck by vehicle.
a. Length: 10 feet (3.0 m) OR 12 feet (3.7 m) OR As indicated on Drawings, as directed.

7. Straight Gate Arm with Counterbalance: 1-by-6-inch nominal- (19-by-140-mm actual-) size pine or redwood with steel counterweights; with painted finish and black diagonal stripes on traffic-side face. Provide mounting flange with breakaway feature to ensure clean break if arm is struck by vehicle.
a. Length: 16 feet (4.9 m) OR As indicated on Drawings, as directed.

8. Wishbone-Style Gate Arm: 1-by-4-inch nominal- (19-by-89-mm actual-) size pine or redwood OR 0.097-inch- (2.5-mm-) thick steel, as directed, formed into wishbone configuration, with steel counterweights; with painted finish and black diagonal stripes on traffic-side face. Provide mounting flange with breakaway feature to ensure clean break if arm is struck by vehicle.
 a. Length: 14 feet (4.3 m) OR As indicated on Drawings, as directed.

9. Operator: 1/3 OR 1/2, as directed, hp; 60-Hz, single-phase, instant-reversing, continuous-duty motor for operating gate arm. Transmit power to gate-arm drive shaft through speed reducer to harmonic-acting crank and connecting rod. Fabricate crank, rod, and drive shaft of galvanized solid bar steel. Provide an operable cam for adjusting arm travel.
 a. Opening Time: Three OR Six, as directed, seconds.
 b. Inherently adjustable torque limiting clutch for safety.

10. Accessories:
 a. Audible alarm that activates as part of a safety device system.
 b. Additional obstruction detector; noncontact infrared OR photoelectric OR radio-frequency barrier, as directed.
 c. Barrier-arm warning safety signs on both sides of unit limiting traffic to vehicular traffic.
 d. Low-voltage yellow OR red, as directed, warning lights that illuminate when gate is in down position.
 e. Low-voltage light on cabinet top that flashes or changes from red to green when barrier gate is operating.
 f. Manually operated crank for emergency operation.
 g. Local authorities' emergency access as directed by the Owner.
 h. Gate-arm tip support with electromagnetic lock, as directed.

C. Vehicle Detectors

1. Vehicle Loop Detector System: Provide self-tuning electronic presence detector with adjustable detection patterns, adjustable sensitivity and frequency settings, and panel indicator light designed to detect presence or transit of a vehicle over an embedded loop of wire and to emit signal activating gate-arm operator. Include automatic closing timer with adjustable time delay before closing, timer cut-off switch, as directed, and vehicle loop detector designed to open and close gate arm OR hold gate arm open until traffic clears, as directed. Provide number of loops consisting of multiple strands of wire, number of turns, loop size, and method of placement at location shown on Drawings, as recommended in writing by detection system manufacturer for function indicated.
 a. Field-Assembled Loop: Wire, in size indicated for field assembly, and sealant; style for pave-over OR saw-cut, as directed, installation.
 b. Factory-Formed Loop: Wire, preformed in size indicated; style for pave-over OR saw-cut, as directed, installation.
 c. System Performance: Capable of the following:
 1) Recognize two vehicles within 6 inches (152 mm) of each other on standard-sized loop.
 2) Recognize vehicle direction by detecting vehicle moving from one loop to another.
 3) Generate reverse count if vehicle backs up after generating directional count in forward direction.
 4) Continuous diagnostic monitoring for intermittently operating and failed loops.
 5) Crosstalk test between adjacent loops.

2. Active Infrared Vehicle Detector: Provide retroreflective OR emitter/receiver, as directed, type presence detector with adjustable detection zone pattern and sensitivity, designed to detect the presence or transit of vehicle in gate-arm pathway by interrupting infrared beam in zone pattern and to emit signal activating gate-arm operator. Include automatic closing timer with adjustable time delay before closing, timer cut-off switch, as directed, and vehicle presence detector designed to open and close gate arm OR hold gate arm open until traffic clears, as directed.
D. Traffic Controllers
 1. Penetrating Type: Provide directional enforcement system consisting of multiple raised teeth that allow vehicular traffic in one direction and that puncture tires of vehicular traffic in the other direction. Fabricate system from steel plate contained in welded steel frame.
 a. Mounting: Surface OR Recessed, as directed.
 b. Operation: Manual, with each tooth controlled by torsion spring OR Electromechanical OR Hydraulic, as directed.
 c. Latch Down: Allow disarming for two-way traffic flow. Provide one, as directed, tool(s) for latch-down operation.
 d. Illuminated Warning Signs: Single OR Double, as directed, -faced warning signs consisting of fluorescent lamps with cold-start ballasts contained in welded steel bodies with baked-enamel finish and fiberglass sign faces. Provide base sleeves and posts for post mounting, as directed.
 1) Sign Copy: "Wrong Way, Stop, Severe Tire Damage" OR "Warning, Do Not Back Up, Tire Damage," as directed.
 2. Nonpenetrating Type: Provide directional enforcement system consisting of spring-activated steel curb that allows traffic in only one direction. Fabricate system from steel plate contained in welded steel frame.
 a. Mounting: Surface OR Recessed, as directed.
 b. Operation: Manual OR Electromechanical OR Hydraulic, as directed.

E. Entry Terminal Ticket Dispensers
 1. General: Provide entry terminal ticket dispensers, consisting of ticket-printing and issuing mechanisms, ticket magazines, thermal printers, and controllers housed in cabinet enclosures.
 a. Features: Include the following:
 1) Time and date display.
 2) Time Indicator: 24-hour cycle with A.M. and P.M. OR military-time, as directed, clock mechanism.
 3) Voice annunciation.
 4) Tickets: Standard paper OR Magnetic-stripe OR Barcode, as directed, type.
 5) Removable ticket tray with capacity of 5000, as directed, fan-folded tickets.
 6) Operation: Standalone OR Online communication to remote computer, as directed.
 7) Battery backup for clock and RAM memory.
 8) RS-422 communication port.
 9) Thermostatically controlled heater with on/off/auto switch.
 10) Access OR Credit, as directed, card acceptance with activation slot and "Insert Ticket/Card" message.
 11) License plate recognition.
 12) Multiple ticket option for valet parking.
 13) Intercom.
 2. System Performance: Activation by button with "Push for Ticket" message OR vehicle detector OR card reader, as directed. On activation, unit automatically records entry time and date on ticket, sounds buzzer, as directed, and dispenses ticket.
 a. Automatic ticket validation.
 b. Program ticket numbering.
 c. Low-ticket alarm.
 d. Out-of-ticket alarm.
 e. Ticket jam detection.
 f. Print test ticket.
 3. Cabinets: Fabricated from metal sheet with seams welded and ground smooth, approximately 15 inches square by 40 inches tall (381 mm square by 1016 mm tall); consisting of base and top components. Provide single, gasketed access door for each base component with flush-mounted locks. Furnish two keys for each lock, all locks keyed alike, as directed. Fabricate cabinet with internal reinforcing and four mounting holes accessible only from inside cabinet. Fabricate top
component so it can be unlocked and opened for ticket loading and maintenance. Include flush-mounted lock in rear of top, keyed the same as base component lock.

- Material: Not less than 0.097-inch-(2.5-mm-) thick, galvanized-, **as directed**, steel sheet or 0.125-inch-(3.2-mm-) thick aluminum sheet.
 1) Finish cabinet, interior and exterior, with manufacturer's standard white **OR** yellow, **as directed**, baked-enamel finish over primer.

- Material: Not less than 0.109-inch-(2.8-mm-) thick, stainless-steel sheet.
 1) Finish cabinet exterior with No. 4 finish.

OR Finish cabinet, interior and exterior, with manufacturer's standard white **OR** yellow, **as directed**, baked-enamel finish over primer.

4. Ticket-Dispensing Mechanisms: Removable assembly, with self-sharpening ticket cutter or ticket burster and plug-in controller.

F. Exit Terminals
1. General: Provide exit terminals consisting of ticket collectors, magnetic-stripe ticket readers, LCD, **as directed**, displays, thermal printers, and controllers housed in cabinet enclosures. Provide "Please Insert Ticket" sign on side of cabinet visible to driver.

- Features: Include the following:
 1) Operation: Standalone **OR** Online communication to remote computer, **as directed**.
 2) Battery backup for clock and RAM memory.
 3) Thermostatically controlled heater with on/off/auto switch.
 4) RS-422 communication port.
 5) Access **OR** Credit, **as directed**, card acceptance with activation slot and "Insert Ticket/Card" message.
 6) Intercom.

2. System Performance: Capable of the following:

- Activated by vehicle detector **OR** card reader, **as directed**.
- Print receipts on demand.
- Voice annunciation.
- Program facility code.
- Program grace period.
- Program display.
- Program timer for closing barrier gate.
- Reports for events and exception events.
- Built-in service diagnostics.

3. Operation: Inserting exit ticket into exit ticket reader results in the following actions:

- Valid Exit Ticket: Exit ticket reader captures ticket and automatically sends signal to raise barrier gate.
- Invalid Exit Ticket: Exit ticket reader rejects ticket and displays "Pay Cashier First" message.
- Exit Ticket with Elapsed Grace Time: Exit ticket reader rejects ticket and displays "Return to Cashier" message.

4. Cabinets: Fabricated from metal sheet with seams welded and ground smooth; approximately 15 inches square by 40 inches tall (381 mm square by 1016 mm tall). Provide single, gasketed access door for each cabinet with flush-mounted locks. Furnish two keys for each lock, all locks keyed alike, **as directed**. Fabricate cabinet with internal reinforcing and four mounting holes accessible only from inside cabinet.

- Material: Not less than 0.097-inch-(2.5-mm-) thick, galvanized-, **as directed**, steel sheet or 0.125-inch-(3.2-mm-) thick aluminum sheet.
 1) Finish cabinet, interior and exterior, with manufacturer's standard white **OR** yellow, **as directed**, baked-enamel finish over primer.

- Material: Not less than 0.109-inch-(2.8-mm-) thick, stainless-steel sheet.
 1) Finish cabinet exterior with No. 4 finish.
Finish cabinet, interior and exterior, with manufacturer's standard white OR yellow, as directed, baked-enamel finish over primer.

G. Pay Stations
1. General: Provide self-contained cashiering central OR entry OR exit, as directed, pay stations designed for self-service operation; consisting of magnetic-stripe ticket dispensers and, as directed, readers/validators, LCD, as directed, displays, fee computers, controllers, as directed, and thermal printers housed in a combined enclosure.
 a. Features: Include the following:
 1) Operation: Standalone OR Online communication to remote computer, as directed.
 2) Battery backup for clock and RAM memory.
 3) Thermostatically controlled heater with on/off/auto switch.
 4) Access card acceptance.
 5) Intercom.
2. System Performance: Capable of the following:
 a. Compute multiple parking fees based on entry times on ticket from ticket dispenser.
 b. Compute multiple taxes by percent and fixed amount.
 c. Program lost ticket function.
 d. Display fee.
 e. Accept payment by cash credit card OR debit card OR merchant ticket, as directed.
 f. Compute change.
 g. Print receipts on demand.
 h. Print validation on ticket.
 i. Voice annunciation.
 j. Print audit trail.
 k. Program six, as directed, fee structures.
 l. Program time.
 m. Program merchant validations.
 n. Test mode to verify accuracy of fee structure program.
 o. Built-in service diagnostics.
 p. Print cash audit, revenue, operational, and statistical reports on demand.
 q. Duress alarm output for emergencies.
 r. Battery backup.
3. Cabinets: Fabricated from cold-rolled steel sheet with seams welded and ground smooth, approximately 36 inches wide by 18 inches deep by 60 inches tall (914 mm wide by 457 mm deep by 1524 mm tall). Provide single, gasketed access door with flush-mounted locks. Furnish two keys for each lock, all keys keyed alike, as directed. Fabricate cabinet with internal reinforcing and four mounting holes accessible only from inside cabinet.
 a. Finish cabinet, interior and exterior, with manufacturer's standard white OR yellow, as directed, baked-enamel finish over primer.

H. Fee Computers
1. Fee Computer System: Provide modular PC-based, as directed, system consisting of fee computer terminal, cash drawer, OR two cash drawers, as directed, standard ticket reader, OR magnetic-stripe ticket reader, OR barcode ticket reader, as directed, and detachable printer. Register permanent record of each transaction in computer's memory.
 a. Features: Provide the following:
 1) Battery backup for clock and RAM memory.
 2) RS-422 communication port.
 3) Keyed OR Keyless-membrane, as directed, keypad.
2. System Performance: Capable of the following:
 a. Compute multiple parking fees based on entry times on ticket from ticket dispenser.
 b. Compute multiple taxes by percent and fixed amount.
 c. Program lost ticket function.
32 - Exterior Improvements

Parking Control Equipment

July 2012

32 17 13 19 - 8

County of Santa Clara Roads and Airports Department,

RAD-2012-01

3. Cash Drawer: Fabricated with a removable tray and drawer, with five compartments for paper currency and five compartments for coins.

4. Remote Fee Display: Single-faced signs designed for use with fee computer, consisting of 1-inch-(25-mm-) tall, LCD or LED displays contained in welded steel bodies with baked-enamel finish.
 b. Mounting: Front of cashier’s booth OR 42-inch-(1067-mm-) high pedestal, as directed.

I. Miscellaneous Parking Control Equipment

1. Lot “Full” Signs: Single-faced signs consisting of illumination source contained in welded steel bodies with extended hood and baked-enamel finish. Sign copy shall be 4 inches (102 mm), as directed, tall.
 a. Type: Flashing OR Nonflashing, as directed.
 b. Operation: Manual by push button OR Automatic by barrier gate controller, as directed.
 c. Illumination: Traffic signal lamps and colored OR Neon tube and clear, as directed, fiberglass sign face.
 d. Mounting: Top of barrier gate cabinet OR 42-inch-(1067-mm-) high pedestal, as directed.

J. Parking Facility Management Software

1. General: Manufacturer’s standard software that is compatible with security access control system and that provides automatic facility monitoring, supervision, and remote control of parking control equipment from one or more locations.
 a. System Performance: Capable of the following:
 1) Collect data for revenue and activity reporting.
 2) Collect data for access and space control.
 3) Track tickets.
 4) Program parking control equipment.

K. Access Control Units

1. General: Provide access control unit that activates barrier gates.
a. Unit Housing: Fabricate from welded cold-rolled steel or aluminum sheet OR plastic, as directed, with weatherproof front access panel equipped with flush-mounted lock and two keys. Provide face-lighted unit fully visible at night.
 1) Steel Finish: Manufacturer’s standard baked-enamel coating system.

2. Card Reader Controlled Unit: Functions only when authorized card is presented.
 a. System: Magnetically coded, single-code system activated by coded card OR Programmable, multiple-code capability permitting validating or voiding of individual cards, as directed.
 1) Permit four different access time periods.
 b. Reader: Swipe type for magnetic-stripe OR barcode OR Wiegand, as directed, cards.
 OR Reader: Insertion type for magnetic-stripe OR barcode OR Wiegand, as directed, cards.
 OR Reader: Proximity type for proximity cards.
 c. Operation: Standalone OR Online communication to remote parking control system computer OR Online communication to remote security access control system computer, as directed.
 d. Features: Timed antipassback OR Limited-time usage OR Capable of monitoring and auditing barrier gate activity OR LCD display OR Programmable by PDA (personal digital assistant) by infrared interface, as directed.
 e. Mounting: With pedestal OR Wall OR In enclosed cabinet OR As indicated on Drawings, as directed.
 f. Cards: Provide number as directed by the Owner.
 1) Imprint cards: as directed by the Owner.

3. Digital Keypad Controlled Unit: Functions only when authorized code is entered on keyed OR keyless-membrane, as directed, keypad.
 a. System: Multiple-code capability of not less than five OR 100 OR 500, as directed, possible individual codes.
 OR System: Programmable, multiple-code capability permitting validating or voiding of not less than 100 OR 2500 OR 10,000, as directed, possible individual codes, consisting of one to six, as directed, digits, and permitting four different access time periods, as directed.
 b. Operation: Standalone OR Online communication to remote parking control system computer OR Online communication to remote security access control system computer, as directed.
 c. Features: Timed antipassback OR Limited-time usage OR Capable of monitoring and auditing barrier gate activity, as directed.
 d. Mounting: With pedestal OR Wall OR As indicated on Drawings, as directed.

4. Radio-Controlled System: Digital access control system consisting of code-compatible universal coaxial receiver, one per barrier gate, OR, where indicated on Drawings, as directed, remote antenna with coaxial cable and mounting brackets, and one permanently mounted OR four portable, as directed, transmitter(s) per receiver designed to operate barrier gates. Provide programmable transmitter with multiple-code capability permitting validating or voiding of not less than 1000 OR 10,000, as directed, codes per channel configured for the following functions:
 a. Transmitters: Single-button operated, with open OR open and close, as directed, functions.
 OR Transmitters: Triple-button operated, with open, close, and stop functions.
 1) Provide transmitters featuring two OR three OR four, as directed, independent channel settings controlling separate receivers for operating more than one barrier gate from each transmitter.

L. Aluminum Finishes
1. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 1.5 mils (0.04 mm). Comply with coating manufacturer’s written instructions for cleaning, conversion coating, and applying and baking finish.
 a. Color and Gloss: As indicated by manufacturer’s designations OR Match sample OR As selected from manufacturer’s full range, as directed.

M. Steel Finishes
1. Galvanizing: Hot-dip galvanize items as indicated to comply with the following:
 a. ASTM A 123/A 123M for iron and steel parking control equipment.
 b. ASTM A 153/A 153M and ASTM F 2329 for iron and steel hardware for parking control equipment.
2. Galvanized-Steel and Steel Finish: Immediately after cleaning and pretreating, apply manufacturer’s standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 a. Color and Gloss: As indicated by manufacturer’s designations OR Match sample OR As selected from manufacturer’s full range, as directed.

N. Stainless-Steel Finishes
1. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.
2. Polished Finishes: Grind and polish surfaces to produce uniform finish, free of cross scratches.
 a. Run grain of directional finishes with long dimension of each piece.
 b. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

1.3 EXECUTION
A. Preparation
1. Excavation for Traffic Controllers: Saw cut existing pavement for recessed traffic controllers and hand-excavate recesses to dimensions and depths and at locations as required by traffic controller manufacturer’s written instructions and as indicated on Drawings.

B. Installation
1. General: Install parking control equipment as required for a complete and integrated installation.
 a. Rough-in electrical connections according to requirements specified in Division 22.
2. Automatic Barrier Gates: Anchor cabinets to concrete bases with anchor bolts or expansion anchors and mount barrier gate arms.
 a. Install barrier gates according to UL 325.
3. Vehicle Loop Detectors: Cut grooves in pavement and bury OR Bury, as directed, and seal wire loop at locations indicated on Drawings according to manufacturer's written instructions. Connect to parking control equipment operated by detector.
4. Traffic Controllers: Anchor controllers to recessed concrete bases OR driveway surfaces, as directed, with anchor bolts or expansion anchors.
5. Entry Terminal Ticket Dispensers, Pay Stations and Exit Terminals: Attach cabinets to concrete bases with anchor bolts or expansion anchors.
 a. Connect equipment to remote computer.
 b. Load ticket dispenser with supply of tickets.
6. Fee Computers: Install computers at locations indicated, including connecting to peripheral equipment and remote computers, as directed.
7. Connect wiring according to Division 26 Section “Low-voltage Electrical Power Conductors And Cables”.
8. Ground equipment according to Division 26 Section “Grounding And Bonding For Electrical Systems”.

Parking Control Equipment July 2012
32 17 13 19 - 10 County of Santa Clara Roads and Airports Department,
RAD-2012-01
C. Field Quality Control
 1. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 2. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
 3. Perform tests and inspections.
 a. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 4. Tests and Inspections:
 b. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 c. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 5. Parking control equipment will be considered defective if it does not pass tests and inspections.
 6. Prepare test and inspection reports.

D. Adjusting
 1. Adjust parking control equipment to function smoothly and lubricate as recommended by manufacturer.
 2. Confirm that locks engage accurately and securely without forcing or binding.
 3. After completing installation of exposed, factory-finished parking control equipment, inspect exposed finishes and repair damaged finishes.

E. Protection
 1. Remove barrier gate arms during the construction period to prevent damage, and install them immediately before Substantial Completion.

END OF SECTION 32 17 13 19
SECTION 32 17 13 19a - PREFABRICATED CONTROL BOOTHs

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for prefabricated control booths. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section includes prefabricated steel and aluminum control booths.

C. Definition

D. Performance Requirements
1. Structural Performance: Control booths shall withstand the effects of gravity loads and the loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

E. Submittals
1. Product Data: For each type of product indicated.
2. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
3. Samples: For control booths with factory-applied color finishes.
4. Delegated-Design Submittal: For control booths indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
5. Welding certificates.
6. Maintenance data.
7. Warranty: Sample of special warranty.

F. Quality Assurance
1. Welding Qualifications: Qualify procedures and personnel according to the following:
 a. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 b. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
 c. AWS D1.3, "Structural Welding Code - Sheet Steel."
3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
5. Preinstallation Conference: Conduct conference at Project site.

G. Warranty
1. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair finish or replace wall panels that fail in materials or workmanship within five years from date of Substantial Completion.
1.2 PRODUCTS

A. Materials
1. Aluminum: Alloy and temper recommended by aluminum producer and manufacturer for type of use and finish indicated, and as follows:
2. Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, commercial quality, G90 (Z275) coating designation; mill phosphatized.
3. Galvanized, Rolled Steel Tread Plate: ASTM A 786/A 786M, rolled from steel plate complying with ASTM A 572/A 572M, Grade 55 (380); hot-dip galvanized according to ASTM A 123/A 123M.
4. Steel Structural Tubing: ASTM A 500, Grade B.
5. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
7. Zinc-Coated (Galvanized) Steel: Hot-dip galvanized according to ASTM A 123/A 123M.
8. Stainless-Steel Sheet: ASTM A 666, Type 304.
12. Clear Float Glass: ASTM C 1036, Type I, Class 1, Quality q3.
13. Clear Tempered Float Glass: ASTM C 1048, Kind FT, Condition A, Type I, Class 1, and Quality q3.
14. Insulating Glass: Units complying with ASTM E 774 for Class CBA and consisting of two lites of 2.5-mm-thick clear float glass and dehydrated air space, with a total overall unit thickness of 7/16 inch (11 mm) and with manufacturer's standard dual seal.
15. Ballistics-Resistant Glazing: Comply with requirements specified in Division 08 Section "Security Glazing".
16. Anchorages: Anchor bolts; hot-dip galvanized according to ASTM A 153/A 153M or ASTM F 2329 OR stainless steel, as directed.

B. Prefabricated Control Booths, General
1. General: Provide a complete, integrated set of mutually dependent components that form a completely assembled, prefabricated control booth, ready for installation on Project site.
 a. Building Style: Standard square corners OR Radius corners OR Round corners OR Butt-glazed corners OR Wraparound type, with single rounded building end OR Wraparound type, with both building ends rounded OR As indicated on Drawings, as directed.
 b. Doors: Sliding door on one side OR Sliding doors on both sides OR Swinging door on back OR As indicated on Drawings, as directed.
2. Windows: Extruded-aluminum sash frames glazed with 6-mm-thick, clear tempered glass OR clear insulating glass OR ballistics-resistant glazing, UL 752 Level as directed.
 a. Frame Finish: Mill OR Clear anodic, as directed.
 b. Provide insect screens for each operable window.
 c. Provide galvanized-steel security screens for each window.
 d. Corner Shape: Square OR Round, as directed.
3. Horizontal Sliding Windows: Extruded-aluminum sash frames glazed with 3-mm-thick, clear tempered float glass. Equip windows with cam locks, weather stripping, and stainless-steel OR nylon, as directed, ball-bearing rollers.
 a. Frame Finish: Mill OR Clear anodic, as directed.
 b. Provide insect screens for each operable window.
 c. Corner Shape: Square OR Round, as directed.
4. Work Counters: Full width of control booth, reinforced; with 16-inch- (406-mm-) wide storage OR cash, as directed, drawer below each counter, and an access opening for electrical cords at each rear corner of counter.
a. Material: 0.078-inch (1.98-mm) thick, stainless-steel sheet OR 0.079-inch (2.01-mm) nominal-thickness, galvanized-steel sheet OR 1/2-inch (13-mm) thick particleboard with plastic-laminate finish, as directed.
b. Depth: 22 inches (559 mm) OR 20 inches (508 mm) OR 18 inches (457 mm), as directed.
5. Electrical Power Service: 125-A, 120/240-V ac, single-phase, three-wire load center, with no fewer than four open circuits OR service with 8-16 circuit-breaker panel, as directed; located under end of work counter. Run copper wiring in 1/2-inch (13-mm) EMT conduit.
a. Provide one 120-V ground-fault circuit interrupter (GFCI) power receptacle(s).
6. Lighting Fixtures: One OR Two, as directed, ceiling-mounted fluorescent lighting fixture(s), 48 inches (1219 mm) long, with acrylic lens and two 40-W lamps in each fixture. Provide single-pole switch mounted adjacent to door to control lighting fixture.
7. Heating Unit: Wall-mounted OR Roof-mounted, as directed, thermostatically controlled, 110-V, 1500-W electric heater with fan-forced operation and with capacity of not less than 5000 Btu/h (1465 W). Enclose in enameled-steel cabinet and mount under work counter.
8. Cooling Unit: Wall-mounted OR Roof-mounted, as directed, thermostatically controlled air conditioner with cooling capacity of not less than 13,500 Btu/h (3956 W). Enclose in enameled-steel cabinet.
9. Accessories: Provide the following for each control booth:
a. Through-wall transaction drawers and speaking apertures complying with requirements specified in Division 08 Section "Security Windows".
b. Antifatigue mats.
c. Exterior stainless-steel counter.
d. Floor-mounted OR Wall-mounted, as directed, safe.
e. Signage: <Insert requirements>.
f. Ventilation fan.
g. Intercom.
h. Traffic control lights.

C. Prefabricated Steel Control Booths
2. Base/Floor Assembly: 4-inch (102-mm) OR 3-inch (76-mm), as directed, high assembly consisting of perimeter frame welded to structural framework of booth. Fabricate frame from 2-by-4-inch (51-by-102-mm) galvanized-steel structural tubing; 0.108-inch (2.74-mm) nominal-thickness, C-shaped, galvanized-steel sheet channels; or galvanized structural-steel angles. Include anchor clips fabricated from 1/4-inch (6-mm) thick galvanized-steel plate, predrilled and welded to exterior of integral floor frame.
a. Finished Floor: 0.108-inch (2.74-mm) nominal-thickness, galvanized, rolled steel tread plate.
b. Subfloor and Finished Floor: Assembly consisting of 0.079-inch (2.01-mm) nominal-thickness, galvanized-steel sheet underside with rigid insulation core; covered by 0.125-inch (3.18-mm) thick, aluminum rolled tread plate; with overall assembly thickness of 2 inches (51 mm).
 OR
 Subfloor and Finished Floor: Assembly consisting of one OR two, as directed, layer(s) of 3/4-inch (19-mm) thick plywood or oriented strand board with 0.125-inch (3.18-mm) thick, aluminum rolled tread plate OR vinyl composition flooring OR carpeting, as directed.
 OR
 Base/Floor Assembly: No perimeter frame, with finished floor fabricated from 0.108-inch (2.74-mm) nominal-thickness, galvanized, rolled steel tread plate.
 OR
 Base/Floor Assembly: No perimeter frame, with surface of supporting concrete base as finished floor.
3. Wall Panel Assembly: Assembly consisting of exterior face panel fabricated from 0.079-inch (2.01-mm) nominal-thickness, galvanized-steel sheet; and interior face panel fabricated from
0.064-inch (1.63-mm) OR 0.052-inch (1.32-mm), as directed, nominal-thickness, galvanized-steel sheet; with 2-inch-(51-mm-) OR 3-inch-(76-mm-) thick, rigid fiberglass or polystyrene board insulation in cavity between exterior and interior face panels.

4. Flat Roof/Ceiling Assembly: Consisting of exterior roof panels, interior ceiling panels, and insulation between exterior and interior panels; sloped to drain at booth perimeter.

a. Exterior Roof Panel: Fabricated from 0.079-inch (2.01-mm) OR 0.064-inch (1.63-mm), as directed, nominal-thickness, galvanized-steel sheet; with painted finish OR EPDM membrane, as directed, continuously welded seams, and full-perimeter gutter.

b. Interior Ceiling Panel: Fabricated from 0.079-inch (2.01-mm) nominal-thickness, galvanized-steel sheet; with fiberglass insulation in cavity between ceiling and roof.

1) Thermal Resistance Value (R-Value): R-17.

c. Insulated Exterior/Interior Panel: Fabricated from 0.028-inch (0.71-mm) nominal-thickness, galvanized-steel OR 0.032-inch-(0.81-mm-) thick, aluminum, as directed, sheet faces and expanded-foam insulation core.

1) Thermal Resistance Value (R-Value): R-17.

d. Canopy Fascia: Fabricated from 0.079-inch (2.01-mm) nominal-thickness, galvanized-steel sheet, of manufacturer's standard design OR custom design indicated on Drawings, as directed.

1) Height: 6 inches (152 mm) OR 8 inches (203 mm), as directed.

2) Overhang: 3 inches (76 mm) beyond OR Flush with, as directed, face of walls below.

e. Downspouts: Integral, extending 3 inches (76 mm) beyond booth walls.

f. Roof scuppers.

g. Rooftop finial.

5. Sliding Door: Top suspended from aluminum track with ball-bearing rollers; 1-3/4 inches (44 mm) thick; tubular-frame design fabricated from clear-anodized aluminum OR galvanized steel, as directed; with top half of door glazed. Equip door with deadlock, lock support, guide hardware, and full weather stripping.

a. Glazing: Fixed OR Horizontal sliding, as directed, unit with 6-mm-thick, clear tempered float glass.

b. Deadlock: Mortised, laminated-hook bolt type with removable cylinder capable of being master keyed.

6. Swinging Door: 1-3/4 inches (44 mm) thick; tubular-frame design fabricated from clear-anodized aluminum OR galvanized steel, as directed; with top half of door glazed. Equip door with deadlock, three butt hinges, closer, and full weather stripping.

a. Glazing: Fixed OR Horizontal sliding, as directed, unit with 6-mm-thick, clear tempered float glass.

b. Deadlock: Mortised, with lever handle and removable cylinder capable of being master keyed.

7. Finish: Finish exposed metal surfaces, including structural framework, walls, canopy, and ceiling with rust-inhibitive primer and one finish coat of industrial air-dry acrylic OR polyurethane, as directed, enamel.

a. Color: As selected from manufacturer's full range.

D. Prefabricated Aluminum Control Booths

1. Structural Framework: Fabricated from 2-by-2-by-0.125-inch (51-by-51-by-3.18-mm) aluminum tubing, channel, angle, or tee extrusions; with clear OR color, as directed, anodic finish. Connect framework with exposed, as directed, mechanical fasteners.

2. Base/Floor Assembly: 4-inch-(102-mm-) high assembly consisting of perimeter frame welded to structural framework of booth. Fabricate frame from 2-by-4-by-0.125-inch (51-by-102-by-3.18-mm) aluminum tubing or aluminum angles. Include anchor clips fabricated from 1/4-inch-(6-mm-) thick aluminum, predrilled and welded to exterior of integral floor frame.
a. Subfloor and Finished Floor: Assembly consisting of 0.032-inch- (0.81-mm-) thick, aluminum sheet underside, plywood and rigid insulation core; covered by 0.125-inch- (3.18-mm-) thick, aluminum rolled tread plate; with overall assembly thickness of 2 inches (51 mm).

OR

Subfloor and Finished Floor: Assembly consisting of one OR two, as directed, layer(s) of 3/4-inch- (19-mm-) thick plywood or oriented strand board with 0.125-inch- (3.18-mm-) thick, aluminum rolled tread plate OR vinyl composition flooring OR carpeting, as directed.

OR

Base/Floor Assembly: No perimeter frame, with surface of supporting concrete base as finished floor.

3. Wall Panel Assembly: Assembly consisting of exterior face panel fabricated from 0.032-inch- (0.81-mm-) OR 0.063-inch- (1.60-mm-), as directed, thick aluminum sheet, and interior face panel fabricated from 0.032-inch- (0.81-mm-) OR 0.050-inch- (1.27-mm-), as directed, thick aluminum sheet; with 2-inch- (51-mm-) thick, polystyrene or polyisocyanurate board insulation in cavity between exterior and interior face panels.

4. Flat Roof/Ceiling Assembly: Consisting of exterior roof panels, interior ceiling panels, and insulation between exterior and interior panels; sloped to drain at booth perimeter.
 a. Exterior Roof Panel: Fabricated from 0.032-inch- (0.81-mm-) thick aluminum sheet with protective plastic sheet finish and full-perimeter gutter.
 b. Interior Ceiling Panel: Fabricated from 0.125-inch- (3.18-mm-) thick hardboard; with polyisocyanurate board insulation in cavity between ceiling and roof.
 1) Thermal Resistance Value (R-Value): R-19.

 c. Insulated Exterior/Interior Panel: Fabricated from 0.032-inch- (0.81-mm-) thick, aluminum OR 0.021-inch (0.53-mm) nominal-thickness, galvanized-steel, as directed, sheet faces and expanded-foam insulation core.
 1) Thermal Resistance Value (R-Value): R-19.

 d. Canopy Fascia: Fabricated from 0.063-inch- (1.60-mm-) thick aluminum sheet, of manufacturer's standard design OR custom design indicated on Drawings, as directed.
 1) Height: 6 inches (152 mm) OR 8 inches (203 mm), as directed.
 2) Overhang: 3 inches (76 mm) beyond OR Flush with, as directed, face of walls below.

 e. Downspouts: Integral, extending 3 inches (76 mm) beyond booth walls.
 f. Roof scuppers.
 g. Rooftop finial.

5. Sliding Door: Top suspended from aluminum track with ball-bearing rollers; 1-3/4 inches (44 mm) thick; tubular-frame design fabricated from aluminum matching exterior and interior wall panels; with top half of door glazed and with extruded-aluminum door frame. Equip door with deadlock, lock support, guide hardware, and full weather stripping.
 a. Glazing: Fixed OR Horizontal sliding, as directed, unit with 6-mm-thick, clear tempered float glass.
 b. Deadlock: Mortised, laminated-hook bolt type with removable cylinder capable of being master keyed.

6. Swinging Door: 1-3/4 inches (44 mm) thick; tubular-frame design fabricated from aluminum matching exterior and interior wall panels; with top half of door glazed and with extruded-aluminum door frame. Equip door with deadlock, three butt hinges, closer, and full weather stripping.
 a. Glazing: Fixed OR Horizontal sliding, as directed, unit with 6-mm-thick, clear tempered float glass.
 b. Deadlock: Mortised, with lever handle and removable cylinder capable of being master keyed.

7. Finish: Finish exposed metal surfaces, including structural framework, walls, canopy, and ceiling with clear anodizing OR color anodizing OR baked enamel or powder coat, as directed.
 a. Color: As selected from manufacturer's full range.
E. Fabrication
1. Fabricate control booths completely in factory.
2. Preglaze windows and doors at factory.
3. Prewire control booths at factory, ready for connection to service at Project site.
4. Fabricate control booths with forklift pockets in base of booth OR removable lifting eye centered in roof, as directed.
5. Accessible Control Booths: Where indicated to be accessible, fabricate control booths as follows:
 a. Provide service windows located no higher than 34 inches (865 mm) above exterior grade.
 b. Provide door opening with minimum 32-inch (813-mm) clear width.
 c. Provide minimum 60-inch (1525-mm) clear turning spacing within the booth.
 d. Provide minimum 27-inch (685-mm) clearance beneath interior work surfaces. Locate work surfaces 28 inches (710 mm) minimum and 34 inches (865 mm) maximum above the floor.
 e. Locate controls and operable parts no lower than 15 inches (381 mm) and no higher than 48 inches (1219 mm) above the floor where reach is unobstructed. Where side reach is obstructed, locate controls and operable parts no lower than 15 inches (381 mm) and no higher than 46 inches (1219 mm) above the floor.

F. General Finish Requirements
1. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
2. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

G. Finishes
1. Steel and Galvanized-Steel Factory Finish: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 a. Color and Gloss: As selected from manufacturer's full range.

H. Aluminum Finishes
1. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm OR AA-M12C22A31, Class II, 0.010 mm, as directed, or thicker.
2. Color Anodic Finish: AAMA 611, AA-M12C22A42/A44, Class I, 0.018 mm OR AA-M12C22A32/A34, Class II, 0.010 mm, as directed, or thicker.
 a. Color: Light bronze OR Medium bronze OR Dark bronze OR Black OR As selected from full range of industry colors and color densities, as directed.
3. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 1.5 mils (0.04 mm). Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.
 a. Color and Gloss: As selected from manufacturer's full range.

1.3 EXECUTION
A. Installation
1. Install control booths according to manufacturer's written instructions.
2. Accessible Control Booths: Install with interior floor surface at same elevation as adjacent paved surfaces.
3. Set control booths plumb and aligned. Level baseplates true to plane with full bearing on concrete bases.
4. Fasten control booths securely to cast-in anchor bolts OR concrete bases with expansion anchors, as directed.
5. Connect electrical power service to power distribution system according to requirements specified in Division 22.

B. Adjusting
 1. Adjust doors, operable windows, and hardware to operate smoothly, easily, properly, and without binding. Confirm that locks engage accurately and securely without forcing or binding.
 2. Lubricate hardware and other moving parts.
 3. After completing installation, inspect exposed finishes and repair damaged finishes.

END OF SECTION 32 17 13 19a
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 17 13 23</td>
<td>32 17 13 19</td>
<td>Parking Control Equipment</td>
</tr>
<tr>
<td>32 17 13 23</td>
<td>32 17 13 19a</td>
<td>Prefabricated Control Booths</td>
</tr>
<tr>
<td>32 17 13 26</td>
<td>32 17 13 19</td>
<td>Parking Control Equipment</td>
</tr>
<tr>
<td>32 17 13 26</td>
<td>32 17 13 19a</td>
<td>Prefabricated Control Booths</td>
</tr>
<tr>
<td>32 17 16 00</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 17 23 13</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 17 23 13</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
<tr>
<td>32 17 23 13</td>
<td>32 01 11 53b</td>
<td>Traffic Coatings</td>
</tr>
<tr>
<td>32 17 23 23</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 17 23 23</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
<tr>
<td>32 17 23 23</td>
<td>32 01 11 53b</td>
<td>Traffic Coatings</td>
</tr>
<tr>
<td>32 17 23 33</td>
<td>32 01 11 53</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 17 23 33</td>
<td>32 01 11 53a</td>
<td>Cement Concrete Pavement</td>
</tr>
<tr>
<td>32 17 23 33</td>
<td>32 01 11 53b</td>
<td>Traffic Coatings</td>
</tr>
</tbody>
</table>
SECTION 32 17 26 00 - TACTILE/DETECTABLE WARNING TILE

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for tactile/detectable warning tile. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product data for each specified product.
2. Shop drawings, showing detailed plans of tile profile, fastener locations, and installation methods.
3. Two (2) tile samples, minimum size 6” x 8” of the kind proposed for use.
4. Material Test Reports: Submit test reports from qualified independent testing laboratory indicating that materials proposed for use are in compliance with requirements and meet the properties indicated. All test reports shall be conducted on a cast-in-place tactile panel system as certified by a qualified independent testing laboratory.
5. Maintenance Instructions: Submit copies of manufacturer’s specified maintenance practices for each type of tactile tile and accessory as required.

C. Quality Control
1. Americans with Disabilities Act (ADA): Provide tactile warning surfaces, which comply with the detectable warnings on walking surfaces, section of the Americans with Disabilities Act (Title 49 CFR TRANSPORTATION, PART 37.9 STANDARDS FOR ACCESSIBLE TRANSPORTATION FACILITIES, Appendix A, Section 4.29.2 DETECTABLE WARNINGS ON WALKING SURFACES.

2. California Code of Regulations (CCR): Provide only approved DSAAC detectable warning products as provided in the California Code of Regulations (CCR). Title 24, Part 1, Articles 2, 3 and 4 and Part 2, Section 205 definition of “Detectable Warning”. Section 1127B.5 for “Curb Ramps” and Section 1133B.8.5 for “Detectable Warnings at Hazardous Vehicle Area’s”.

3. Performance: Tiles shall meet or exceed the following criteria:
 a. Water Absorption: 0.35% maximum, when tested in accordance with ASTM D570.
 b. Slip Resistance: 0.90 minimum combined wet/ dry static coefficient of friction on top of domes and field area, when tested in accordance with ASTM C1028.
 c. Compressive Strength: 18,000 psi minimum, when tested in accordance with ASTM D695.
 d. Tensile Strength: 10,000 psi minimum, when tested in accordance with ASTM D638.
 e. Flexural Strength: 24,000 psi minimum, when tested in accordance with ASTM C293.
 f. Gardner Impact: 450 inch-pounds per inch minimum, when tested in accordance with Geometry “GE” of ASTM D5420.
 g. Chemical Stain Resistance: No reaction to 1% hydrochloric acid, urine, calcium chloride, stamp pad ink, gum and red aerosol paint, when tested in accordance with ASTM D543.
 h. Wear Depth: 0.03” maximum, after 1000 abrasion cycles of 40 grit Norton Metallite sandpaper, when tested in accordance with ASTM D2486-Modified.
 i. Flame Spread: 25 maximum, when tested in accordance with ASTM E84.
 j. Accelerated Weathering: No deterioration, fading or chalking for 2000 hours, when tested in accordance with ASTM D2565.

4. Tactile warning tiles embedded in or adhered to concrete shall meet or exceed the following performance criteria:
 a. Accelerated Aging and Freeze Thaw of Adhesive System: No cracking, delamination, warping, checking, blistering, color change, loosening, etc. when tested in accordance with ASTM D1037.
32 - Exterior Improvements

b. Salt and Spray Performance: No deterioration after 100 hours of exposure, when tested in accordance with ASTM B117.

D. Delivery, Storage And Handling
1. Tiles shall be suitably packaged or crated to prevent damage in shipment or handling. Finished surfaces shall be protected by sturdy wrappings, and tile type shall be identified by part number.
2. Tiles shall be delivered to location at building site for storage prior to installation.

E. Warranty
1. Installed tiles shall be warranted for a minimum of five (5) years against failure of adhesives, fasteners and sealants.

1.2 PRODUCT

A. Materials
1. Vitrified Polymer Composite (VPC) tiles shall be an epoxy polymer composition with an ultra violet stabilized coating employing aluminum oxide particles in the truncated domes. The tile shall incorporate an in-line dome pattern of truncated domes. For wheelchair safety the field area shall consist of a non-slip surface with a minimum of 40 - 90º raised points 0.045” high, per square inch.
2. Color: Safety Yellow, (Federal Color # 33538) colorfast, UV stabilized coating. Color shall be homogeneous throughout the tile.

B. Cast-In-Place Tactile Tile
1. Tile shall be minimum 1-3/8” thick, with minimum 3/8” thick face and ribs designed for after-pour embedment in concrete.

C. Surface Applied Detectable Warning Surface Tile
1. The tile shall have with countersunk fastening holes and perimeter beveled edges.
2. Accessories:
 a. Fasteners: Color matched, corrosion resistant, flat head drive anchor, 1/4” diameter x 1-3/4” long.
 c. Sealants: Epoxy two component sealant.

D. Modular Paver Tactile Tile
1. Pre-cast with a 1-3/8” thick reinforced epoxy polymer concrete core.
 a. Polymer Concrete and/or epoxy resin properties shall meet or exceed the following criteria:
 - Tensile Strength of Resin: greater than 7,000psi; ASTM D638
 - Modulus of Elasticity of Resin: greater than 4,000psi; ASTM D638
 - Bond Strength of Polymeric Concrete: greater than 8,000psi; ASTM C551
 2. Accessories:
 b. Backer Rod: ASTM C 1330, Type C (closed-cell material with a surface skin) OR Type O (open-cell material) OR Type B (bicellular material with a surface skin), as directed, as approved in writing by joint-sealant manufacturer for joint application indicated, and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.

E. Surface Applied Detectable Guidance Tiles
1. Accessories:
 a. Adhesive: Heavy-duty polyurethane elastomeric adhesive.
 b. Sealants: Heavy-duty polyurethane elastomeric sealant.
F. Surface Applied Detectable Directional Bar Tiles
 1. Accessories:
 a. Fasteners: Stainless steel low profile expansion anchors, 3/16” diameter by 2” long.
 b. Adhesive: Heavy-duty polyurethane elastomeric adhesive.
 c. Sealants: Heavy-duty polyurethane elastomeric sealant.

1.3 EXECUTION

A. Installation
 1. Installation shall be in strict compliance with manufacturer’s printed instructions.

END OF SECTION 32 17 26 00
SECTION 32 31 11 00 - CHAIN-LINK FENCES AND GATES

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for chain-link fences and gates. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
a. Chain-link fences.
b. Gates: Manually and Motor operated, horizontal slide and swing.

C. Performance Requirements
1. Delegated Design: Design chain-link fences and gates, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
2. Structural Performance: Chain-link fence and gate framework shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated according to ASCE/SEI 7:
a. Minimum Post Size and Maximum Spacing: Determine according to CLFMI WLG 2445, based on mesh size and pattern specified and on the following:
 1) Wind Loads: <Insert loads required for Project location>.
 2) Exposure Category: B OR C OR D, as directed.
 3) Fence Height: 10 feet (3 m).
 4) Material Group: IA, ASTM F 1043, Schedule 40 steel pipe OR IC, electric-resistance-welded round steel pipe, as directed.

D. Submittals
1. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for chain-link fences and gates.
 a. Fence and gate posts, rails, and fittings.
 b. Chain-link fabric, reinforcements, and attachments.
 c. Accessories: Privacy slats OR Barbed wire OR Barbed tape, as directed.
 d. Gates and hardware.
 e. Gate operators, including operating instructions.
 f. Motors: Show nameplate data, ratings, characteristics, and mounting arrangements.
2. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Show accessories, hardware, gate operation, and operational clearances.
 a. Gate Operator: Show locations and details for installing operator components, switches, and controls. Indicate motor size, electrical characteristics, drive arrangement, mounting, and grounding provisions.
 b. Wiring Diagrams: For power, signal, and control wiring.
3. Samples: Prepared on Samples of size indicated below:
 a. Polymer-Coated Components: In 6-inch (150-mm) lengths for components and on full-sized units for accessories.
4. Delegated-Design Submittal: For chain-link fences and gate framework indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

5. Qualification Data: For qualified professional engineer OR testing agency OR factory-authorized service representative, as directed.

6. Product Certificates: For each type of chain-link fence, operator, and gate, from manufacturer.

7. Product Test Reports: For framing strength according to ASTM F 1043.

8. Field quality-control reports.

9. Operation and Maintenance Data: For the following to include in emergency, operation, and maintenance manuals:
 a. Polymer finishes.
 b. Gate hardware.
 c. Gate operator.

10. Warranty: Sample of special warranty.

E. Quality Assurance
1. Testing Agency Qualifications: For testing fence grounding. Member company of NETA or an NRTL.
 a. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. Emergency Access Requirements: Comply with requirements of authorities having jurisdiction for gates with automatic gate operators serving as a required means of access.

F. Project Conditions
1. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

G. Warranty
1. Special Warranty: Manufacturer's standard form in which manufacturer OR Installer, as directed, agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.
 a. Failures include, but are not limited to, the following:
 1) Faulty operation of gate operators and controls.
 2) Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 b. Warranty Period: Five OR 15, as directed, years from date of Substantial Completion.

1.2 PRODUCTS

A. Chain-Link Fence Fabric
1. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist. Comply with CLFMI Product Manual and with requirements indicated below:
 a. Fabric Height: As indicated on Drawings OR As directed.
 b. Steel Wire Fabric: Wire with a diameter of 0.192 inch (4.88 mm) OR 0.148 inch (3.76 mm) OR 0.120 inch (3.05 mm) OR 0.113 inch (2.87 mm), as directed.
 1) Mesh Size: 2-1/8 inches (54 mm) OR 2 inches (50 mm) OR 1-3/4 inches (44 mm) OR 1 inch (25 mm), as directed.
2) Aluminum-Coated Fabric: ASTM A 491, Type I, 0.40 oz./sq. ft. (122 g/sq. m) OR 0.35 oz./sq. ft. (107 g/sq. m) OR 0.30 oz./sq. ft. (92 g/sq. m), as directed.

3) Zinc-Coated Fabric: ASTM A 392, Type II, Class 1, 1.2 oz./sq. ft. (366 g/sq. m) OR Class 2, 2.0 oz./sq. ft. (610 g/sq. m), as directed, with zinc coating applied before OR after, as directed, weaving.

4) Zn-5-Al-MM Aluminum-Mischmetal-Coated Fabric: ASTM F 1345, Type III, Class 1, 0.60 oz./sq. ft. (183 g/sq. m) OR Class 2, 1.0 oz./sq. ft. (305 g/sq. m), as directed.

5) Polymer-Coated Fabric: ASTM F 668, Class 1 OR Class 2a OR Class 2b, as directed, over aluminum OR zinc OR Zn-5-Al-MM-alloy, as directed.

a) Color: Dark green OR Olive green OR Brown OR Black OR As selected from manufacturer's full range, as directed, complying with ASTM F 934.

6) Coat selvage ends of fabric that is metallic coated before the weaving process with manufacturer's standard clear protective coating.

c. Aluminum Wire Fabric: ASTM F 1183, with mill OR caustic-cleaned or etched, as directed, finish, and wire diameter of 0.148 inch (3.76 mm) OR 0.192 inch (4.88 mm), as directed.

1) Mesh Size: 2 inches (50 mm) OR 1 inch (25 mm), as directed.

d. Selvage: Knuckled at both selvages OR Twisted top and knuckled bottom, as directed.

B. Fence Framing

1. Posts and Rails: Comply with ASTM F 1043 for framing, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F 1043 or ASTM F 1083, as directed, based on the following:

a. Fence Height: 72 inches (1830 mm) OR 96 inches (2440 mm) OR As indicated on Drawings, as directed.

1) Line Post: 1.9 inches (48 mm) in diameter OR 2.375 inches (60 mm) in diameter OR 2.875 inches (73 mm) in diameter OR 3.25 by 2.50 inches (83 by 64 mm), as directed.

2) End, Corner and Pull Post: 2.375 inches (60 mm) OR 2.875 inches (73 mm) OR 4.0 inches (102 mm) OR 6.625 inches (168 mm) in diameter OR 8.0 inches (203 mm) OR 12 inches (305 mm), as directed.

c. Heavy Industrial Strength: Material Group IA, round steel pipe, Schedule 40 OR Group IC, round steel pipe, electric-resistance-welded pipe OR Group II, roll-formed steel C-section shapes OR Group III, hot-rolled H-beam shapes OR Group IV, Alternative Design, as directed.

1) Line Post: 1.9 inches (48 mm) in diameter OR 2.375 inches (60 mm) in diameter OR 2.875 inches (73 mm) in diameter OR 4.0 inches (102 mm) in diameter OR 6.625 inches (168 mm) in diameter OR 8.0 inches (203 mm) OR 12 inches (305 mm), as directed.

2) End, Corner and Pull Post: 2.375 inches (60 mm) in diameter OR 2.875 inches (73 mm) in diameter OR 4.0 inches (102 mm) in diameter OR 6.625 inches (168 mm) in diameter OR 8.0 inches (203 mm) OR 12 inches (305 mm), as directed.

d. Horizontal Framework Members: Intermediate, top and bottom rails, as directed, complying with ASTM F 1043.

1) Top Rail: 1.66 inches (42 mm) in diameter OR 2.50 inches (64 mm), as directed.

e. Brace Rails: Comply with ASTM F 1043.

f. Metallic Coating for Steel Framing:
1) Type A, consisting of not less than minimum 2.0-oz./sq. ft. (0.61-kg/sq. m) average zinc coating per ASTM A 123/A 123M or 4.0-oz./sq. ft. (1.22-kg/sq. m) zinc coating per ASTM A 653/A 653M.
2) Type B, zinc with organic overcoat, consisting of a minimum of 0.9 oz./sq. ft. (0.27 kg/sq. m) of zinc after welding, a chromate conversion coating, and a clear, verifiable polymer film.
3) External, Type B, zinc with organic overcoat, consisting of a minimum of 0.9 oz./sq. ft. (0.27 kg/sq. m) of zinc after welding, a chromate conversion coating, and a clear, verifiable polymer film. Internal, Type D, consisting of 81 percent, not less than 0.3-mil- (0.0076-mm-) thick, zinc-pigmented coating.
4) Type C, Zn-5-Al-MM alloy, consisting of not less than 1.8-oz./sq. ft. (0.55-kg/sq. m) coating.
5) Coatings: Any coating above.
g. Polymer coating over metallic coating.
1) Color: Match chain-link fabric OR Dark green OR Olive green OR Brown OR Black OR As selected from manufacturer's full range, as directed, complying with ASTM F 934.

C. Tension Wire
1. Metallic-Coated Steel Wire: 0.177-inch- (4.5-mm-) diameter, marcelled tension wire complying with ASTM A 817 and ASTM A 824, with the following metallic coating:
 a. Type I, aluminum coated (aluminized).
 b. Type II, zinc coated (galvanized) by hot-dip OR electrolytic, as directed, process, with the following minimum coating weight:
 1) Class 3: Not less than 0.8 oz./sq. ft. (244 g/sq. m) of uncoated wire surface.
 2) Class 4: Not less than 1.2 oz./sq. ft. (366 g/sq. m) of uncoated wire surface.
 3) Class 5: Not less than 2 oz./sq. ft. (610 g/sq. m) of uncoated wire surface.
 4) Matching chain-link fabric coating weight.
 c. Type III, Zn-5-Al-MM alloy with the following minimum coating weight:
 1) Class 60: Not less than 0.6 oz./sq. ft. (183 g/sq. m) of uncoated wire surface.
 2) Class 100: Not less than 1 oz./sq. ft. (305 g/sq. m) of uncoated wire surface.
 3) Matching chain-link fabric coating weight.
2. Polymer-Coated Steel Wire: 0.177-inch- (4.5-mm-) OR 0.148-inch- (3.8-mm-), as directed, diameter, tension wire complying with ASTM F 1664, Class 1 OR Class 2a OR Class 2b, as directed, over aluminum OR zinc OR Zn-5-Al-MM-alloy, as directed, coated steel wire.
 a. Color: Match chain-link fabric OR Dark green OR Olive green OR Brown OR Black OR As selected from manufacturer's full range, as directed, complying with ASTM F 934.
3. Aluminum Wire: 0.192-inch- (4.88-mm-) diameter tension wire, mill finished, complying with ASTM B 211 (ASTM B211M), Alloy 6061-T94 with 50,000-psi (344-MPa) minimum tensile strength.

D. Swing Gates
1. General: Comply with ASTM F 900 for gate posts and single OR double, as directed, swing gate types. Provide automated vehicular gates that comply with ASTM F 2200, as directed.
 a. Gate Leaf Width: 36 inches (914 mm) OR As indicated, as directed.
 b. Gate Fabric Height: 72 inches (1830 mm) or less OR More than 72 inches (1830 mm) OR As indicated, as directed.
2. Pipe and Tubing:
 a. Zinc-Coated Steel: Comply with ASTM F 1043 and ASTM F 1083; protective coating and finish to match fence framing OR manufacturer's standard protective coating and finish, as directed.
 b. Aluminum: Comply with ASTM B 429/B 429M; mill OR manufacturer's standard, as directed, finish.
c. Gate Posts: Round tubular steel OR Rectangular tubular steel OR Round tubular aluminum OR Rectangular tubular aluminum, as directed.
d. Gate Frames and Bracing: Round tubular steel OR Rectangular tubular steel OR Round tubular aluminum OR Rectangular tubular aluminum, as directed.

3. Frame Corner Construction: Welded OR Assembled with corner fittings, as directed.

4. Extended Gate Posts and Frame Members: Extend gate posts and frame end members above top of chain-link fabric at both ends of gate frame 12 inches (300 mm) OR as indicated, as directed, to attach barbed wire OR tape, as directed, assemblies.

5. Hardware:
 a. Hinges: 180-degree inward OR 180-degree outward OR 360-degree inward and outward, as directed, swing.
 b. Latches permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate, as directed.
 c. Padlock and Chain: Owner furnished.
 d. Lock: Manufacturer’s standard internal device furnished in lieu of gate latch, as directed.
 e. Closer: Manufacturer’s standard, as directed.

E. Horizontal-Slide Gates

1. General: Comply with ASTM F 1184 for gate posts and single OR double, as directed, sliding gate types. Provide automated vehicular gates that comply with ASTM F 2200, as directed.
 a. Classification: Type I Overhead Slide (opening widths to 40 feet (12.2 m) with an overhead clearance of up to 22 feet (6.7 m)).
 1) Gate Leaf Width: As indicated OR As directed.
 2) Gate Fabric Height: 72 inches (1830 mm) or less OR More than 72 inches (1830 mm) OR As indicated, as directed.
 b. Classification: Type II Cantilever Slide (opening widths to 30 feet (9.1 m) and heights to 8 feet (2.44 m))
 1) Class 1 with external OR Class 2 with internal, as directed, roller assemblies.
 2) Gate Frame Width and Height: 48 inches (1200 mm) wide or less by 72 inches (1830 mm) high or less OR More than 48 inches (1200 mm) wide by any height OR As indicated, as directed.

2. Pipe and Tubing:
 a. Zinc-Coated Steel: Protective coating and finish to match fence framing OR Manufacturer’s standard protective coating and finish, as directed.
 b. Aluminum: Comply with ASTM B 429/B 429M; mill OR manufacturer’s standard, as directed, finish.
 c. Gate Posts: Comply with ASTM F 1184. Provide round tubular steel OR rectangular tubular steel OR round tubular aluminum OR rectangular tubular aluminum, as directed, posts.
 d. Gate Frames and Bracing: Round tubular steel OR Rectangular tubular steel OR Round tubular aluminum OR Rectangular tubular aluminum, as directed.

3. Frame Corner Construction: Welded OR Assembled with corner fittings, as directed.

4. Extended Gate Posts and Frame Members: Extend gate posts and frame end members above top of chain-link fabric at both ends of gate frame 12 inches (300 mm) OR as indicated, as directed, as required to attach barbed wire OR tape, as directed, assemblies.

5. Overhead Track Assembly: Manufacturer’s standard track, with overhead framing supports, bracing, and accessories, engineered to support size, weight, width, operation, and design of gate and roller assemblies.

6. Hardware:
 a. Latches permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate, as directed.
 b. Padlock and Chain: Owner furnished.
 c. Lock: Manufacturer’s standard internal device furnished in lieu of gate latch, as directed.
d. Hangers, roller assemblies, and stops fabricated from galvanized steel OR galvanized malleable iron OR mill-finished Grade 319 aluminum-alloy casting with stainless-steel fasteners, as directed.

F. Fittings
1. General: Comply with ASTM F 626.
2. Post Caps: Provide for each post.
 a. Provide line post caps with loop to receive tension wire or top rail.
3. Rail and Brace Ends: For each gate, corner, pull, and end post.
4. Rail Fittings: Provide the following:
 a. Top Rail Sleeves: Pressed-steel or round-steel tubing OR Aluminum Alloy 6063, as directed, not less than 6 inches (152 mm) long.
 b. Rail Clamps: Line and corner boulevard clamps for connecting intermediate, and bottom, as directed, rails in the fence line-to-line posts.
5. Tension and Brace Bands: Pressed steel OR Aluminum Alloy 6063, as directed.
6. Tension Bars: Steel OR Aluminum OR Fiberglass, as directed, length not less than 2 inches (50 mm) shorter than full height of chain-link fabric. Provide one bar for each gate and end post, and two for each corner and pull post, unless fabric is integrally woven into post.
7. Truss Rod Assemblies: Steel, hot-dip galvanized after threading OR Mill-finished aluminum, as directed, rod and turnbuckle or other means of adjustment.
8. Barbed Wire Arms: Pressed steel or cast iron OR Aluminum, as directed, with clips, slots, or other means for attaching strands of barbed wire, and means for attaching to posts OR integral with post cap, as directed; for each post unless otherwise indicated, and as follows:
 a. Provide line posts with arms that accommodate top rail or tension wire.
 b. Provide corner arms at fence corner posts, unless extended posts are indicated.
 c. Type I, single slanted arm.
 d. Type II, single vertical arm.
 e. Type III, V-shaped arm.
 f. Type IV, A-shaped arm.
 a. Standard Round Wire Ties: For attaching chain-link fabric to posts, rails, and frames, complying with the following:
 1) Hot-Dip Galvanized Steel: 0.106-inch- (2.69-mm-) OR 0.148-inch- (3.76-mm-), as directed, diameter wire; galvanized coating thickness matching coating thickness of chain-link fence fabric, as directed.
 2) Aluminum: ASTM B 211 (ASTM B 211M); Alloy 1350-H19; 0.148-inch- (3.76-mm-) OR 0.192-inch- (4.88-mm-), as directed, diameter, mill-finished wire.
10. Finish:
 a. Metallic Coating for Pressed Steel or Cast Iron: Not less than 1.2 oz. /sq. ft. (366 g /sq. m) zinc.
 b. Polymer coating over metallic coating.

G. Privacy Slats
1. Material: PVC, UV-light stabilized, flame resistant, four ply, as directed, not less than 0.006 inch (0.15 mm) OR 0.023 inch (0.58 mm), as directed, thick; attached to not less than 0.0475-inch- (1.21-mm-) diameter, twisted galvanized wire; hedge-type lattice, as directed; sized to fit mesh specified for direction indicated.

OR
Material: Polyethylene tubular slats, not less than 0.023 inch (0.58 mm) thick, manufactured for chain-link fences from virgin polyethylene containing UV inhibitor, sized to fit mesh specified for direction indicated; with vandal-resistant fasteners and lock strips OR fins for increased privacy factor, as directed.
Material: Fiber-glass-reinforced plastic, UV-light stabilized, not less than 0.06 inch (1.5 mm) thick, sized to fit mesh specified for direction indicated; with vandal-resistant fasteners and lock strips, as directed.

OR
Material: Aluminum, not less than 0.01 inch (0.25 mm) thick, sized to fit mesh specified for direction indicated.

OR
Material: Redwood, 5/16 inch (7.9 mm) thick, sized to fit mesh specified for direction indicated.

2. Color: As indicated by manufacturer’s designations OR As selected from manufacturer’s full range OR As indicated on Drawings, as directed.

H. Barbed Wire
1. Steel Barbed Wire: Comply with ASTM A 121, for two-strand barbed wire, 0.099-inch- (2.51-mm-) diameter line wire with 0.080-inch- (2.03-mm-) diameter, four-point round barbs spaced not more than 5 inches (127 mm) o.c.
 a. Aluminum Coating: Type A.
 b. Zinc Coating: Type Z, Class 3.

2. Polymer-Coated, Galvanized-Steel Barbed Wire: Comply with ASTM F 1665 two-strand barbed wire, 0.080-inch- (2.03-mm-) diameter line wire with 0.080-inch- (2.03-mm-) diameter, four-point round aluminum alloy OR galvanized-steel, as directed, barbs spaced not more than 5 inches (127 mm) o.c.:
 a. Polymer Coating: Class 1 OR Class 2a OR Class 2b, as directed, over aluminum OR zinc OR Zn-5-Al-MM-alloy, as directed, coated steel wire.
 1) Color: Match chain-link fabric OR Dark green OR Olive green OR Brown OR Black OR As selected from manufacturer’s full range, as directed, complying with ASTM F 934.

I. Barbed Tape
1. Wire-Reinforced Tape: ASTM F 1910; with four-point, needle-sharp barbs permanently cold clenched around a core wire.
 a. Core Wire: High-tensile-strength, zinc-coated steel OR stainless steel, as directed.

2. Clips: Stainless steel, 0.065 inch (1.7 mm) thick by 0.375 inch (9.5 mm) wide, capable of withstanding a minimum 150-lbf (667-N) pull load to limit extension of coil, resulting in a concertina pattern when deployed.

3. Tie Wires: Stainless steel, 0.065 inch (1.7 mm) in diameter.

4. Fabrication: Continuous coils of barbed tape as defined in ASTM F 1379 for the following characteristics:
 a. Configuration: Single OR Double, as directed, coil.
 b. Style: Helical OR Concertina, as directed, pattern.
 c. Coil Diameter(s): 18 inches (457 mm) OR 24 inches (610 mm) OR 24-inch (610-mm) inner coil and 30-inch (762-mm) outer coil OR As indicated on Drawings, as directed.
 d. Coil Loop Spacing(s): 12 inches (300 mm) OR Manufacturer’s standard OR As indicated on Drawings, as directed.
 e. Barb Length Classification: Long, 1.2-inch (30.5-mm) OR Medium, 0.4-inch (10.2-mm) OR Short, 0.1875-inch (4.76-mm), as directed, barb.
 f. Barb Spacing: 4 inches (102 mm) o.c.
 g. Barb Set: Straight OR Offset OR Manufacturer’s standard, as directed.

J. Gate Operators
1. General: Provide factory-assembled automatic operating system designed for gate size, type, weight, and operation frequency. Provide operation control system with characteristics suitable for Project conditions, with remote-control stations, safety devices, and weatherproof enclosures; coordinate electrical requirements with building electrical system.
 a. Provide operator designed so motor may be removed without disturbing limit-switch adjustment and without affecting auxiliary emergency operator.
b. Provide operator with UL approval OR -approved components, as directed.
c. Provide electronic components with built-in troubleshooting diagnostic feature.
d. Provide unit designed and wired for both right-hand/left-hand opening, permitting universal installation.

2. Comply with NFPA 70.
3. UL Standard: Fabricate and label gate operators to comply with UL 325.
4. Motor Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, within installed environment, with indicated operating sequence, and without exceeding nameplate rating or considering service factor. Comply with NEMA MG 1 and the following:
 a. Voltage: 12-V dc OR 120 V OR 208-220 V OR NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected, as directed.
 b. Horsepower: 1/4 OR 1/3 OR 3/4, as directed.
 c. Enclosure: Open dripproof OR Totally enclosed OR Manufacturer's standard, as directed.
 d. Duty: Continuous duty at ambient temperature of 105 deg F (40 deg C) and at altitude of 3300 feet (1005 m) above sea level.
 e. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.
 f. Phase: One OR Polyphase, as directed.
5. Gate Operators: Gate OR Equipment base/pad OR Pedestal post OR In ground, as directed, mounted and as follows:
 a. Hydraulic Swing OR Slide, as directed, Gate Operators:
 1) Duty: Light OR Medium OR Heavy, as directed, duty, residential OR commercial/industrial, as directed.
 2) Gate Speed: Minimum 45 feet (13.7 m) OR 60 feet (18.2 m), as directed, per minute.
 3) Maximum Gate Weight: 300 lb (137 kg).
 4) Frequency of Use: 10 cycles per hour OR 25 cycles per hour OR Continuous duty, as directed.
 5) Locking: Hydraulic in both directions.
 6) Heater: Manufacturer's standard track and roller heater with thermostatic control.
 7) Operating Type: Crank arm OR Wheel and rail drive OR Roller chain, as directed, with manual release, as directed.
 b. Mechanical Swing OR Slide, as directed, Gate Operators:
 1) Duty: Light OR Medium OR Heavy, as directed, duty, residential OR commercial/industrial, as directed.
 2) Gate Speed: Minimum 45 feet (13.7 m) per minute OR 60 feet (18.2 m) per minute OR variable speed, as directed.
 3) Maximum Gate Weight: 600 lb (272 kg) OR 800 lb (363 kg), as directed.
 4) Frequency of Use: 10 cycles per hour OR 25 cycles per hour OR 60 cycles per hour OR Continuous duty, as directed.
 5) Operating Type: Crank arm OR Wheel and rail drive OR Roller chain, as directed, with manual release, as directed.
 6) Drive Type: Enclosed worm gear OR worm gear and chain-and-sprocket, as directed, reducers, roller-chain drive.
 OR
 Drive Type: V-belt and worm gear OR chain-and-sprocket, as directed, reducers, roller-chain drive.
 6. Remote Controls: Electric controls separated from gate and motor and drive mechanism, with NEMA ICS 6, Type 1 OR NEMA ICS 6, Type 4, as directed, enclosure for surface OR recessed or flush OR equipment base/pad OR pedestal, as directed, mounting and with space for additional optional equipment. Provide the following remote-control device(s):
 a. Control Station: Keyed, two OR three, as directed, -position switch, located remotely from gate. Provide two keys per station.
 OR
Control Station: Momentary-contact, single OR three, as directed, button-operated; located remotely from gate. Key switch to lock out open and close buttons, as directed.

1) Function: Open, stop, as directed, and close.

b. Card Reader: Functions only when authorized card is presented. Programmable, magnetic multiple OR single, as directed, code system, permitting four different access time periods, as directed; face lighted unit fully visible at night, as directed.

1) Reader Type: Touch plate OR Swipe OR Insertion OR Proximity, as directed.

2) Features: Timed anti-passback OR Limited-time usage OR Capable of monitoring and auditing gate activity, as directed.

c. Digital Keypad Entry Unit: Multiple-code capability OR Multiple-programmable, code capability, as directed, of not less than five OR 500 OR 2500, as directed, possible individual codes, consisting of one- to seven OR four OR five, as directed, digit codes, and permitting four different access time periods, as directed.

1) Features: Timed anti-passback OR Limited-time usage OR Capable of monitoring and auditing gate activity, as directed.

2) Face-lighted unit with metal-keyed OR keyless-membrane, as directed, keypad fully visible at night.

d. Radio Control: Digital system consisting of code-compatible universal receiver for each gate, located where indicated, with remote antenna with coaxial cable and mounting brackets designed to operate gates. Provide one OR two, as directed, programmable transmitter(s) with multiple-code capability permitting validating or voiding of not less than 1000 OR 10,000, as directed, codes per channel configured for the following functions:

1) Transmitters: Single OR Three, as directed, button operated, with open OR open and close, as directed, function.

2) Channel Settings: Two OR Three OR Four, as directed, independent channel settings controlling separate receivers for operating more than one gate from each transmitter.

e. Telephone Entry System: Hands-free voice-communication system for connection to building telephone system with digital-entry code activation of gate operator and auxiliary keypad entry, as directed.

1) Residential System: Designed to be wired to same line with telephone.

 OR

 Multiunit System: Designed to be wired to a dedicated telephone line, with capacity to access 20 OR 100, as directed, telephones and with electronic directory, as directed.

g. Vehicle Loop Detector: System including automatic closing timer with adjustable time delay before closing, timer cut-off switch, as directed, and loop detector designed to open and close gate OR hold gate open until traffic clears OR reverse gate, as directed.

 Provide electronic detector with adjustable detection patterns, adjustable sensitivity and frequency settings, and panel indicator light designed to detect presence or transit of a vehicle over an embedded loop of wire and to emit a signal activating the gate operator. Provide number of loops consisting of multiple strands of wire, number of turns, loop size, and method of placement at location shown on Drawings, as recommended in writing by detection system manufacturer for function indicated.

1) Loop: Wire, in size indicated for field assembly, for pave-over OR saw-cut with epoxy-grouted, as directed, installation.

 OR

 Loop: Factory preformed in size indicated; style for pave-over OR saw-cut with epoxy-grouted, as directed, installation.

g. Vehicle Presence Detector: System including automatic closing timer with adjustable time delay before closing, timer cut-off switch, as directed, and presence detector designed to open and close gate OR hold gate open until traffic clears OR reverse gate, as directed.

 Provide retroreflective OR emitter/receiver, as directed, detector with adjustable detection zone pattern and sensitivity, designed to detect the presence or transit of a vehicle in gate...
pathway when infrared beam in zone pattern is interrupted, and to emit a signal activating the gate operator.

7. Obstruction Detection Devices: Provide each motorized gate with automatic safety sensor(s). Activation of sensor(s) causes operator to immediately function as follows:
 a. Action: Reverse gate in both opening and closing cycles and hold until clear of obstruction OR Stop gate in opening cycle and reverse gate in closing cycle and hold until clear of obstruction, as directed.
 b. Internal Sensor: Built-in torque or current monitor senses gate is obstructed.
 c. Sensor Edge: Contact-pressure-sensitive safety edge, profile, and sensitivity designed for type of gate and component indicated, in locations as follows. Connect to control circuit using take-up cable reel OR self-coiling cable OR gate edge transmitter and operator receiver system, as directed.
 1) Along entire gate leaf leading edge (for swing gates and slide gates).
 2) Along entire gate leaf trailing edge (for slide gates).
 3) Across entire gate leaf bottom edge (for vehicular swing and slide gates complying with UL 325 or to suit Project; consider retaining for pedestrian gates).
 4) Along entire length of gate posts (for slide gates; revise for sensor edge at pinch point post of swing gates).
 5) Along entire length of gate guide posts (for Type II Cantilever Slide, Class 1 gates).
 6) Where indicated on Drawings.
 d. Photoelectric/Infrared Sensor System: Designed to detect an obstruction in gate's path when infrared beam in the zone pattern is interrupted.

8. Limit Switches: Adjustable switches, interlocked with motor controls and set to automatically stop gate at fully retracted and fully extended positions.
 a. Type: Integral fail-safe release, allowing gate to be pushed open without mechanical devices, keys, cranks, or special knowledge OR Mechanical device, key, or crank-activated release, as directed.

9. Operating Features:
 a. Digital Microprocessor Control: Electronic programmable means for setting, changing, and adjusting control features with capability for monitoring and auditing gate activity, as directed. Provide unit that is isolated from voltage spikes and surges.
 b. System Integration: With controlling circuit board capable of accepting any type of input from external devices.
 c. Master/Slave Capability: Control stations designed and wired for gate pair operation.
 d. Automatic Closing Timer: With adjustable time delay before closing and timer cut-off switch, as directed.
 e. Open Override Circuit: Designed to override closing commands.
 f. Reversal Time Delay: Designed to protect gate system from shock load on reversal in both directions.
 g. Maximum Run Timer: Designed to prevent damage to gate system by shutting down system if normal time to open gate is exceeded.
 h. Clock Timer: 24-hour OR Seven-day, as directed, programmable for regular events.

10. Accessories:
 a. Warning Module: Audio OR Visual, as directed, constant OR strobe, as directed, light alarm sounding three to five seconds in advance of gate operation and continuing until gate stops moving; compliant with the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines.
 b. Battery Backup System: Battery-powered drive and access-control system, independent of primary drive system.
 1) Fail Safe: Gate opens and remains open until power is restored.
 2) Fail Secure: Gate cycles on battery power, then fail safe when battery is discharged.
 c. External electric-powered solenoid OR magnetic, as directed, lock with delay timer allowing time for lock to release before gate operates.
d. Fire OR Postal, as directed, box.
e. Fire strobe OR siren, as directed, alarm.
f. Intercom System: <Insert requirements>.
g. Instructional, Safety, and Warning Labels and Signs: According to UL 325 OR Manufacturer's standard for components and features specified OR As indicated on Drawings, as directed.
h. Equipment Bases/Pads: Cast-in-place or precast concrete, depth not less than 12 inches (300 mm), dimensioned and reinforced according to gate-operator component manufacturer's written instructions and as indicated on Drawings.

K. Grout And Anchoring Cement
1. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout, recommended in writing by manufacturer, for exterior applications.
2. Erosion-Resistant Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with potable water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating and that is recommended in writing by manufacturer, for exterior applications.

L. Fence Grounding
1. Conductors: Bare, solid wire for No. 6 AWG and smaller; stranded wire for No. 4 AWG and larger.
 a. Material above Finished Grade: Copper OR Aluminum, as directed.
 b. Material on or below Finished Grade: Copper.
 c. Bonding Jumpers: Braided copper tape, 1 inch (25 mm) wide, woven of No. 30 AWG bare copper wire, terminated with copper ferrules.
 a. Connectors for Below-Grade Use: Exothermic welded type.
 b. Grounding Rods: Copper-clad steel, 5/8 by 96 inches (16 by 2440 mm).

1.3 EXECUTION

A. Examination
1. Examine areas and conditions, with Installer present, for compliance with requirements for a verified survey of property lines and legal boundaries, as directed, site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.
 a. Do not begin installation before final grading is completed unless otherwise permitted by the Owner.
2. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Preparation
1. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet (152.5 m) or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

C. Installation, General
1. Install chain-link fencing to comply with ASTM F 567 and more stringent requirements indicated.
 a. Install fencing on established boundary lines inside property line.

D. Chain-Link Fence Installation
1. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.
2. Post Setting: Set posts in concrete OR with mechanical anchors OR by mechanically driving into soil, as directed, at indicated spacing into firm, undisturbed soil.
 a. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
 b. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 1) Exposed Concrete: Extend 2 inches (50 mm) above grade; shape and smooth to shed water.
 2) Concealed Concrete: Top 2 inches (50 mm) below grade as indicated on Drawings to allow covering with surface material.
 3) Posts Set into Concrete in Sleeves: Use steel pipe sleeves preset and anchored into concrete for installing posts. After posts have been inserted into sleeves, fill annular space between post and sleeve with nonshrink, nonmetallic grout OR anchoring cement, as directed, mixed and placed to comply with anchoring material manufacturer’s written instructions, and finished sloped to drain water away from post.
 4) Posts Set into Voids in Concrete: Form or core drill holes not less than 5 inches (125 mm) deep and 3/4 inch (20 mm) larger than OD of post. Clean holes of loose material, insert posts, and fill annular space between post and concrete with nonshrink, nonmetallic grout OR anchoring cement, as directed, mixed and placed to comply with anchoring material manufacturer’s written instructions, and finished sloped to drain water away from post.
 c. Mechanically Driven Posts: Drive into soil to depth of 30 inches (762 mm) OR 36 inches (914 mm), as directed. Protect post top to prevent distortion.
3. Terminal Posts: Locate terminal end, corner, and gate posts per ASTM F 567 and terminal pull posts at changes in horizontal or vertical alignment of 15 degrees or more OR 30 degrees or more OR as indicated on Drawings, as directed.
4. Line Posts: Space line posts uniformly at 96 inches (2440 mm) OR 10 feet (3 m), as directed, o.c.
5. Post Bracing and Intermediate Rails: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.
 a. Locate horizontal braces at midheight of fabric 72 inches (1830 mm) or higher, on fences with top rail and at two-third fabric height on fences without top rail. Install so posts are plumb when diagonal rod is under proper tension.
6. Tension Wire: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch- (3.05-mm-) diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches (610 mm) o.c. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:
 a. Extended along top OR bottom OR top and bottom, as directed, of fence fabric. Install top tension wire through post cap loops. Install bottom tension wire within 6 inches (152 mm) of bottom of fabric and tie to each post with not less than same diameter and type of wire.
 b. Extended along top of barbed wire arms OR extended posts, as directed, and top of fence fabric for supporting barbed tape.
 c. As indicated.
7. Top Rail: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended in writing by fencing manufacturer.
8. Intermediate and Bottom Rails: Install and secure to posts with fittings.
9. Chain-Link Fabric: Apply fabric to outside OR inside, as directed, of enclosing framework. Leave 1 inch (25.4 mm) OR 2 inches (50 mm), as directed, between finish grade or surface and...
bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

10. Tension or Stretcher Bars: Thread through fabric and secure to end, corner, pull, and gate posts with tension bands spaced not more than 15 inches (380 mm) o.c.

11. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric per ASTM F 626. Bend ends of wire to minimize hazard to individuals and clothing.
 a. Maximum Spacing: Tie fabric to line posts at 12 inches (300 mm) o.c. and to braces at 24 inches (610 mm) o.c.

12. Fasteners: Install nuts for tension bands and carriage bolts on the side of the fence opposite the fabric side. Peen ends of bolts or score threads to prevent removal of nuts, as directed.

13. Privacy Slats: Install slats in direction indicated, securely locked in place.
 a. Vertically OR Horizontally, as directed, for privacy factor of 70 to 75.
 OR Diagonally, for privacy factor of 80 to 85.
 OR Direction and privacy factor, as directed, as indicated.

14. Barbed Wire: Install barbed wire uniformly spaced, angled toward security side of fence OR as indicated on Drawings, as directed. Pull wire taut, install securely to extension arms, and secure to end post or terminal arms.

15. Barbed Tape: Comply with ASTM F 1911. Install barbed tape uniformly in configurations indicated and fasten securely to prevent movement or displacement.

E. Gate Installation
1. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.

F. Gate Operator Installation
1. General: Install gate operators according to manufacturer's written instructions, aligned and true to fence line and grade.
2. Excavation for Support Posts OR Pedestals OR Equipment Bases/Pads, as directed: Hand-excavate holes for bases/pads, in firm, undisturbed soil to dimensions and depths and at locations as required by gate-operator component manufacturer's written instructions and as indicated.
3. Vehicle Loop Detector System: Cut grooves in pavement and bury OR Bury, as directed, and seal wire loop according to manufacturer's written instructions. Connect to equipment operated by detector.
4. Comply with NFPA 70 and manufacturer's written instructions for grounding of electric-powered motors, controls, and other devices.

G. Grounding And Bonding
1. Fence Grounding: Install at maximum intervals of 1500 feet (450 m), as directed, except as follows:
 a. Fences within 100 Feet (30 m) of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet (225 m), as directed.
 1) Gates and Other Fence Openings: Ground fence on each side of opening.
 a) Bond metal gates to gate posts.
 b) Bond across openings, with and without gates, except openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches (460 mm) below finished grade.
 2. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet (45 m) on each side of crossing.

4. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches (150 mm) below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at the grounding location, including the following:
 a. Make grounding connections to each barbed wire strand with wire-to-wire connectors designed for this purpose.
 b. Make grounding connections to each barbed tape coil with connectors designed for this purpose.

6. Connections: Make connections to minimize possibility of galvanic action or electrolysis. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 a. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
 b. Make connections with clean, bare metal at points of contact.
 c. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 d. Make aluminum-to-galvanized-steel connections with tin-plated copper jumpers and mechanical clamps.
 e. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

7. Bonding to Lightning Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning protection down conductor or lightning protection grounding conductor complying with NFPA 780.

H. Field Quality Control

 a. Grounding-Resistance Tests: Subject completed grounding system to a megger test at each grounding location. Measure grounding resistance no fewer than two full days after last trace of precipitation, without soil having been moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural grounding resistance. Perform tests by two-point method according to IEEE 81.
 b. Excessive Grounding Resistance: If resistance to grounding exceeds specified value, notify the Owner promptly. Include recommendations for reducing grounding resistance and a proposal to accomplish recommended work.
 c. Report: Prepare test reports certified by a testing agency of grounding resistance at each test location. Include observations of weather and other phenomena that may affect test results.

I. Adjusting

1. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

2. Automatic Gate Operator: Energize circuits to electrical equipment and devices. Adjust operators, controls, safety devices, alarms, as directed, and limit switches.
 a. Hydraulic Operator: Purge operating system, adjust pressure and fluid levels, and check for leaks.
 b. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
c. Test and adjust controls, alarms, as directed, and safeties. Replace damaged and malfunctioning controls and equipment.

3. Lubricate hardware, gate operator, as directed, and other moving parts.

J. Demonstration
1. Train Owner's personnel to adjust, operate, and maintain chain-link fences and gates.

END OF SECTION 32 31 11 00
SECTION 32 31 13 00 - HIGH-SECURITY CHAIN-LINK FENCES AND GATES

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for high-security chain-link fences and gates. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. High-security chain-link fences.
 b. Gates: Motor operated, horizontal slide and swing.

C. Performance Requirements
1. Delegated-Design Submittal: For chain-link fences and gate framework indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
2. Structural Performance: Chain-link fences and gate framework shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated according to ASCE/SEI 7:
 a. Minimum Post Size: Determine according to ASTM F 1043 for framework up to 12 feet (3.66 m) high, and post spacing not to exceed 10 feet (3 m) for Material Group IA, ASTM F 1043, Schedule 40 steel pipe OR Group IC, electric-resistance-welded round steel pipe, as directed.
 OR
 Minimum Post Size and Maximum Spacing: Provide line posts of size and in spacing indicated, but not less than sizes and spacings determined according to ASTM F 1916, including Appendix OR CLFMI WLG 2445, as directed, based on mesh size and pattern specified and the following:
 1) Wind Loads: Determine design wind loads applicable to Project from basic wind speed and exposure category according to CLFMI WLG 2445.
 2) Exposure Category: B OR C OR D, as directed.
 3) Fence Height: 10 feet (3 m).
 4) Material Group: IA, ASTM F 1043, Schedule 40 steel pipe OR IC, electric-resistance-welded round steel pipe, as directed.
 b. Fabric Tension: Provide fences in which fabric deflections do not exceed those indicated in Table X1.1 of ASTM F 1916 when tested by applying a 30-lbf (133-N) force at midpoint between rails and horizontally between posts for every eighth lower panel along the fence line.
 c. Fence Post Rigidity: Provide fences in which post deflections do not exceed 3/4 inch (19 mm) when tested according to ASTM F 1916 by applying a 50-lbf (222-N) force at midheight of every eighth post along the fence line.

D. Submittals
1. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for chain-link fences and gates, as directed.
 a. Fence and gate posts, rails, and fittings.
 b. Chain-link fabric, reinforcements, and attachments.
c. Accessories: Barbed wire OR Barbed tape, as directed.
d. Gates and hardware.
e. Gate Operator: Show locations and details for installing operator components, switches, and controls. Indicate motor size, electrical characteristics, drive arrangement, mounting, and grounding provisions.
f. Wiring Diagrams: For power, signal, and control wiring.

2. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Show accessories, hardware, gate operation, and operational clearances.
a. Gate Operator: Show locations and details for installing operator components, switches, and controls. Indicate motor size, electrical characteristics, drive arrangement, mounting, and grounding provisions.
b. Wiring Diagrams: For power, signal, and control wiring.

c. Samples: Prepared on Samples of size indicated below:
a. Polymer-Coated Components: In 6-inch (150-mm) lengths for components and on full-sized units for accessories.

3. Delegated-Design Submittal: For chain-link fences and gate framework indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

4. Qualification Data: For qualified professional engineer OR testing agency OR factory-authorized service representative, as directed.

5. Product Certificates: For each type of chain-link fence, operator, as directed, and gate, from manufacturer.

6. Product Test Reports: For framing strength according to ASTM F 1043.

7. Field quality-control reports.

8. Soil sterilization certificate of treatment stating materials and quantities used, and date of application.

9. Operation and Maintenance Data: For the following to include in emergency, operation, and maintenance manuals:
a. Polymer finishes.
b. Gate hardware.
c. Gate operator.

10. Warranty: Sample of special warranty.

E. Quality Assurance
1. Testing Agency Qualifications: For testing fence grounding. Member company of NETA or an NRTL.
 a. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. Emergency Access Requirements: Comply with requirements of authorities having jurisdiction for automatic gate operators serving as a required means of access.

F. Project Conditions
1. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

G. Warranty
1. Special Warranty: Manufacturer's standard form in which manufacturer OR Installer, as directed, agrees to repair or replace components of high-security chain-link fences and gates that fail in materials or workmanship within specified warranty period.
 a. Failures include, but are not limited to, the following:
1) Deflection of fence fabric beyond design limits.
2) Deterioration of metals, metal finishes, and other materials beyond normal weathering.
3) Faulty operation of gate operators and controls.

b. Warranty Period: Five OR 15, as directed, years from date of Substantial Completion.

1.2 PRODUCTS

A. Chain-Link Fence Fabric
 1. Chain-Link Fence Fabric: Provide fabric in one OR two, as directed, -piece heights measured between top and bottom of outer edge of selvage. Comply with CLFMI Product Manual and with requirements indicated below:
 a. Fabric Height: As indicated on Drawings OR As directed.
 1) Steel Wire Fabric: Wire with a diameter of 0.192 inch (4.88 mm) OR 0.148 inch (3.76 mm) OR 0.120 inch (3.05 mm) OR 0.113 inch (2.87 mm), as directed.
 a) Mesh Size: 2 inches (51 mm) OR 1 inch (25.4 mm) OR 3/8 inch (9.5 mm), as directed.
 b. Fabric Heights and Overlap: As indicated on Drawings OR As directed.
 1) Steel Wire Lower Fabric: Wire with a diameter of 0.192 inch (4.88 mm) OR 0.148 inch (3.76 mm) OR 0.120 inch (3.05 mm) OR 0.113 inch (2.87 mm), as directed.
 a) Mesh Size: 2 inches (51 mm) OR 1 inch (25.4 mm) OR 3/8 inch (9.5 mm), as directed.
 2) Steel Wire Upper Fabric: Wire with a diameter of 0.120 inch (3.05 mm).
 a) Mesh Size: 3/8 inch (9.5 mm).
 c. Aluminum-Coated Fabric: ASTM A 491, Type I, 0.40 oz./sq. ft. (122 g/sq. m) OR 0.35 oz./sq. ft. (107 g/sq. m) OR 0.30 oz./sq. ft. (92 g/sq. m), as directed.
 d. Zinc-Coated Fabric: ASTM A 392, Type II, Class 1, 1.2 oz./sq. ft. (366 g/sq. m) OR Class 2, 2.0 oz./sq. ft. (610 g/sq. m), as directed, with zinc coating applied before OR after, as directed, weaving.
 e. Zn-5-Al-MM Aluminum-Mischmetal-Coated Fabric: ASTM F 1345, Type III, Class 2, 1.0 oz./sq. ft. (305 g/sq. m).
 f. Polymer-Coated Fabric: ASTM F 668, Class 2b over aluminum OR zinc OR Zn-5-Al-MM-alloy, as directed, coated steel wire.
 1) Color: Dark green OR Olive green OR Brown OR Black OR As selected by the Owner from manufacturer’s full range, as directed, complying with ASTM F 934.
 g. Coat selvage ends of fabric that is metallic coated before the weaving process with manufacturer’s standard clear protective coating.
 h. Selvage: Twisted and barbed top and bottom.

B. Security Fence Framing
 1. Posts and Rails: Comply with ASTM F 1043 for framing, including rails, braces, and line; terminal; and corner posts.
 a. Fence Height: 96 inches (2440 mm) OR 12 feet (3.66 m) OR As indicated on Drawings, as directed.
 b. Heavy OR Light, as directed, Industrial Strength: Material Group IA, round steel pipe, Schedule 40 OR Group IC, round steel pipe, electric resistance-welded pipe, as directed.
 1) Line Post: 2.375 inches (60 mm) in diameter OR 2.875 inches (73 mm) in diameter OR 4 inches (100-mm) in diameter OR 6.625 inches (168 mm) in diameter OR 8.625 inches (168 mm) in diameter OR 2.25 by 1.70 inches (67 by 43 mm) OR 3.25 by 2.50 inches (83 by 64 mm), as directed.
 2) End, Corner, and Pull Post: 2.875 inches (73 mm) in diameter OR 4.0 inches (102 mm) in diameter OR 6.625 inches (168 mm) in diameter OR 8.625 inches (168 mm) in diameter, as directed.
c. Rail Members: Intermediate, top, and brace, as directed, rails complying with ASTM F 1043 for Heavy Industrial.

d. Metallic Coating for Steel Framing:
 1) Type A, consisting of not less than minimum 2.0-oz./sq. ft. (0.61-kg/sq. m) average zinc coating per ASTM A 123/A 123M or 4.0-oz./sq. ft. (1.22-kg/sq. m) zinc coating per ASTM A 653/A 653M.
 2) Type B, zinc with organic overcoat, consisting of a minimum of 0.9 oz./sq. ft. (0.27 kg/sq. m) of zinc after welding, a chromate conversion coating, and a clear, verifiable polymer film.
 3) External, Type B, zinc with organic overcoat, consisting of a minimum of 0.9 oz./sq. ft. (0.27 kg/sq. m) of zinc after welding, a chromate conversion coating, and a clear, verifiable polymer film. Internal, Type D, consisting of 81 percent, not less than 0.3-mil- (0.0076-mm-) thick, zinc-pigmented coating.
 4) Type C, Zn-5-Al-MM alloy, consisting of not less than 1.8-oz./sq. ft. (0.55-kg/sq. m) coating.
 5) Coatings: Any coating above.

e. Polymer coating over metallic coating.
 1) Color: Match chain-link fabric OR Dark green OR Olive green OR Brown OR Black OR As selected from manufacturer's full range, as directed, complying with ASTM F 934.

C. Tension Wire
 1. Metallic-Coated Steel Wire: 0.177-inch- (4.5-mm-) diameter, marcelled tension wire complying with ASTM A 817 and ASTM A 824, with the following metallic coating:
 a. Type I, aluminum coated (aluminized).
 b. Type II, zinc coated (galvanized) by hot-dip OR electrolytic, as directed, process, with Class 5 minimum coating weight of not less than 2.0 oz./sq. ft. (610 g/sq. m) of uncoated wire surface.
 2. Polymer-Coated Steel Wire: 0.177-inch- (4.5-mm-) diameter, tension wire complying with ASTM F 1664, Class 1 OR Class 2a OR Class 2b, as directed, over aluminum OR zinc OR Zn-5-Al-MM-alloy, as directed, coated steel wire.
 a. Color: Match chain-link fabric OR Dark green OR Olive green OR Brown OR Black OR As selected from manufacturer's full range, as directed, complying with ASTM F 934.

D. Swing Gates
 1. General: Comply with ASTM F 900 for gate posts and single OR double, as directed, swing gate types. Provide automated vehicular gates that comply with ASTM F 2200, as directed.
 a. Gate Leaf Width: 36 inches (914 mm) OR As indicated, as directed.
 b. Gate Fabric Height: 72 inches (1830 mm) or less OR More than 72 inches (1830 mm) OR As indicated, as directed.
 2. Pipe and Tubing:
 a. Zinc-Coated Steel: Comply with ASTM F 1043 and ASTM F 1083; protective coating and finish to match fence framing OR manufacturer's standard protective coating and finish, as directed.
 b. Aluminum: Comply with ASTM B 429/B 429M; mill OR manufacturer's standard, as directed, finish.
 c. Gate Post Size and Weight: Not less than required by ASTM F 900 OR ASTM F 1916, as directed.
 d. Gate Posts: Round tubular steel OR Rectangular tubular steel OR Round tubular aluminum OR Rectangular tubular aluminum, as directed.
 e. Gate Frames and Bracing: Round tubular steel OR Rectangular tubular steel OR Round tubular aluminum OR Rectangular tubular aluminum, as directed.
 3. Frame Corner Construction: Welded OR Assembled with corner fittings, as directed, and 3/8-inch- (9.5-mm-) diameter, adjustable truss rods for panels 5 feet (1.52 m) or wider.
4. Extended Gate Posts and Frame Members: Extend above top of chain-link fabric at both ends of gate frame 12 inches (300 mm) OR as indicated, as directed, as required to attach barbed wire OR tape, as directed, assemblies.

5. Provide separate isolated gate frame according to ASTM F 1916 and as indicated.

 a. Separation between Hinge and Latch Post and Fence Termination Post: 2 inches (51 mm) minimum, 2-1/2 inches (63.5 mm) maximum.

 a. Hinges: 180-degree inward OR 180-degree outward OR 360-degree inward and outward, as directed, swing.

 b. Latches permitting operation from one side OR both sides, as directed, of gate with provision for padlocking accessible from both sides of gate, as directed.

 c. Padlock and Chain: Owner furnished.

 d. Lock: Manufacturer's standard, as directed, internal device furnished in lieu of gate latch, as directed.

 e. Closer: Manufacturer's standard, as directed.

 f. For gates 14 feet (4.27 m) and higher, add locking device to transom.

E. Horizontal-Slide Gates

1. General: Comply with ASTM F 1184 for gate posts and single OR double, as directed, sliding gate types. Provide automated vehicular gates that comply with ASTM F 2200, as directed.

 a. Classification: Type I Overhead Slide.

 1) Gate Leaf Width: As indicated.

 2) Gate Fabric Height: 72 inches (1830 mm) or less OR More than 72 inches (1830 mm) OR As indicated, as directed.

 b. Classification: Type II Cantilever Slide, Class 1 with external OR Class 2 with internal, as directed, roller assemblies.

 1) Gate Frame Width and Height: 48 inches (1200 mm) wide or less by 72 inches (1830 mm) high or less OR More than 48 inches (1200 mm) wide by any height OR As indicated, as directed.

2. Pipe and Tubing:

 a. Zinc-Coated Steel: Protective coating and finish to match fence framing OR Manufacturer's standard protective coating and finish, as directed.

 b. Aluminum: Comply with ASTM B 429/B 429M; mill OR manufacturer's standard, as directed, finish.

 c. Gate Post Size and Weight: Not less than required by ASTM F 1184 OR ASTM F 1916, as directed.

 d. Gate Frames and Bracing: Round tubular steel OR Rectangular tubular steel OR Round tubular aluminum OR Rectangular tubular aluminum, as directed.

3. Frame Corner Construction: Welded OR Assembled with corner fittings, as directed, and 3/8-inch- (9.5-mm-) diameter, adjustable truss rods for panels 5 feet (1.52 m) or wider.

4. Extended Gate Posts and Frame Members: Extend above top of chain-link fabric at both ends of gate frame 12 inches (300 mm) OR as indicated, as directed, as required to attach barbed wire OR tape, as directed, assemblies.

5. Overhead Track Assembly: Manufacturer's standard track, with overhead framing supports, bracing, and accessories, engineered to support size, weight, width, operation, and design of gate and roller assemblies.

6. Hardware:

 a. Latches permitting operation from one side OR both sides, as directed, of gate with provision for padlocking accessible from both sides of gate, as directed.

 b. Padlock and Chain: Owner furnished.

 c. Lock: Manufacturer's standard, as directed, internal device furnished in lieu of gate latch, as directed.

 d. Hangers, roller assemblies, and stops fabricated from galvanized steel OR galvanized malleable iron OR mill-finished Grade 319 aluminum-alloy casting with stainless-steel fasteners, as directed.
F. **Fittings**

1. **General:** Comply with ASTM F 626.
2. **Post Caps:** Provide for each post.
 a. Provide line post caps with loop to receive tension wire or top rail.
3. **Rail and Brace Ends:** For each gate, corner, pull, and end post.
4. **Rail Fittings:** Provide the following:
 a. **Top-Rail Sleeves:** Pressed steel or round steel tubing not less than 6 inches (152 mm) long.
 b. **Rail Clamps:** Line and corner boulevard clamps for connecting intermediate and bottom, as directed, rails in the fence line to line posts.
5. **Tension and Brace Bands, Tension Bars, and Truss Rod Assemblies:** Comply with ASTM F 2611.
6. **Barbed Wire Arms:** Pressed steel or cast iron OR Aluminum, as directed, with clips, slots, or other means for attaching strands of barbed wire, and means for attaching to posts OR integral with post cap, as directed; for each post unless otherwise indicated, and as follows:
 a. Provide line posts with arms that accommodate top rail or tension wire.
 b. Provide corner arms at fence corner posts, unless extended posts are indicated.
 c. Type I, single slanted arm.
 d. Type II, single vertical arm.
 e. Type III, V-shaped arm.
 f. Type IV, A-shaped arm.
 g. Bolts or rivets for connection to post.
7. **Tie Wires, Clips, and Fasteners:** Comply with ASTM F 626 and ASTM F 1916.
 a. **High-Security Round Wire Ties:** For attaching chain-link fabric to posts, rails, and frames, complying with the following:
 1) Metallic-Coated Steel: 0.148-inch- (3.76-mm-) OR 0.192-inch- (4.88-mm-), as directed, diameter wire; zinc OR aluminum, as directed, coating.
 2) Stainless steel.
8. **Power-Driven Fabric Fasteners:** Comply with ASTM F 1916.
9. **Finish:**
 a. Metallic Coating for Pressed Steel or Cast Iron: Not less than 1.2 oz. /sq. ft. (366 g/sq. m) of zinc.
 1) Polymer coating over metallic coating.
 b. Aluminum: Mill finish.

G. **Barbed Wire**

1. **Steel Barbed Wire:** Comply with ASTM A 121, High Security Grade, for two-strand barbed wire; 0.099-inch- (2.51-mm-) diameter line wire with 0.080-inch- (2.03-mm-) diameter, four-point round barbs spaced not more than 3 inches (76 mm) o.c.
 a. **Aluminum Coating:** Type A.
2. **Polymer-Coated, Galvanized-Steel Barbed Wire:** Comply with ASTM F 1665, Type II, for two-strand barbed wire; 0.080-inch- (2.03-mm-) diameter line wire with 0.080-inch- (2.03-mm-) diameter, four-point round aluminum-alloy OR galvanized-steel, as directed, barbs spaced not more than 3 inches (76 mm) o.c.
 a. **Polymer Coating:** Class 1 OR Class 2a OR Class 2b, as directed, over aluminum OR zinc OR Zn-5-Al-MM-alloy, as directed,-coated steel wire.
 1) Color: Match chain-link fabric OR Dark green OR Olive green OR Brown OR Black OR As selected from manufacturer’s full range, as directed, complying with ASTM F 934.

H. **Barbed Tape**

1. **Wire-Reinforced Tape:** ASTM F 1910; with four-point, needle-sharp barbs permanently cold clenched around a core wire.
 a. **Core Wire:** High-tensile-strength, zinc-coated steel or stainless steel.
2. Clips: Stainless steel, 0.065 inch (1.65 mm) thick by 0.375 inch (9.5 mm) wide; capable of withstanding a minimum 150-lbf (667-N) pull load to limit extension of coil, resulting in a concertina pattern when deployed.

3. Tie Wires: Stainless steel, 0.065 inch (1.65 mm) in diameter.

4. Fabrication: Continuous coils of barbed tape as defined in ASTM F 1379 for the following characteristics:
 a. Configuration: Single OR Double, as directed, coil.
 b. Style: Helical OR Concertina, as directed, pattern.
 c. Coil Diameter(s): 18 inches (457 mm) OR 24 inches (610 mm) OR 24-inch (610-mm) inner coil and 30-inch (762-mm) outer coil OR As indicated on Drawings, as directed.
 d. Coil Loop Spacing(s): 12 inches (305 mm) OR Manufacturer's standard OR As indicated on Drawings, as directed.
 e. Barb Length Classification: Long, 1.2-inch (30.5-mm) OR Medium, 0.4-inch (10.2-mm) OR Short, 0.1875-inch (4.76-mm), as directed, barb.
 f. Barb Spacing: 4 inches (102 mm) o.c.
 g. Barb Set: Straight OR Offset OR Manufacturer's standard, as directed.

5. Ground Barrier Stakes: 3/8-inch- (9.5-mm-) diameter galvanized reinforcing bar, 18 inches (457 mm) long with 180-degree end hook 3-1/2 inches (89 mm) long.

I. Gate Operators
1. General: Provide factory-assembled automatic operating system designed for gate size, type, weight, and operation frequency. Provide operation control system with characteristics suitable for Project conditions, with remote-control stations, safety devices, and weatherproof enclosures; coordinate electrical requirements with building electrical system.
 a. Provide operator designed so motor may be removed without disturbing limit-switch adjustment and without affecting auxiliary emergency operator.
 b. Provide operator with UL approval OR UL-approved components, as directed.
 c. Provide electronic components with built-in troubleshooting diagnostic feature.
 d. Provide unit designed and wired for both right-hand/left-hand opening, permitting universal installation.

2. Comply with NFPA 70.

3. UL Standard: Manufacturer and label gate operators to comply with UL 325.

4. Motor Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, within installed environment, with indicated operating sequence, and without exceeding nameplate rating or considering service factor. Comply with NEMA MG 1 and the following:
 a. Voltage: 12-V dc OR 120 V OR 208-220 V OR NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected, as directed.
 b. Horsepower: 1/4 OR 1/3 OR 3/4, as directed.
 c. Enclosure: Open dripproof OR Totally enclosed OR Manufacturer's standard, as directed.
 d. Duty: Continuous duty at ambient temperature of 105 deg F (40 deg C) and at altitude of 3300 feet (1005 m) above sea level.
 e. Service Factor: 1.15 for open dripproof motors; 1.0 for totally enclosed motors.
 f. Phase: One OR Polyphase, as directed.

5. Gate Operators: Gate OR Equipment base/pad OR Pedestal post OR In ground, as directed, mounted and as follows:
 a. Hydraulic Swing OR Slide, as directed, Gate Operators:
 1) Duty: Medium OR Heavy, as directed.
 2) Gate Speed: Minimum 45 feet (13.7 m) OR 60 feet (18.2 m), as directed, per minute.
 3) Maximum Gate Weight: 800 lb (363 kg).
 4) Frequency of Use: 10 cycles per hour OR 25 cycles per hour OR Continuous duty, as directed.
 5) Operating Type: Wheel and rail drive with manual release, as directed.
 6) Hydraulic Fluid: Of viscosity required for gate operation at ambient temperature range for Project.
7) Locking: Hydraulic in both directions.
8) Heater: Manufacturer's standard track and roller heater with thermostatic control.

b. Mechanical Swing OR Slide, **as directed**, Gate Operators:
1) Duty: Medium OR Heavy OR Maximum security, **as directed**.
2) Gate Speed: Minimum 45 feet (13.7 m) per minute OR 60 feet (18.2 m) per minute OR variable speed, **as directed**.
3) Maximum Gate Weight: 800 lb (363 kg) OR 3000 lb (1360 kg), **as directed**.
4) Frequency of Use: 10 cycles per hour OR 25 cycles per hour OR 60 cycles per hour OR Continuous duty, **as directed**.
5) Operating Type: Crank arm OR Enclosed OR Wheel and rail drive OR Roller chain, **as directed**, with manual release, **as directed**.
6) Drive Type: Enclosed worm gear and chain-and-sprocket, **as directed**, reducers, roller-chain drive.
 OR
 Drive Type: V-belt and worm gear OR chain-and-sprocket, **as directed**, reducers, roller-chain drive.

6. Remote Controls: Electric controls separated from gate and motor and drive mechanism, with NEMA ICS 6, Type 1 OR NEMA ICS 6, Type 4, **as directed**, enclosure for surface OR flush OR equipment base/pad OR pedestal, **as directed**, mounting and with space for additional optional equipment. Provide the following remote-control device(s):
 a. Control Station: Keyed, two OR three, **as directed**, -position switch, located remotely from gate. Provide two keys per station.
 OR
 Control Station: Momentary contact, single OR three, **as directed**, -button operated, located remotely from gate. Key switch to lock out open and close buttons, **as directed**.
 1) Function: Open, stop, close.
 b. Card Reader: Functions only when authorized card is presented. Programmable, magnetic multiple OR single, **as directed**, -code system, permitting four different access time periods, **as directed**, face-lighted unit fully visible at night, **as directed**.
 1) Reader Type: Touch plate OR Swipe OR Insertion OR Proximity, **as directed**.
 2) Features: Timed anti-passback OR Limited-time usage OR Capable of monitoring and auditing gate activity, **as directed**.
 c. Digital Keypad Entry Unit: Multiple-code capability OR Multiple-programmable code capability, **as directed**, of not less than five OR 500 OR 2500, **as directed**, possible individual codes, consisting of one- to seven OR four OR five, **as directed**, -digit codes and permitting four different access time periods, **as directed**.
 1) Features: Timed anti-passback OR Limited-time usage OR Capable of monitoring and auditing gate activity, **as directed**.
 2) Face-lighted unit with metal-keyed OR keyless-membrane, **as directed**, keypad fully visible at night.
 d. Radio Control: Digital system consisting of code-compatible universal receiver for each gate, located where indicated, with remote antenna with coaxial cable and mounting brackets designed to operate gates. Provide one OR two, **as directed**, programmable transmitter(s) with multiple-code capability permitting validating or voiding of not less than 1000 OR 10,000, **as directed**, codes per channel configured for the following functions:
 1) Transmitters: Single OR Three, **as directed**, -button operated, with open OR open and close, **as directed**, function.
 2) Channel Settings: Two OR Three OR Four, **as directed**, independent channel settings controlling separate receivers for operating more than one gate from each transmitter.
 e. Telephone Entry System: Hands-free voice-communication system for connection to building telephone system with digital-entry code activation of gate operator and auxiliary keypad entry, **as directed**.
 1) System: Designed to be wired to same line with telephone.
OR Multiunit System: Designed to be wired to a dedicated telephone line, with capacity to access 20 OR 100, as directed, telephones and with electronic directory, as directed.

f. Vehicle Loop Detector: System including automatic closing timer with adjustable time delay before closing, timer cut-off switch, as directed, and loop detector designed to open and close gate OR hold gate open until traffic clears OR reverse gate, as directed. Provide electronic detector with adjustable detection patterns, adjustable sensitivity and frequency settings, and panel indicator light designed to detect presence or transit of a vehicle over an embedded loop of wire and to emit a signal activating the gate operator. Provide number of loops consisting of multiple strands of wire, number of turns, loop size, and method of placement at location shown on Drawings, as recommended in writing by detection system manufacturer for function indicated.

1) Loop: Wire, in size indicated for field assembly, for pave-over OR saw-cut with epoxy-grouted, as directed, installation.

OR Loop: Factory preformed in size indicated; style for pave-over OR saw-cut with epoxy-grouted, as directed, installation.

g. Vehicle Presence Detector: System including automatic closing timer with adjustable time delay before closing, timer cut-off switch, as directed, and presence detector designed to open and close gate OR hold gate open until traffic clears OR reverse gate, as directed. Provide retroreflective OR emitter/receiver, as directed, detector with adjustable detection zone pattern and sensitivity, designed to detect presence or transit of a vehicle in gate path when an infrared beam in zone pattern is interrupted, and to emit a signal activating the gate operator.

7. Obstruction Detection Devices: Provide each motorized gate with automatic safety sensor(s). Activation of sensor(s) causes operator to immediately function as follows:

a. Action: Reverse gate in both opening and closing cycles and hold until clear of obstruction OR Stop gate in opening cycle and reverse gate in closing cycle and hold until clear of obstruction, as directed.

b. Internal Sensor: Built-in torque or current monitor senses gate is obstructed.

c. Sensor Edge: Contact-pressure-sensitive safety edge, profile, and sensitivity designed for type of gate and component indicated, in locations as follows. Connect to control circuit using take-up cable reel OR self-coiling cable OR gate edge transmitter and operator receiver system, as directed.

1) Along entire gate leaf leading edge (for swing gates and slide gates).
2) Along entire gate leaf trailing edge (for slide gates).
3) Across entire gate leaf bottom edge (for vehicular swing and slide gates complying with UL 325 or to suit Project; consider retaining for pedestrian gates).
4) Along entire length of gate posts (for slide gates; revise for sensor edge at pinch point post of swing gates).
5) Along entire length of gate guide posts (for Type II Cantilever Slide, Class 1 gates).
6) Where indicated on Drawings.

d. Photoelectric/Infrared Sensor: System designed to detect an obstruction in gate's path when infrared beam in the zone pattern is interrupted.

8. Limit Switches: Adjustable switches, interlocked with motor controls and set to automatically stop gate at fully retracted and fully extended positions.

9. Emergency Release Mechanism: Quick-disconnect release of operator drive system of the following type of mechanism, permitting manual operation if operator fails. Design system so control circuit power is disconnected during manual operation.

a. Type: Integral fail-safe release, allowing gate to be pushed open without mechanical devices, keys, cranks, or special knowledge OR Mechanical device, key, or crank-activated release, as directed.

10. Operating Features:
a. Digital Microprocessor Control: Electronic programmable means for setting, changing, and adjusting control features with capability of monitoring and auditing gate activity, as directed. Provide unit that is isolated from voltage spikes and surges.

b. System Integration: With controlling circuit board capable of accepting any type of input from external devices.

c. Master/Slave Capability: Control stations designed and wired for gate pair operation.

d. Automatic Closing Timer: With adjustable time delay before closing and timer cut-off switch, as directed.

e. Open Override Circuit: Designed to override closing commands.

f. Reversal Time Delay: Designed to protect gate system from shock load on reversal in both directions.

g. Maximum Run Timer: Designed to prevent damage to gate system by shutting down system if normal time to open gate is exceeded.

h. Clock Timer: 24-hour OR Seven-day, as directed, programmable for regular events.

11. Accessories:

a. Warning Module: Audio OR Visual, as directed, constant OR strobe, as directed, light alarm sounding three to five seconds in advance of gate operation and continuing until gate stops moving; compliant with the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines.

b. Battery Backup System: Battery-powered drive and access-control system, independent of primary drive system.

1) Fail Safe: Gate opens and remains open until power is restored.

2) Fail Secure: Gate cycles on battery power, then fail safe when battery is discharged.

c. External electric-powered solenoid OR magnetic, as directed, lock with delay timer allowing time for lock to release before gate operates.

d. Fire OR Postal, as directed, box.

e. Fire strobe OR siren, as directed, sensor.

f. Intercom System: As required to meet Project requirements.

g. Instructional, Safety, and Warning Labels and Signs: According to UL 325 OR Manufacturer's standard for components and features specified OR As indicated on Drawings, as directed.

h. Equipment Bases/Pads: Precast concrete, depth not less than 12 inches (305 mm), dimensioned and reinforced according to gate operator component manufacturer's written instructions and as indicated on Drawings.

J. Grout And Anchoring Cement

1. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout, recommended in writing by manufacturer, for exterior applications.

2. Erosion-Resistant Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with potable water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating and that is recommended in writing by manufacturer for exterior applications.

K. Fence Grounding

1. Conductors: Bare, solid wire for No. 6 AWG and smaller; stranded wire for No. 4 AWG and larger.

a. Material above Finished Grade: Copper OR Aluminum, as directed.

b. Material on or below Finished Grade: Copper.

c. Bonding Jumpers: Braided copper tape, 1 inch (25.4 mm) wide, woven of No. 30 AWG bare copper wire, terminated with copper ferrules.

a. Connectors for Below-Grade Use: Exothermic welded type.
b. Grounding Rods: Copper-clad steel, 5/8 by 96 inches (16 by 2440 mm).

L. Soil Sterilization
1. Soil Sterilant: Type approved by authorities having jurisdiction.
2. Polyethylene Sheeting: 6 mils (0.15 mm) thick, black, and serving as soil separation fabric.
3. Stone Ground Cover: 3/4- to 2-inch (19- to 51-mm) crushed stone or washed gravel.

1.3 EXECUTION

A. Examination
1. Examine areas and conditions, with Installer present, for compliance with requirements for a verified survey of property lines and legal boundaries, as directed, site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.
 a. Do not begin installation before final grading is completed unless otherwise permitted by the Owner.
2. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Preparation
1. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet (152 m) or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

C. Installation, General
1. Install chain-link fencing to comply with ASTM F 567 OR ASTM F 1916, as directed, and more stringent requirements specified.
 a. Install fencing on established boundary lines inside property line.

D. Chain-Link Fence Installation
1. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.
2. Post Setting: Set posts in concrete OR with mechanical anchors OR by mechanically driving into soil, as directed, at indicated spacing into firm, undisturbed soil.
 a. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
 b. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 1) Exposed Concrete: Extend 2 inches (51 mm) above grade or to same elevation as concrete grade beam, as directed; shape and smooth to shed water.
 2) Concealed Concrete: Top 2 inches (51 mm) below grade as indicated on Drawings to allow covering with surface material.
 3) Posts Set into Concrete in Sleeves: Use steel pipe sleeves preset and anchored into concrete for installing posts. After posts have been inserted into sleeves, fill annular space between post and sleeve with nonshrink, nonmetallic grout OR anchoring cement, as directed, mixed and placed to comply with anchoring material manufacturer's written instructions, and finished sloped to drain water away from post.
 4) Posts Set into Voids in Concrete: Form or core drill holes not less than 5 inches (127 mm) deep and 3/4 inch (19 mm) larger than OD of post. Clean holes of loose material, insert posts, and fill annular space between post and concrete with nonshrink, nonmetallic grout OR anchoring cement, as directed, mixed and placed to comply with anchoring material manufacturer's written instructions, and finished sloped to drain water away from post.
3. Terminal Posts: Locate and install terminal end, corner, and gate posts per ASTM F 567 and terminal pull posts at changes in horizontal or vertical alignment of 15 degrees or more, at any abrupt change in grade, and at intervals not greater than 500 feet (152 m). For runs exceeding 500 feet (152 m), space pull posts an equal distance between corner or end posts.

4. Line Posts: Space line posts uniformly at 96 inches (2440 mm) OR 10 feet (3 m), as directed, o.c.

5. Post Bracing and Intermediate Rails: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.
 a. Locate horizontal braces at midheight of fabric 72 inches (1830 mm) or higher, on fences with top rail and at two-third fabric height on fences without top rail. Install so posts are plumb when diagonal rod is under proper tension.

7. Tension Wire: Install according to ASTM F 567 and ASTM F 1916, maintaining plumb position and alignment of fencing. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch- (3.05-mm-) diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches (610 mm) o.c. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:
 a. Extended along top and bottom, as directed, of fence fabric. Install top tension wire through post cap loops. Install bottom tension wire within 6 inches (152 mm) of bottom of fabric and tie to each post with not less than same diameter and type of wire.
 b. Extended along top of barbed wire arms OR extended posts, as directed, and top of fence fabric for supporting barbed tape.
 c. As indicated.

8. Top Rail: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended by fencing manufacturer.

9. Bottom Rails: Install and secure to posts with fittings; anchor rail at midspan to concrete footing OR continuous grade beam, as directed.

 a. Leave 1-1/2 inches (38 mm) OR 2 inches (51 mm), as directed, between finish grade or surface and bottom selvage unless otherwise indicated.
 b. Where indicated, bury an 18-inch- (457-mm-) wide, polymer-coated fabric 12 inches (305 mm) into trench; overlap above-grade fabric 6 inches (152 mm) and secure to bottom rail with tie wires. Backfill and compact trench.
 c. Overlapping Fabric: At or between post or rail according to ASTM F 1916, with wire ties or steel strap method.

11. Tension or Stretcher Bars: Thread through fabric and secure to end, corner, pull, and gate posts with tension bands spaced not more than 15 inches (381 mm) o.c.

12. Tie Wires: Power-fastened or manually fastened ties configured to wrap a full 360 degrees around rail or post and a minimum of one complete diamond of fabric. Twist ends one and one-half machine twists or three full manual twists, and cut off protruding ends to preclude untwisting by hand.
 a. Maximum Spacing: Tie fabric to line posts at 12 inches (305 mm) o.c. and to braces at 24 inches (610 mm) o.c.

13. Power-Driven Fasteners: Fasten 0.192- or 0.148-inch (4.87- or 3.76-mm) wire fabric with 2- or 1-inch (51- or 25.4-mm) mesh size.
 a. Fasten fabric to line posts 12 inches (305 mm) o.c. and to braces 24 inches (610 mm) o.c.
14. Fasteners: Install nuts for tension bands and carriage bolts on the side of fence opposite the fabric side. Peen ends of bolts or score threads to prevent removal of nuts, as directed.

15. Barbed Wire: Install barbed wire uniformly spaced as indicated on Drawings OR as directed. Pull wire taut, install securely to extension arms, and secure to end post or terminal arms.

16. Barbed Tape: Comply with ASTM F 1911. Install barbed tape uniformly in configurations indicated and fasten securely to prevent movement or displacement.

17. Ground Barrier Stakes: Stake coils at 10 feet (3 m) o.c., driven to full depth.

E. Gate Installation

1. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.

F. Gate Operator Installation

1. General: Install gate operators according to manufacturer's written instructions, aligned and true to fence line and grade.

2. Excavation for Support Posts OR Pedestals OR Equipment Bases/Pads, as directed: Hand-excavate holes for bases/pads, in firm, undisturbed soil to dimensions and depths and at locations as required by gate operator component manufacturer's written instructions and as indicated.

3. Vehicle Loop Detector System: Cut grooves in pavement and bury OR Bury, as directed, and seal wire loop according to manufacturer's written instructions. Connect to equipment operated by detector.

4. Comply with NFPA 70 and manufacturer's written instructions for grounding of electric-powered motors, controls, and other devices.

G. Grounding And Bonding

1. Fence Grounding: Install at maximum intervals of 100 feet (30 m) except as follows:
 a. Gates and Other Fence Openings: Ground fence on each side of opening.
 1) Bond metal gates to gate posts.
 2) Bond across openings, with and without gates, except openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches (457 mm) below finished grade.

2. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet (45 m) on each side of crossing.

4. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches (152 mm) below finished grade. Connect conductor to each fence component at grounding location, including the following:
 a. Make grounding connections to each barbed wire strand with wire-to-wire connectors designed for this purpose.
 b. Make grounding connections to each barbed tape coil with connectors designed for this purpose.

6. Connections: Make connections to minimize possibility of galvanic action or electrolysis. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 a. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
 b. Make connections with clean, bare metal at points of contact.
 c. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
d. Make aluminum-to-galvanized-steel connections with tin-plated copper jumpers and mechanical clamps.

e. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

7. Bonding to Lightning Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning protection down conductor or lightning protection grounding conductor complying with NFPA 780.

H. Soil Sterilization
2. Apply sterilant after completing grounding and other below-grade electrical work along fence line and within zone between double-row chain-link fence installation.
3. Install soil separation fabric continuously between double-row chain-link fence installation, overlapping punctures and joints 6 inches (152 mm).
4. Lay continuous 3-inch- (75-mm-) deep bed of crushed stone or washed gravel over soil separation fabric.
5. Extend soil sterilization 4 feet (1.2 m) OR 6 feet (1.8 m), as directed, beyond outside and inside of fence.

I. Field Quality Control
2. Fence Post Rigidity Testing: Test line posts for rigidity according to ASTM F 1916.
 a. Grounding-Resistance Tests: Subject completed grounding system to a megger test at each grounding location. Measure grounding resistance no fewer than two full days after last trace of precipitation, without soil having been moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural grounding resistance. Perform tests by two-point method according to IEEE 81.
 b. Excessive Grounding Resistance: If resistance to grounding exceeds specified value, notify the Owner promptly. Include recommendations for reducing grounding resistance and a proposal to accomplish recommended work.
 c. Report: Prepare test reports, certified by testing agency, of grounding resistance at each test location. Include observations of weather and other phenomena that may affect test results.

J. Adjusting
1. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.
2. Automatic Gate Operator: Energize circuits to electrical equipment and devices. Adjust operators, controls, safety devices, alarms, as directed, and limit switches.
 a. Hydraulic Operator: Purge operating system, adjust pressure and fluid levels, and check for leaks.
 b. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 c. Test and adjust controls, alarms, as directed, and safeties. Replace damaged and malfunctioning controls and equipment.
3. Lubricate hardware, gate operator, as directed, and other moving parts.

K. Demonstration
1. Train Owner's personnel to adjust, operate, and maintain high-security chain-link fences and gates.

END OF SECTION 32 31 13 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 31 13 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>32 31 13 00</td>
<td>32 31 11 00</td>
<td>Chain-Link Fences And Gates</td>
</tr>
</tbody>
</table>
SECTION 32 31 29 00 - PERMANENT WOOD FENCING

1.1 GENERAL

A. Description Of Work
 1. The specification covers the furnishing and installation of materials for repair and maintenance of permanent wood fencing. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals: Shop drawings shall be submitted for approval.

1.2 PRODUCTS

A. Pickets:
 1. Size: Wood For picket shall match the existing fencing in material, configuration, dimensions, texture, and finishes,
 2. Attachment: Hot-dipped galvanized nails complying with Fed. Spec. FF-N-105 shall be used to fasten pickets to rails.

B. Framework:
 1. Line Posts: 4 x 4 of required length to match existing post height and extend into the ground as required to ensure rigid installation.
 2. Terminal and Corner Posts: 4 x 4 of required length.
 3. Gate Posts: 4 x 6 and of the length required for firm embedment to resist gate action.
 4. Top Rail: 2 x 4 of length required to span between posts.
 5. Where bracing is required, it shall match top and bottom rails in dimension and finish.
 6. Metal Posts and Rails: Solid mild steel galvanized in compliance with ASTM A 123 of the length and style required to match existing.

C. Gates:
 1. Frame: 2 x 4 members with attached pickets. Configuration of gate shall match that of existing gates.
 2. Bracing: Single 2 x 4 running diagonally across the gate to opposite corners of the frame.
 3. Hardware: Hinges, latches, and other hardware shall be hot dipped galvanized and of configurations to match existing hardware. Bolts and nuts shall comply with ASTM A 307 and galvanized in compliance with ASTM A 153.

D. Finish: All wood fence members shall be given a pressure preservative treatment in a closed retort. The treatment shall comply with Fed. Spec. TT-W-571. Wood cut or sawed after treatment shall have the cut surfaces well brush-coated with the preservative used in the treatment. Paint to match existing after treatment and installation.

1.3 EXECUTION

A. Posts: Hold in line in a true vertical position by temporary bracing until backfilling is completed. Compact by hand tamping or other suitable methods to a density comparable to that of adjacent ground. Posts of fencing that are higher than four feet and exposed to strong winds and posts at all gates shall be of heavy construction and shall be embedded in concrete.
B. Rails: Install at the height and in the manner required to match existing fencing, and secure to post with fasteners similar to existing.

C. Pickets: Space, attach, and position to match existing pattern and attachment methods.

D. Accessories: Install to match existing conditions.

END OF SECTION 32 31 29 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 31 29 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
</tbody>
</table>
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 32 32 13 00 - SEGMENTAL RETAINING WALLS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for segmental retaining walls. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes single- and multiple- depth segmental retaining walls with and without soil reinforcement.

C. Performance Requirements
1. Basis of Design: Design of segmental retaining walls is based on products indicated. If comparable products of other manufacturers are proposed, provide engineering design for proposed products, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
2. Delegated Design: Design segmental retaining walls, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
3. Structural Performance: Engineering design shall be based on the following loads and be according to NCMA's "Design Manual for Segmental Retaining Walls."
 a. Gravity loads due to soil pressures resulting from grades and sloped backfill indicated.
 b. Superimposed loads (surcharge) indicated on Drawings.
4. Seismic Performance: Engineering design shall be based on the following loads and factors and be according to NCMA's "Segmental Retaining Walls - Seismic Design Manual."
 a. Gravity loads due to soil pressures resulting from grades and sloped backfill indicated.
 b. Superimposed loads (surcharge) indicated on Drawings.
 c. Horizontal Peak Ground Acceleration (A) for Project: As directed.

D. Preconstruction Testing
1. Preconstruction Testing Service: Engage a qualified testing agency to perform the following preconstruction testing:
 a. Test soil reinforcement and backfill materials for pullout resistance according to ASTM D 6706.
 b. Test soil reinforcement and backfill materials for coefficient of friction according to ASTM D 5321.

E. Submittals
1. Product Data: For each type of product indicated.
2. Samples: For each color and texture of concrete unit required. Submit full-size units OR sections of units not less than 3 inches (75 mm) square, as directed.
 a. Include one full-size unit for each type of concrete unit required.
3. Delegated-Design Submittal: For segmental retaining walls indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 a. Compliance Review: Qualified professional engineer responsible for segmental retaining wall design shall review and approve submittals and source and field quality-control reports for compliance of materials and construction with design.
4. Product Certificates: For segmental retaining wall units and soil reinforcement, from manufacturer.
a. Include test data for shear strength between segmental retaining wall units according to ASTM D 6916.
b. Include test data for connection strength between segmental retaining wall units and soil reinforcement according to ASTM D 6638.

5. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for segmental retaining wall units and soil reinforcement.
 a. Include test data for freeze-thaw durability of segmental retaining wall units.
 b. Include test data for shear strength between segmental retaining wall units according to ASTM D 6916.
 c. Include test data for connection strength between segmental retaining wall units and soil reinforcement according to ASTM D 6638.

F. Quality Assurance
 1. Preinstallation Conference: Conduct conference at Project site.

G. Delivery, Storage, And Handling
 1. Store and handle concrete units and accessories to prevent deterioration or damage due to contaminants, breaking, chipping, or other causes.
 2. Store geosynthetics in manufacturer's original packaging with labels intact. Store and handle geosynthetics to prevent deterioration or damage due to sunlight, chemicals, flames, temperatures above 160 deg F (71 deg C) or below 32 deg F (0 deg C), and other conditions that might damage them. Verify identification of geosynthetics before using and examine them for defects as material is placed.

1.2 PRODUCTS

A. Segmental Retaining Wall Units
 1. Concrete Units: ASTM C 1372, Normal Weight, except that maximum water absorption shall not exceed 7 percent by weight and units shall not differ in height more than plus or minus 1/16 inch (1.6 mm) from specified dimension.
 a. Provide units that comply with requirements for freeze-thaw durability.
 b. Provide units that interlock with courses above and below by means of integral lugs or lips, pins, clips, or hollow cores filled with drainage fill.
 2. Color: As selected from manufacturer's full range.
 3. Shape and Texture: Provide units of basic shape and dimensions indicated with machine-split textured OR smooth, as directed, exposed faces.
 4. Shape and Texture: Provide units matching basic shape, dimensions, and face texture indicated by referencing manufacturer's pattern designation.
 5. Shape and Texture: Provide units of any basic shape and dimensions that will produce segmental retaining walls of dimensions and profiles indicated without interfering with other elements of the Work and with machine-split textured, flat exposed face OR shaped exposed face with deeply beveled vertical edges, as directed.
 6. Batter: Provide units that offset from course below to provide at least 1:24 OR 1:16 OR 1:14 OR 1:8 OR 1:5, as directed, batter.
 7. Cap Units: Provide cap units of shape indicated OR same shape as other units, as directed, with smooth, as-cast top surfaces without holes or lugs.
 8. Special Units: Provide corner units, end units, and other shapes as needed to produce segmental retaining walls of dimensions and profiles indicated and to provide texture on exposed surfaces matching face OR as indicated, as directed.

B. Installation Materials
 1. Pins: Product supplied by segmental retaining wall unit manufacturer for use with units provided, made from nondegrading polymer reinforced with glass fibers.
2. Clips: Product supplied by segmental retaining wall unit manufacturer for use with units provided, made from nondegrading polymer reinforced with glass fibers.

3. Cap Adhesive: Product supplied or recommended by segmental retaining wall unit manufacturer for adhering cap units to units below.

4. Leveling Base: Comply with requirements in Division 31 Section "Earth Moving" for base material or Division 33 Section "Subdrainage" for drainage fill, as directed.
 a. Leveling Course: Lean concrete with a compressive strength of not more than 500 psi (3.4 MPa).

5. Drainage Fill: Comply with requirements in Division 33 Section "Subdrainage".

6. Reinforced-Soil Fill: ASTM D 2487; GW, GP, SW, SP, and SM soil classification groups or a combination of these groups; free of debris, waste, frozen materials, vegetation, and other deleterious matter; meeting the following gradation according to ASTM C 136: 20 to 100 percent passing No. 4 (4.75-mm) sieve, 0 to 60 percent passing No. 40 (0.425-mm) sieve, 0 to 35 percent passing No. 200 (0.075-mm) sieve, and with fine fraction having a plasticity index of less than 20.

7. Nonreinforced-Soil Fill: Comply with requirements in Division 31 Section "Earth Moving" for satisfactory soils.

8. Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent.
 a. Apparent Opening Size: No. 70 to 100 (0.212- to 0.150-mm) sieve, maximum; ASTM D 4751.
 b. Minimum Grab Tensile Strength: 110 lb (49.9 kg); ASTM D 4632.
 c. Minimum Weight: 4 oz./sq. yd. (132 g/sq. m).

9. Subdrainage Pipe and Filter Fabric: Comply with requirements in Division 33 Section "Subdrainage".
 a. Product Type: Knitted or woven geogrid made from polyester yarns with a protective coating, molded geogrid made from high-density polyethylene, or woven geotextile made from polyamides, polyesters, or polyolefins, as directed.

C. Source Quality Control
 1. Direct manufacturer to test and inspect each roll of soil reinforcement at the factory for minimum average roll values for geosynthetic index property tests, including the following:
 a. Weight.
 b. Roll size.
 c. Grab or single-rib strength.
 d. Aperture opening.
 e. Rib or yarn size.

1.3 EXECUTION

A. Examination
 1. Examine areas and conditions, with Installer present, for compliance with requirements for excavation tolerances, condition of subgrades, and other conditions affecting performance of segmental retaining walls.
 2. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Retaining Wall Installation
 1. General: Place units according to NCMA's "Segmental Retaining Wall Installation Guide" and segmental retaining wall unit manufacturer's written instructions.
 a. Lay units in running bond OR bond pattern indicated, as directed.
 b. Form corners and ends by using special units OR cutting units with motor-driven saw OR splitting units with mason's hammer and chisel, as directed.
 2. Leveling Base: Place and compact base material to thickness indicated and with not less than 95 percent maximum dry unit weight according to ASTM D 698.
a. Leveling Course: At Contractor’s option, unreinforced lean concrete may be substituted for upper 1 to 2 inches (25 to 50 mm) of base OR Place unreinforced lean concrete over leveling base 1 to 2 inches (25 to 50 mm) thick, as directed. Compact and screed concrete to a smooth, level surface.

3. First Course: Place first course of segmental retaining wall units for full length of wall. Place units in firm contact with each other, properly aligned and level.
 a. Tamp units into leveling base as necessary to bring tops of units into a level plane.

4. Subsequent Courses: Remove excess fill and debris from tops of units in course below. Place units in firm contact, properly aligned, and directly on course below.
 a. For units with lugs designed to fit into holes in adjacent units, lay units so lugs are accurately aligned with holes, and bedding surfaces are firmly seated on beds of units below.
 b. For units with lips at front of units, slide units as far forward as possible for firm contact with lips of units below.
 c. For units with lips at bottom rear of units, slide units as far forward as possible for firm contact of lips with units below.
 d. For units with pins, install pins and align units.
 e. For units with clips, install clips and align units.

5. Cap Units: Place cap units and secure with cap adhesive.

C. Fill Placement
 1. General: Comply with requirements in Division 31 Section "Earth Moving", NCMA’s "Segmental Retaining Wall Installation Guide," and segmental retaining wall unit manufacturer’s written instructions.
 2. Fill voids between and within units with drainage fill. Place fill as each course of units is laid.
 3. Place, spread, and compact drainage fill and soil fill in uniform lifts for full width and length of embankment as wall is laid. Place and compact fills without disturbing alignment of units. Where both sides of wall are indicated to be filled, place fills on both sides at same time. Begin at wall and place and spread fills toward embankment.
 a. Use only hand-operated compaction equipment within 48 inches (1200 mm) of wall, or one-half of height above bottom of wall, whichever is greater.
 b. Compact reinforced-soil fill to not less than 95 percent maximum dry unit weight according to ASTM D 698.
 1) In areas where only hand-operated compaction equipment is allowed, compact fills to not less than 90 percent maximum dry unit weight according to ASTM D 698.
 2) In areas where fill height exceeds 15 feet (4.5 m), compact reinforced-soil fill that will be more than 15 feet (4.5 m) below finished grade to not less than 98 percent maximum dry unit weight according to ASTM D 698.
 3) In areas where fill height exceeds 30 feet (9 m), compact reinforced-soil fill that will be more than 30 feet (9 m) below finished grade to not less than 100 percent maximum dry unit weight according to ASTM D 698.
 c. Compact nonreinforced-soil fill to comply with Division 31 Section "Earth Moving".
 4. Place drainage geotextile against back of wall and place layer of drainage fill at least 12 inches (300 mm) OR 6 inches (150 mm), as directed, wide behind drainage geotextile to within 12 inches (300 mm) of finished grade. Place another layer of drainage geotextile between drainage fill and soil fill.
 5. Place a layer of drainage fill at least 12 inches (300 mm) OR 6 inches (150 mm), as directed, wide behind wall to within 12 inches (300 mm) of finished grade. Place a layer of drainage geotextile between drainage fill and soil fill.
 6. Wrap subdrainage pipe with filter fabric and place in drainage fill as indicated, sloped not less than 0.5 percent to drain.
 7. Place impervious fill over top edge of drainage fill layer.
 8. Slope grade at top of wall away from wall unless otherwise indicated. Slope grade at base of wall away from wall. Provide uniform slopes that will prevent ponding.
9. Place soil reinforcement in horizontal joints of retaining wall where indicated and according to soil-reinforcement manufacturer’s written instructions. Embed reinforcement a minimum of 8 inches (200 mm) into retaining wall and stretch tight over compacted backfill. Anchor soil reinforcement before placing fill.
 a. Place additional soil reinforcement at corners and curved walls to provide continuous reinforcement.
 b. Place geosynthetics with seams, if any, oriented perpendicular to segmental retaining walls.
 c. Do not dump fill material directly from trucks onto geosynthetics.
 d. Place at least 6 inches (150 mm) of fill over reinforcement before compacting with tracked vehicles or 4 inches (100 mm) before compacting with rubber-tired vehicles.
 e. Do not turn vehicles on fill until first layer of fill is compacted and second layer is placed over each soil-reinforcement layer.

D. Construction Tolerances
1. Variation from Level: For bed-joint lines along walls, do not exceed 1-1/4 inches in 10 feet (32 mm in 3 m), 3 inches (75 mm) maximum.
2. Variation from Indicated Batter: For slope of wall face, do not vary from indicated slope by more than 1-1/4 inches in 10 feet (32 mm in 3 m).
3. Variation from Indicated Wall Line: For walls indicated as straight, do not vary from straight line by more than 1-1/4 inches in 10 feet (32 mm in 3 m).

E. Field Quality Control
1. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
2. Comply with requirements in Division 31 Section “Earth Moving” for field quality control.
 a. In each compacted backfill layer, perform at least 1 field in-place compaction test for each 150 feet (45 m) or less of segmental retaining wall length.
 b. In each compacted backfill layer, perform at least 1 field in-place compaction test for each 24 inches (600 mm) of fill depth and each 50 feet (15 m) or less of segmental retaining wall length.

F. Adjusting
1. Remove and replace segmental retaining wall construction of the following descriptions:
 a. Broken, chipped, stained, or otherwise damaged units. Units may be repaired if the Owner approves methods and results.
 b. Segmental retaining walls that do not match approved Samples.
 c. Segmental retaining walls that do not comply with other requirements indicated.
2. Replace units so segmental retaining wall matches approved Samples and mockups, complies with other requirements, and shows no evidence of replacement.

END OF SECTION 32 32 13 00
SECTION 32 32 13 00a - MODULAR RETAINING WALL

1.1 GENERAL

A. Description
1. This specification covers the furnishing and installation of materials for modular retaining wall, and furnishing and installing accessories, all as indicated. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Definitions
1. Block Facing Units - Hollow concrete structural retaining wall units, plant cast from Portland cement, water, and mineral aggregates with or without the inclusion of other materials. The units are intended for use in the construction of mortarless, segmental retaining walls.
2. Geogrid - A geosynthetic formed by a regular network of integrally connected tensile elements with apertures of sufficient size to allow interlocking with surrounding soil, rock, or earth and function primarily as reinforcement.
3. Unit Fill - Compacted fill for the voids in the precast concrete wall units.
4. Wall Fill - Compacted soil which is within the geogrid reinforced soil mass.
5. Retained backfill - Any compacted soil which is behind the reinforced wall fill.
6. Foundation Soil - Compacted or in-situ soil beneath the entire wall.

C. Submittals
1. Product Data: For each type of product indicated.
2. Submittals: Shop drawings shall be submitted for approval.

D. Quality Control
1. Test units for 28-day strength in accordance with ASTM C 140. Average compressive strength shall be not less than 3000 psi (210 kg/sq cm).
2. Test units for freeze/thaw protection in accordance with ASTM C 90, and for water retention in accordance with ASTM C 941.
3. After unit samples have been accepted, erect and clean sample wall, of minimum of 15 sq ft (1.4 sq m), of each type of retaining wall. Sample wall shall be representative of retaining wall exposed in finished areas. Each sample wall will be checked for shade range, texture, soundness of construction, surface cleanliness, and conformity with other requirements of this Section. Secure acceptance of each cleaned sample wall from the Owner before starting work. Protect wall from damage. Remove sample wall after retaining walls have been accepted.

E. Job Conditions
1. Protect surfaces of weather-exposed units at end of each day and at start of each shut-down period with nonstaining waterproof cover extending at least two feet down on all sides of structure.
2. Protect surfaces and products adjacent to work that could possibly be damaged by water and cleaner.

F. Delivery, Storage And Handling
1. Retaining Wall Facing Units:
 a. Contractor shall check the units and connection accessories upon delivery to ensure that proper materials have been received.
 b. Contractor shall prevent excessive mud, wet cement, epoxy, and like materials from coming in contact with and affixing to the units.
c. Contractor shall protect the units from damage (i.e. cracks, chips, spalls). Damaged units shall be evaluated for usage in the wall according to ASTM C 90 and ASTM C 145.

2. Geogrid
 a. Contractor shall check the geogrid upon delivery to ensure that the proper material has been received.
 b. Geogrids shall be stored above -20°F (-29ºC).
 c. Contractor shall prevent excessive mud, wet cement, epoxy, and like materials from coming in contact with and affixing to the geogrid material.
 d. Rolled geogrid material may be laid flat or stood on end for storage.

1.2 PRODUCTS

A. Concrete Retaining Wall Units
 1. Modular unit face dimensions of 8 in. (200 mm) thick by 18 in. (450 mm) long. Depth dimensions shall be no less than 20 in. (500 mm). Dry unit weight of wall units shall be no less than 90 lbs (35 kg). When tested in accordance with ASTM C 426, average linear shrinkage of three specimens shall be less than 0.045 percent. Color of faces and texture exposed to view shall be determined by the Owner.
 2. Connecting Pins: Poltruded polyester resin rods with fiberglass reinforcement; minimum flexural strength 100,000 psi (7 030 kg/sq cm).
 3. Geogrid: The geogrids shall be a regular grid structure of select high density polyethylene or polypropylene resin and meet or exceed the design pullout test values required to stabilize and retain the fill above retaining wall.
 4. Unit Fill: Gradation Size No. 67, or crushed stone drainage material acceptable to modular unit manufacturer.
 5. Base Material: Material shall consist of compacted sand, gravel, crushed rock or leveling concrete (non-reinforced) as shown on construction drawing. The compacted leveling pad shall be a minimum 6 in. (150 mm) thick.
 6. Backfill, Foundation Backfill And Wall Fill: As specified in Division 31 Section "Earth Moving".
 7. Underdrain: As specified in Division 33 Section "Subdrainage".
 8. Cleaner: ProSoCo, Inc.’s Sure Klean, or accepted equivalent. Cleaner shall be capable of removing contaminants without damaging units.

1.3 EXECUTION

A. Installation
 1. Place base material to a minimum of 6 in. (150 mm) of compacted thickness. Material shall be compacted so as to provide a level hard surface on which to place the first course of units. Compaction shall be to 95% of standard proctor for sand or gravel type materials. For crushed rock, material shall be densely compacted. Grade top of base to plus/minus 1/4 in. (6 mm) of indicated level. Install underdrain UNDERDRAIN SYSTEMS.
 2. Install first course of units in full contact with base, with vertical joints butted and top dead level; align unit faces. Install connecting pins, if required, and fill voids; tamp void fill and sweep top of units clean.
 3. Lay successive units locking onto laid course at prescribed batter. Fill voids as work progresses.
 4. Place geogrid on compacted, level backfill at indicated elevations and orientation. Hook leading edge over connecting pins and pull taut; anchor before placing additional backfill. Tracked mechanical equipment is not permitted on geogrid. Compaction of fill within 3 ft (1 m) of wall face shall be by hand operated equipment.
5. **Tolerances**
 a. Variation from designed incline lines and controlling surface of walls: within 2 in. (50 mm) in 20 ft (6 m) vertical.
 b. Variation from conspicuous vertical lines: within 1 in. (25 mm) of 20 ft (6 m) vertical.
 c. Variation from level and other conspicuous horizontal lines: within 1 in. (25 mm) in 20 ft (6 m) horizontal, and within 2 in. (50 mm) in 40 ft (12 m), and more, horizontal.
 d. Variation of linear wall lines from established position in plan: within 1 in. (25 mm) in 20 ft (12 m), and within 2 in. (50 mm) in 40 ft (24 m), and more.

B. **Cleaning**
 1. Clean installed work after completion of setting and backfill.
 2. Before cleaning, protect adjacent surfaces and plants sensitive to masonry cleaner.
 3. Wet wall and apply cleaner in accordance with cleaner manufacturer’s printed instructions. Rinse units with clean water to remove masonry cleaner and sand. Installed work shall be clean and free from discoloration, stains, and smears.

END OF SECTION 32 32 13 00a
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 32 16 00</td>
<td>32 32 13 00a</td>
<td>Modular Retaining Wall</td>
</tr>
<tr>
<td>32 32 16 00</td>
<td>03 62 13 00</td>
<td>Plant-Precast Structural Concrete</td>
</tr>
<tr>
<td>32 32 23 13</td>
<td>32 32 13 00</td>
<td>Segmental Retaining Walls</td>
</tr>
<tr>
<td>32 32 23 13</td>
<td>32 32 13 00a</td>
<td>Modular Retaining Wall</td>
</tr>
<tr>
<td>32 32 29 00</td>
<td>32 32 13 00</td>
<td>Segmental Retaining Walls</td>
</tr>
<tr>
<td>32 32 29 00</td>
<td>32 32 13 00a</td>
<td>Modular Retaining Wall</td>
</tr>
<tr>
<td>32 32 53 00</td>
<td>32 32 13 00</td>
<td>Segmental Retaining Walls</td>
</tr>
<tr>
<td>32 32 53 00</td>
<td>32 32 13 00a</td>
<td>Modular Retaining Wall</td>
</tr>
</tbody>
</table>
SECTION 32 35 16 00 - SOUND BARRIER WALLS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of sound barrier walls. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.
2. Design:
 a. The sound barrier wall and foundation shall be designed by a registered professional engineer.
 b. Barrier design shall be in accordance with the requirements of the State Department of Transportation Standards, AASHTO Guide Specification for the Structural Design of Sound Barriers, and AASHTO Standard Specifications for Highway Bridges.
 c. Wind Load: Minimum 84 mph.
 d. Difference in Earth Pressure: 2 feet.
 f. The design shall comply with all restrictions imposed by the plans such as drainage openings, accommodation of existing utilities, limitations on dimensions or sound barrier wall location, and similar conditions that may be noted. The top of sound barrier wall elevation shall be at or above the top of wall line shown on the plans. The bottom of sound barrier wall shall extend a minimum of 2 feet below low finish grade.
 g. The sound barrier wall shall be free standing and finished on both sides. The maximum panel length shall be 40 feet.
 h. Although alternate materials are permitted, the sound barrier wall shall be the same material throughout the project.

B. Site Conditions
1. The tops of footings or drilled shafts shall be a minimum of 6 inches below finish grade and the bottom of footing or grade beams shall be a minimum of 2 feet below finish grade unless otherwise shown on the plans.
2. To design wall footings assume a cohesion value consistent with the soil values standard for the location of the Work and an allowable bearing capacity of 4.3 ksf.
3. The Contractor shall be responsible for determining the actual ground elevations at the location of the sound barrier wall and the post or column length and panel height necessary, if applicable.
4. Existing Utilities: The Contractor shall consider existing utilities in the vicinity of the sound barrier wall when developing details of the sound barrier wall. Any additional work or materials necessary to acceptably construct the sound barrier wall, without disturbing the utilities, shall be shown on the shop drawing.

C. Submittals
1. Product Data: Submit product data including shop drawings for standard specified products.
2. Design calculations and Shop Drawings: Submit one (1) set of the design calculations and one (1) full set of the construction plans to the Owner for review. The construction plans shall show top and bottom elevations of panels and foundations, finish grade line in front and back of the sound barrier wall. The sound barrier wall shall be submitted on one set of plans. Shop drawings for all precast sections shall be submitted in accordance with the requirements for prestressed girders.
3. Samples:
 a. Masonry: At least three different masonry units for selection of color and texture. All masonry used in each continuous sound barrier wall shall come from one source and shall match within reasonable limits the color and texture of the approved sample.
b. Precast Concrete: Two full size samples minimum 4 feet by 8 feet shall be cast using the form liner for the back face and the stamped or rolled finish for the front face liner and colored using the selected color for final approval. One approved full size sample shall be retained at the casting yard and shall be the standard of comparison for all future work. The second full size sample shall be delivered to the job site and stained there.

4. Quality Assurance Submittals: Submit the following:
 a. Letter of Certification: Certify compliance with all applicable requirements of the specifications.
 b. Test Reports: Certified test reports showing compliance with specified performance characteristics and physical properties including compressive strength test results, and concrete mix design.
 c. Manufacturer’s Instructions: Manufacturers installation instructions.

5. Closeout Submittals: Submit the following:
 a. Anti-graffiti procedures.

D. Delivery And Handling
 1. General: Comply with manufacturer’s instructions and requirements.
 2. Ordering: Comply with manufacturer’s ordering instructions and fabrication schedule requirements to avoid construction and shipment delays.
 3. Installer’s Responsibilities for Dunnage, Receiving, Handling, and Unloading: Prepare jobsite access suitable for products shipped on flatbed trucks. Prepare to off-load posts and safely store on-site prior to installation into the wall. Store posts in a manner that will not result in staining of surfaces with mud or other materials. Prepare to install panels directly from trucks upon arrival of the truck at the project site. Remove and safely store dunnage used for panel delivery from trucks and return to the supplier upon request.
 4. Delivery: Inspect materials prior to off-loading, note damage on shipping bill of lading and inform the supplier of any damage resulting from shipment, prior to the departure of the delivery truck.

1.2 PRODUCTS

A. Masonry
 1. Design masonry sound barrier wall with pier supports at uniform intervals. Piers shall be visible on both sides of the sound barrier wall.
 2. All products and materials shall comply with applicable ASTM and/or AASHTO specifications.
 3. Concrete for piers, fill for masonry columns and concrete caps shall be normal-weight 3000 psi.
 4. Steel Reinforcement: ASTM A 615, Grade 60 deformed.
 5. Wire Reinforcement for Horizontal Joints: AASHTO M 55, zinc coated according to ASTM A 116 Class 3, and install in horizontal joints at two foot vertical intervals.
 b. Sand: ASTM C 144.
 c. Water: Potable.
 7. All sound barrier walls and piers shall be capped with two inch thick pieces of Indiana Limestone. The Contractor shall determine the number of pieces required to cover each sound barrier wall section so that they are of uniform length minimum 2 feet. Caps of piers shall be one piece. All caps shall extend beyond each face of the sound barrier wall or pier at least one inch.
 8. Masonry may be brick or concrete block.
 a. Brick
 1) Brick for the sound barrier wall may be 6 inch through-the-wall units that comply with ASTM C 216 or C 652. They shall not exceed 12 inches in length or 4 inches in height.
 2) Brick for the piers may be normal size units if they match the wall units in color and texture; at the option of the Contractor and with the approval of The Owner.
b. Concrete Block
 1) Concrete block for the sound barrier wall and piers may be 6 inch, half height, and
double split faced complying with ASTM C 90 for lightweight Grade N-1 masonry
units. They shall not exceed 16 inches in length or 4 inches in height; at the option
of the Contractor and with the approval of the Owner.

B. Precast Interlocking Modules
 1. Proprietary concrete sound barrier wall systems, comprised of elements, are permitted if
approved by the Owner. Both faces of the sound barrier wall shall receive an approved surface
treatment.

C. Precast Concrete Panels
 1. Precast sound barrier wall may be post and panel design or connected panels in a shadow box
layout. Design shall comply with ACI 318 and PCI MNL 120
 2. Precast concrete shall be normal-weight concrete with a minimum 28 day compressive strength
of 5000 psi. Ingredient materials and reinforcement shall conform to ACI 211.1 and the State
Highway Department's Standard Specifications.
 3. Precast panels, pilasters, and other precast elements may be prestressed. Prestressing tendons
may be either bar or strand. Prestressing bars shall conform to ASTM A 722, 'Uncoated Steel
Bars for Prestressed Concrete'. Prestressing strands shall be seven wire strands conforming to
ASTM A 416, 'Uncoated Seven-Wire Stress-Relieved Strand for Prestressed Concrete'.
 4. Concrete for foundations or cast in place appurtenances shall be minimum 4000 psi.
 5. Steel Reinforcement: ASTM A 615, Grade 60, deformed, galvanized in accordance with ASTM A
123.
 6. Preformed Joint Filler: AASHTO M 153 for Types I, II or III or AASHTO M 213.
 7. Steel dowels used to provide positive alignment of adjacent panels shall be epoxy coated.
 8. Posts shall be concrete and shall be cast using metal forms. All exposed surfaces shall be
finished smooth.
 9. Finish
 a. All exposed concrete on the front face (face toward the roadway) of precast panels shall
have a stamped or rolled pattern finish (i.e. cobblestone, etc.). All exposed concrete on the
back face of precast panels shall be textured using approved form liners.
 b. The Contractor shall indicate that the panel finish, form liner, pigmentation, staining, etc.
and the size, type, color, etc. for the masonry be selected and shown on the shop
drawings.
 c. All exposed concrete of posts and panels shall be tinted or colored by use of pigments in
the mixture or an approved stain. All color in each continuous sound barrier wall shall be
reasonably uniform. Coloring agents shall be outdoor grade and shall be applied in strict
accordance with the manufacturer's written instructions. If stain is used, the color shall be
applied to the entire panel face.
 d. If inconsistent color results from the use of a pigment in the concrete mixture, the entire
side of the sound barrier wall where the inconsistency occurs shall be covered with an
approved stain. If stain is used, the stain shall be applied after the sound barrier wall has
been erected.
 e. The form lining shall be placed so any grooves, lines, or striations normal to joints in
adjacent panels line up with no appreciable offset at the joints or panels may be cast with
an untextured minimum 4 inch and a maximum 12 inch border around the perimeter of
each panel.
 10. Panels shall be designed to provide positive means for alignment of adjacent panels to avoid
unsightly breaks in the plane of either face, using tongue and groove joints, steel dowels or other
approved means. When panels are assembled with horizontal joints and steel dowels are used
for alignment, one dowel is required at the mid point for panels up to 20 feet long, panels over 20
feet long will require 2 dowels located at the one-third points.
 11. Acceptable means to fill or seal all joints between adjacent panels and between posts and panels
shall be provided to prevent sound leaks and shall be subject to approval by the Owner.

July 2012
County of Santa Clara Roads and Airports Department,
RAD-2012-01
12. Elevation changes for the top of the sound barrier wall shall be made in steps, with the sound barrier wall level between steps. These elevation changes shall be made only at posts or vertical joints between panels, if posts are not used. Elevation changes in tops of panels shall be such that the top of the sound barrier wall is at or above the top of the sound barrier wall shown on the plans.

13. Post to foundation connections shall be above ground and all steel parts shall be galvanized to appropriate AASHTO standards. Steel connections shall be bolted. Field welding will not be permitted. Both durability and ease of inspection and maintenance will be considered when joint details are reviewed by the Owner.

14. Precast panel walls shall be built with slotted pilasters and recessed panels. The pilasters can protrude as much as 12" from the panel face. This will create a void between the roadway barrier and panel. This void shall be filled with sand or crushed stone provided that the weep hole drains through the wall are required.

D. Cast in Place
1. Concrete for Cast in Place sound barrier walls and foundations for all barriers shall be minimum 4000 psi.

E. Wood Caps
1. Where required, provide redwood caps in lieu of concrete caps. Size and finish shall be as directed.

F. Manufactured Systems
1. Complete systems manufactured by one of the following, or approved equivalent:
 a. Durisol USA Inc.
 b. Sound Fighter Systems® LLC
 c. Sound Zero™ LLC

1.3 EXECUTION

A. Manufacturer’s Instructions
1. Compliance: Comply with manufacturer’s recommendations for installation.

B. Examination
1. Site Verification of Conditions: Verify geotechnical conditions, underground and overhead utilities or obstructions and ground elevations along wall alignment to confirm acceptability for installation of wall prior to preparation of shop drawings.
2. Product Acceptance: Prior to installation, inspect delivered product for any defects. Installation of any defective products shall not be the responsibility of the manufacturer.

C. Construction Requirements
1. General - All Sound Barrier Wall Types
 a. All clearing necessary to construct the sound barrier wall shall be performed and the resulting debris removed from the right of way. Sound standing trees in the construction limits of the barrier shall be removed or trimmed as directed. the Owner may direct or approve minor alignment changes to avoid unnecessary damage to existing trees or shrubs.
 b. Sound barrier walls shall be constructed in accordance with the plans and completed shop drawings. Joints shall be constructed so the barrier is structurally sound and sound leaks are prevented. The face of the completed sound barrier wall shall not deviate from the vertical more than 1/2 inch in 10 feet. Horizontal alignment shall be uniform with no significant irregularities.
c. If solid rock is encountered above the bottom of post or bottom of footing elevations required by the plans, the Contractor may submit an alternate foundation design for review by the Owner. Before preparing an alternate foundation design, the Contractor should contact the Owner to obtain the design criteria that must be met. The proposed design shall include all calculations. If the Owner determines that the proposed design is not acceptable, then the foundations shall be constructed in accordance with the plans.

d. No extension of contract time for delay during the review of the proposed design will be considered. No increase will be made in the contract unit price for the concrete sound barrier as a result of permitting a change in foundation design.

2. Precast Concrete
 a. Transportation, storage, handling, and erection of precast units shall be in accordance with manufacturer’s requirements, ACI, PCI, and AASHTO.

3. Masonry
 a. Weep hole ventilators, to match the height of the head joints, shall be installed in the first course at 2 feet intervals on both sides of the sound barrier wall.
 b. All mortar joints shall be tooled with a concave or V jointer selected by the Owner.
 c. All stone caps shall be laid in mortar for proper alignment. All head and bed joints shall be raked to a depth of 3/4 inch. After curing a minimum of seven days each joint shall be filled with a 1/4 inch backer rod and 2 inch sealant. Sealant may be an approved brand of polysulfide, polyurethane, or silicone.
 d. All materials shall be protected from the weather from the time of manufacture until they are in a finished sound barrier wall. All sound barrier walls shall be protected with adequate covering when not in the process of construction until the caps are in place.
 e. All sound barrier wall surfaces shall be cleaned after a minimum of seven days with an approved masonry cleaner. The cleaner shall be selected by the Contractor and approved by the Owner according to the recommendations of the masonry manufacturer.

D. Related Products Installation
 1. Apply acrylic stain anti-graffiti coating, where required, in accordance with manufacturer’s printed instructions.

E. Cleaning And Inspection
 1. Cleaning: Remove dirt from wall with water. Remove debris from site and legally dispose. Return dunnage to manufacture as directed.
 2. Panel Inspection: When panel installation is completed on any single barrier wall, post and panel appearance and alignment shall be inspected for acceptance. View the surface of walls from a distance of not less than 100 feet for architectural acceptability. Prepare a written punchlist of any and all items in need of correction. Forward a list of action items required of the noise barrier manufacturer for review and preparation of a schedule for completion.

END OF SECTION 32 35 16 00
SECTION 32 39 16 00 - MISCELLANEOUS SITE AND STREET FURNISHINGS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of miscellaneous site and street furnishings. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Shop Drawings: Fabrication and installation drawings for each type of product indicated.
2. Product Data: For each type of product indicated.

C. Qualification Of Welders
1. Qualify welders in accordance with AWS D1.1 using procedures, materials, and equipment of the type required for the work.

D. Delivery, Storage, And Protection
1. Protect from corrosion, staining, and other types of damage. Store items in an enclosed area free from contact with soil and weather. Remove and replace damaged items with new items.

1.2 PRODUCTS

A. Precast Benches
1. Design precast benches in accordance with manufacturer's standards, size as indicated. Finish and color as indicated selected from manufacturer's standards.
2. Glass Fiber Reinforced Concrete (GFRC) Benches
 a. Provide glass fiber reinforced concrete (GFRC) benches at locations as directed. Comply with PCI MNL-128 recommended practice for glass fiber reinforced concrete, including Appendix G, Polymer Modified Glass Fiber Reinforced Concrete Panels.
 b. Design precast benches to sustain a live load of not less than 200 pounds per square foot (10 kPa), constructed of minimum 3000 psi concrete with ASTM C 150 cement, white or grey color consistent with final finish, using alkali resistant (AR) glass fibers produced specifically for use in glass fiber reinforced concrete, minimum three percent glass fiber content. Aggregate shall be clear silica sand aggregate; washed, dried and free from deleterious materials. Provide type with successful history of uses in GFRC fabrication standard with the manufacturer. Provide manufacturer's standard acrylic thermoplastic copolymer admixture.
 c. Provide factory finished units standard with the manufacturer; texture and color as selected.
3. Precast Concrete/Cast Stone Benches
 a. Provide reinforced precast concrete benches consisting of a mixture of cement, aggregates and mineral colors suitable for exterior use, located as directed.
 b. Design benches to sustain a live load of not less than 200 pounds per square foot (10 kPa).
 1) Portland cement: ASTM C150 Type I, II, or III.
 2) Aggregate: ASTM C33, maximum size 3/4 inch (19 mm).
 3) Reinforcing steel: ASTM A615/A615M
 4) Galvanized wire mesh: ASTM A185
 5) Integral color: ASTM C979, pure mineral oxide, limeproof and non-fading.
6) Provide minimum 5000 psi (35 MPa) 28 day compressive strength concrete, maximum five percent absorption.

B. Precast Concrete Bicycle Rack
1. Provide one-piece precast concrete bicycle rack base with embedded galvanized metal hitching loops. Design bicycle rack with wheel notches for bike support and wheel locking device.

C. Precast Concrete Bollards
1. Provide reinforced concrete bollards 12 inch (300 mm) OR 18 inch (450 mm), as directed, square OR round, as directed, height as indicated, suitable for ground mount installation. Provide exposed aggregate or sandblast finish as indicated; manufacturer's standard clear acrylic sealer.
 a. Portland cement: ASTM C150, Type I II or III.
 b. Aggregate: ASTM C33, maximum size 3/4 inch (19 mm).
 c. Reinforcing steel: ASTM A615/A615M.
 d. Integral color: ASTM C979, pure mineral oxide, limeproof and non-fading.
 e. Concrete strength: 5000 psi (35 MPa), 28 day minimum compressive strength.

D. Planters, Receptacles, Ash Receptacles
1. Provide for waste receptacles spun aluminum OR reinforced fiberglass, as directed, flat OR domed, as directed, tops and removable semi-rigid plastic liner insert. Provide top-mounted ash trays for ash receptacles.
2. Glass Fiber Reinforced Concrete (GFRC) Precast:
 a. Provide glass fiber reinforced concrete (GFRC) precast planters/waste receptacles/ash receptacles at locations as directed. Comply with PCI MNL-117 and PCI MNL-128.
 1) Cement: ASTM C150, use only one brand and type of cement throughout the Project.
 2) Glass Fibers: Alkali resistant (AR) glass fibers produced specifically for use in glass fiber reinforced concrete. Glass content of GFRC unit to be a minimum of three percent.
 3) Aggregates: clear silica sand; washed, dried, and free from deleterious materials; provide type with successful history of use in GFRC and as standard with the manufacturer.
 4) Compressive Strength: Minimum 3000 psi (20/25 MPa) 28 day strength.
 5) Density: Approximately 120 pcf (1921 kg/cu. m).
 6) Polymer Admixture: Manufacturer's standard acrylic thermoplastic copolymer.
 c. Finishes: Provide factory finished units with manufacturer's standard texture or sandblasted finish as selected.
 1) Cement: White or grey as consistent with final finish.
3. Precast Concrete/Cast Stone Planters
 a. Provide reinforced precast concrete planters/waste receptacles/ash receptacles consisting of a mixture of cement, aggregates, and mineral colors suitable for exterior use as located on the drawings. Provide manufacturer's standard exposed aggregate or sandblast finish (with clear acrylic coating) as selected.
 1) Portland Cement: ASTM C150, gray, Type I.
 2) Aggregate: ASTM C33, crushed limestone and sand.
 3) Galvanized Steel Mesh: ASTM A185.
 4) Integral Color: ASTM C979, pure mineral oxide, limeproof and non-fading.
 5) Concrete Strength: 4000 psi (30 MPa) minimum compressive strength at 28 days.
4. Wood Planters
a. Provide manufacturer’s standard wood planter/waste receptacle/ash receptacles fabricated of 3/4 inch (19 mm) thick tongue and grooved wood slats permanently bonded with fiberglass interior shell. Provide wood top trim for square planters and fiberglass top trim for round planters.
 1) Wood Species: As directed.
 2) Fiberglass: Molded with multiple laminations of glass fiber impregnated with polyester isophthalic thermosetting resins with a finish of 12-15 mil (0.30-0.38 mm) color impregnated polyester gel coat.
 3) Metal Frame: Black color-coated steel frame.

5. Wood Planters with Metal Frames
a. Provide manufacturer’s standard wood planter/waste receptacle/ash receptacle with galvanized steel welded frames, and nominal 2 inch (50 mm) tongue and grooved, beveled or square cut wood staves. Attach wood staves to metal frame from inside with steel plated screws.
 1) Wood species: Kiln dried, maximum 19 percent moisture content, species as directed.
 2) Metal frame: Reinforced with steel bars as per manufacturer’s standard construction, black color factory finish coated.
 3) Bottom: 1/4 inch (6.25 mm) exterior grade redwood with drain holes.
 4) Liners: Removable galvanized steel or manufacturer’s standard.
 5) Tops: Hinged top opening, spun aluminum open top with molded rim, ash top.

6. Fiberglass Planters/Waste Receptacles/Ash Receptacles
a. Provide reinforced fiberglass planters/waste receptacles/ash receptacles molded with multiple laminations of glass fiber impregnated with polyester isophthalic thermosetting resins; with 12-15 mil (0.30-0.38 mm) color impregnated polyester gel coat finish; minimum thickness of 1/4 inch (6.25 mm); color as selected.
 b. Receptacles:
 1) Shall be manufactured by Maglin,
 2) Color: Malaga Green

E. Shelters
1. AISC S342L; AISC S335. Provide prefabricated shelter systems to meet design conditions indicated. Shelter design shall conform to all applicable State and Local Building Codes and shall meet manufacturer’s standards of construction and materials. Shelter systems shall be preglazed, pre-drilled and pre-cut, shipped with all hardware and accessories necessary for complete field assembly.
2. Framing Systems: Framing system; columns, rafters, ridge, purlins and other structural framing members shall be aluminum/steel/wood as indicated. Manufacturer shall provide shop drawings and calculations prepared by a structural engineer.
 a. Extruded aluminum alloy tubing shall conform to ASTM B429 6063-T5 or 3003-H14, anodized or powder coat finish, color as directed. Framing sizes and configurations shall be as required for size of structure indicated meeting manufacturer’s standards and applicable building codes.
 b. Structural steel shall conform to ASTM A36/A36M or ASTM A500, 36,000 psi (248 MPa) yield strength and 58,000 psi (400 MPa) tensile strength, factory finished with rust inhibited primer and powder coat conforming to ASTM D3451. Framing sizes and configurations shall be as required for size of structure indicated meeting manufacturer’s standard and applicable building codes.
 c. Wood framing system shall consist of surfaced four sides (S4S), #2 grade southern yellow pine solid timber columns with eased edges, pressure treated CCA (Copper Chrome Arsinate) 0.6 PCF (9.6 kg/cu.m) against decay, fungi and insect infestation, surfaced four sides (S4S), #1 grade, southern pine, glue-laminated columns manufactured in accordance with ANSI/AITC A190.1 and AITC certified glue-laminated structural grade southern yellow
pine beams, rafters and purlins, factory sealed and individually wrapped for protection during shipment. Factory stain all wood members prior to shipment.

3. Roof Panels/Decking: Provide manufacturer's standard molded acrylic translucent roof panel, OR standing seam metal roof panel, OR wood decking, OR V-beam aluminum roof panels, OR FRP roof panels, as indicated. Materials shall be factory finished and shipped with all necessary fasteners and accessories as required for complete site assembly.

4. Glazing: Factory installed in separate structural window frames, gasketed and glazed as per manufacturer's standard, interchangeable, glazing system. Provide 1/4 inch (6.25 mm) acrylic sheet, OR tempered glass, OR polycarbonate plastic sheet OR mar-resistant polycarbonate plastic sheet, clear OR color.

F. Tables
1. Precast Concrete Tables: Provide reinforced precast concrete tables with smooth tops; minimum 4500 psi (35 MPa) concrete, 28 day minimum compressive strength, consisting of a mixture of cement, aggregates, and mineral colors suitable for exterior use as located on the drawings. Provide manufacturer's standard exposed aggregate or sandblast finish with clear acrylic coating.
 a. Portland cement: ASTM C150, gray, Type I.
 b. Aggregate: ASTM C33, washed limestone and sand.
 c. Galvanized wire mesh: 14 gage (1.9 mm), 2 by two inch (50 by 50 mm).
 e. Reinforcing steel: ASTM A615/A615M.
 f. Integral color: ASTM C979, pure mineral oxide, limeproof and non-fading.
 g. Admixture: ASTM C260 for air-entraining.

2. Fiberglass Tables: Provide reinforced fiberglass table tops molded with multiple laminations of glass fiber impregnated with polyester isophthalic thermosetting resins, minimum thickness of 1/4 inch (6.25 mm) with 12-15 mil (0.30-0.38 mm) thickness color impregnated polyester gel coat, color as selected.
 b. Mounting: Type as indicated.
 c. Metal finish: Powder coating conforming to ASTM D3451 testing.

3. Perforated Steel Tables: Provide 14 gage (1.9 mm) OR 16 gage (1.6 mm), as directed, perforated steel sheet table tops with solid metal edges as per manufacturer's standard. Weld tops to base as required for frame support.
 a. Steel pedestal base: ASTM A53 Schedule 40 steel pipe, 2 3/8 inch (60 mm) O.D.
 b. Mounting: Type as indicated.
 c. Hardware: Zinc or cadmium plated nuts, bolts, screws, and lock washers.
 d. Metal finish: Powder coating conforming to ASTM D3451 testing.

4. Wood Seats and Tables
 a. Provide manufacturer's standard wood seats and tables, minimum 1-5/8 inches (40 mm) thick with rounded edges, with wood or metal bases as indicated. Provide fasteners and accessories required for on site assembly. Kiln dry and pressure treat wood components to manufacturer's standard, maximum 19 percent moisture content. Pre-treat metal components and provide manufacturer's standard primer and powder coat finish complying with ASTM D3451, color as selected.
 1) Design wood tables to sustain a live load of not less than 200 pounds per square foot (10 kPa).
 2) Provide kiln dried, surfaced four sides (S4S), clear all sides wood slats of species and sizes indicated.
 a) Species: As directed.
 b) Nominal wood slat sizes: As directed.
 b. Support Base: Provide wood or metal support bases as per manufacturer's standard.
 1) Wood: Match in species, grade, grain, color and finish of the wood slats.
 2) Steel: ASTM A653/A653M.
4) Cast aluminum: ASTM B26/B26M or ASTM B108 as applicable.
5) Design bases to support the loads imposed in the design of the tables.

G. Grates
1. Provide cast aluminum OR cast iron OR cast bronze OR punched steel OR stainless steel, as directed, tree grates in round OR square, as directed, model of sizes indicated on the drawings. Furnish complete with angle steel frames with finish to match tree grates.

H. Fabrication Finishes
2. Galvanize: Anchor bolts, grating fasteners, washers, and parts or devices necessary for proper installation, unless indicated otherwise.
3. Repair of Zinc-Coated Surfaces: Repair damaged surfaces with galvanizing repair method and paint conforming to ASTM A780 or by the application of stick or thick paste material specifically designed for repair of galvanizing, as approved. Clean areas to be repaired and remove the slag from the welds. Heat surfaces to which stick or paste material is applied, with a torch to a temperature sufficient to melt the metallics in stick or paste; spread the molten material uniformly over surfaces to be coated and wipe the excess material off.
4. Pretreatment, Priming and Painting: Apply pretreatment, primer, and paint in accordance with manufacturer's printed instructions. On surfaces concealed in the finished construction or not accessible for finish painting, apply an additional prime coat to a minimum dry film thickness of 1.0 mil (0.03 mm). Tint additional prime coat with a small amount of tinting pigment.
5. Nonferrous Metal Surfaces: Protect by plating, anodic, or organic coatings.
6. Aluminum Surfaces
 a. Surface Condition: Before finishes are applied, remove roll marks, scratches, rolled-in scratches, kinks, stains, pits, orange peel, die marks, structural streaks, and other defects which will affect uniform appearance of finished surfaces.

1.3 EXECUTION

A. Installation
1. Install items at locations indicated, according to manufacturer's instructions. Items listed below require additional procedures.
 a. Assembly and Erection of Components: Items shall be shipped knocked-down (KD) ready for site assembly. Packaged components shall be complete including all accessories and hardware. Follow manufacturer's instructions for assembly and erection. Provide mounting bolts or hardware for mounting items to substrate.

B. Anchorage, Fastenings, And Connections
1. Provide anchorage where necessary for fastening furniture or furnishings securely in place. Include for anchorage not otherwise specified or indicated slotted inserts, expansion shields, and powder-driven fasteners, when approved for concrete; toggle bolts and through bolts for masonry; machine and carriage bolts for steel; through bolts, lag bolts, and screws for wood. Do not use wood plugs in any material. Provide non-ferrous attachments for non-ferrous metal. Make exposed fastenings of compatible materials, generally matching in color and finish, to which fastenings are applied. Conceal fastenings where practicable.

C. Built-In-Work
1. Form for anchorage metal work built-in with concrete or masonry, or provide with suitable anchoring devices as indicated or as required. Furnish metal work in ample time for securing in place as the work progresses.

D. Welding
1. Perform welding, welding inspection, and corrective welding, in accordance with AWS D1.1. Use continuous welds on all exposed connections. Grind visible welds smooth in the finished installation.

E. Finishes: Dissimilar Materials
1. Where dissimilar metals are in contact, protect surfaces with a coat conforming to FS TT-P-664 to prevent galvanic or corrosive action. Where aluminum is in contact with concrete, mortar, masonry, wood, or absorptive materials subject to wetting, protect with ASTM D1187, asphalt-base emulsion.

F. Bollards
1. Install in pipe sleeves embedded in concrete and filled with non-shrink grout or quick setting anchoring cement.

G. Shelters
1. Secure to the adjacent construction with the clip angles attached to the concrete. Secure to concrete with not less than two 1/2 inch (12 mm) diameter expansion bolts.
 a. Glazing: Factory install windows into separate structural frame. Miter corners and connect internally by extruded aluminum corner keys or screw bosses with tamper-proof stainless steel screws. Provide continuous gasketing around windows set to metal frames. Provide 1/2 to 3/4 inch (13 to 19 mm) deep pocket for polycarbonate glazing. Fully gasket and frame in independent interchangeable factory assembled units. Affix to shelter frame with 3/16 inch (5 mm) shallow head aluminum rivets at approximately 13 1/4 inches (331 mm) on centers for full 360 degrees (6.28 rad), rivet from inside of shelter.
 b. Roof: Provide manufacturer's standard roof system including facia OR gutter, as directed, assembly, ensuring a weather-tight seal and installation.

END OF SECTION 32 39 16 00
SECTION 32 84 13 00 - IRRIGATION SYSTEMS

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of materials for irrigation systems. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
 1. Section Includes:
 a. Piping.
 b. Encasement for piping.
 d. Pressure-reducing valves.
 e. Automatic control valves.
 f. Automatic drain valves.
 g. Transition fittings.
 h. Dielectric fittings.
 i. Miscellaneous piping specialties.
 j. Sprinklers.
 k. Quick couplers.
 l. Drip irrigation specialties.
 m. Controllers.
 n. Boxes for automatic control valves.

C. Definitions
 1. Circuit Piping: Downstream from control valves to sprinklers, specialties, and drain valves. Piping is under pressure during flow.
 2. Drain Piping: Downstream from circuit-piping drain valves. Piping is not under pressure.
 3. Main Piping: Downstream from point of connection to water distribution piping to, and including, control valves. Piping is under water-distribution-system pressure.
 4. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

D. Performance Requirements
 1. Irrigation zone control shall be automatic operation with controller and automatic control OR manual operation with manual, as directed, valves.
 2. Location of Sprinklers and Specialties: Design location is approximate. Make minor adjustments necessary to avoid plantings and obstructions such as signs and light standards. Maintain 100 percent irrigation coverage of areas indicated.
 3. Delegated Design: Design 100 percent coverage irrigation system, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
 a. Available land records indicate the following soil conditions:
 1) Type: Coarse OR Medium OR Fine, as directed.
 2) Texture:
 a) Sand: as directed by the Owner.
 b) Silt: as directed by the Owner.
 c) Clay: as directed by the Owner.
 3) Particle Size:
 a) Sand: as directed by the Owner.
b) Silt: as directed by the Owner.
c) Clay: as directed by the Owner.

4) Structure: Single grained OR Granular OR Platy OR Blocky, as directed.
5) Density: as directed by the Owner.
6) Moisture Content: as directed by the Owner.
7) Infiltration Rate: as directed by the Owner.

4. Minimum Working Pressures: The following are minimum pressure requirements for piping, valves, and specialties unless otherwise indicated:
a. Irrigation Main Piping: 200 psig (1380 kPa).
b. Circuit Piping: 150 psig (1035 kPa).

E. Submittals
1. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
2. Wiring Diagrams: For power, signal, and control wiring.
3. Delegated-Design Submittal: For irrigation systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
4. Zoning Chart: Show each irrigation zone and its control valve.
5. Controller Timing Schedule: Indicate timing settings for each automatic controller zone.
6. Field quality-control reports.
7. Operation and maintenance data.

F. Quality Assurance
1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Delivery, Storage, And Handling
1. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.
2. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

H. Project Conditions
1. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
a. Notify the Owner no fewer than two days in advance of proposed interruption of water service.
b. Do not proceed with interruption of water service without the Owner’s written permission.

1.2 PRODUCTS

A. Pipes, Tubes, And Fittings
1. Comply with requirements in the piping schedule for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.
2. Galvanized-Steel Pipe: ASTM A 53/A 53M, Standard Weight, Type E, Grade B.
3. Ductile-Iron Pipe with Mechanical Joints: AWWA C151, with mechanical-joint bell and spigot ends.
 a. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 1) Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
4. Ductile-Iron Pipe with Push-on Joint: AWWA C151, with push-on-joint bell and spigot ends.
 a. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 1) Gaskets: AWWA C111, rubber.
5. Soft Copper Tube: ASTM B 88, Type L (ASTM B 88M, Type B), water tube, annealed temper.
 c. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.
6. Hard Copper Tube: ASTM B 88, Type L (ASTM B 88M, Type B), and ASTM B 88, Type M (ASTM B 88M, Type C), water tube, drawn temper.
 c. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.
7. PE Pipe with Controlled ID: ASTM F 771, PE 3408 compound; SDR 11.5 and SDR 15.
 a. Insert Fittings for PE Pipe: ASTM D 2609, nylon or propylene plastic with barbed ends. Include bands or other fasteners.
8. PE Pipe with Controlled OD: ASTM F 771, PE 3408 compound, SDR 11.
 b. PE Socket-Type Fittings: ASTM D 2683.
9. PE Pressure Pipe: AWWA C906, with DR of 7.3, 9, or 9.3 and PE compound number required to give pressure rating not less than 160 psig (1100 kPa) OR 200 psig (1380 kPa), as directed.
 b. PE Socket-Type Fittings: ASTM D 2683.
10. PVC Pipe: ASTM D 1785, PVC 1120 compound, Schedule 40 OR Schedule 80, as directed.
 a. PVC Socket Fittings: ASTM D 2466, Schedule 40 OR Schedule 80, as directed.
 b. PVC Threaded Fittings: ASTM D 2464, Schedule 80.
 c. PVC Socket Unions: Construction similar to MSS SP-107, except both headpiece and tailpiece shall be PVC with socket ends.
 b. PVC Socket Unions: Construction similar to MSS SP-107, except both headpiece and tailpiece shall be PVC with socket or threaded ends.

B. Piping Joining Materials

1. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick unless otherwise indicated; full-face or ring type unless otherwise indicated.
2. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
5. Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
6. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.
C. Encasement For Piping
 1. Standard: ASTM A 674 or AWWA C105.
 2. Form: Sheet OR Tube, as directed.
 3. Material: LLDPE film of 0.008-inch (0.20-mm) OR LLDPE film of 0.008-inch (0.20-mm) minimum thickness or high-density, cross-laminated PE film of 0.004-inch (0.10-mm) OR High-density, cross-laminated PE film of 0.004-inch (0.10-mm), as directed, minimum thickness.
 4. Color: Black OR Natural, as directed.

D. Manual Valves
 1. Curb Valves:
 a. Description:
 1) Standard: AWWA C800.
 2) NPS 1 (DN 25) and Smaller Pressure Rating: 100 psig (690 kPa) minimum OR 150 psig (1035 kPa), as directed.
 3) NPS 1-1/4 to NPS 2 (DN 32 to DN 50) Pressure Rating: 80 psig (550 kPa) minimum OR 150 psig (1035 kPa), as directed.
 4) Body Material: Brass or bronze with ball or ground-key plug.
 5) End Connections: Matching piping.
 6) Stem: With wide-tee head.
 b. Curb-Valve Casing:
 a. Standard: Similar to AWWA M44 for cast-iron valve casings.
 b. Top Section: Telescoping, of length required for depth of burial of curb valve.
 c. Barrel: Approximately 3-inch (75-mm) diameter.
 d. Plug: With lettering “WATER.”
 e. Bottom Section: With base of size to fit over valve.
 f. Base Support: Concrete collar OR wood frame, as directed.
 3. Shutoff Rods for Curb-Valve Casings: Furnish one OR two, as directed, steel, tee-handle shutoff rod(s) with one pointed end, stem of length to operate deepest buried valve, and slotted end matching curb valve for Project.
 4. Brass Ball Valves:
 a. Description:
 1) Standard: MSS SP-110.
 2) SWP Rating: 150 psig (1035 kPa).
 3) CWP Rating: 600 psig (4140 kPa).
 4) Body Design: Two piece.
 5) Body Material: Forged brass.
 6) Ends: Threaded or solder joint if indicated.
 7) Seats: PTFE or TFE.
 8) Stem: Brass.
 9) Ball: Chrome-plated brass.
 10) Port: Full OR regular, but not reduced, as directed.
 5. Bronze Ball Valves:
 a. Description:
 1) Standard: MSS SP-110.
 2) SWP Rating: 150 psig (1035 kPa).
 3) CWP Rating: 600 psig (4140 kPa).
 4) Body Design: Two piece.
 5) Body Material: Bronze.
 6) Ends: Threaded or solder joint if indicated.
 7) Seats: PTFE or TFE.
 8) Stem: Bronze.
 9) Ball: Chrome-plated brass.
 10) Port: Full OR regular, but not reduced, as directed.
 6. Iron Ball Valves:
a. Description:
1) Standard: MSS SP-72.
2) CWP Rating: 200 psig (1380 kPa).
3) Body Design: Split body.
4) Body Material: ASTM A 126, gray iron.
5) Ends: Flanged.
6) Seats: PTFE or TFE.
7) Stem: Stainless steel.
8) Ball: Stainless steel.
9) Port: Full.

7. Plastic Ball Valves:
a. Description:
1) Standard: MSS SP-122.
2) Pressure Rating: 125 psig (860 kPa) minimum OR 150 psig (1035 kPa), as directed.
3) Body Material: PVC.
4) Type: Union.
5) End Connections: Socket or threaded.
6) Port: Full.

8. Bronze Gate Valves:
a. Description:
1) Standard: MSS SP-80, Type 2.
2) Class: 125.
3) CWP Rating: 200 psig (1380 kPa).
5) Ends: Threaded or solder joint.
6) Stem: Bronze, nonrising.
7) Disc: Solid wedge; bronze.
8) Packing: Asbestos free.
9) Handwheel: Malleable iron, bronze, or aluminum.

9. Iron Gate Valves, Resilient Seated:
a. Description:
1) Standard: AWWA C509.
2) Pressure Rating: 200 psig (1380 kPa) OR 250 psig (1725 kPa), as directed, minimum.
3) Body Material: Ductile or gray iron with bronze trim.
4) End Connections: Mechanical joint or push-on joint.
5) Interior Coating: Comply with AWWA C550.
6) Body Design: Nonrising stem.
7) Operator: Stem nut.
8) Disc: Solid wedge with resilient coating.

10. Iron Gate Valve Casings:
b. Top Section: Adjustable extension of length required for depth of burial of valve.
c. Barrel: Approximately 5-inch (125-mm) diameter.
d. Plug: With lettering "WATER."
e. Bottom Section: With base of size to fit over valve.
f. Base Support: Concrete collar OR wood frame, as directed.

11. Operating Wrenches for Iron Gate Valve Casings: Furnish one OR two, as directed, steel, tee-handle operating wrench(es) with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut for Project.

12. Iron Gate Valves, NRS:
a. Description:
1) Standard: MSS SP-70, Type I.
2) CWP Rating: 200 psig (1380 kPa).
32 - Exterior Improvements

3) Body Material: ASTM A 126, gray iron with bolted bonnet.
4) Ends: Flanged.
5) Trim: All bronze.
6) Disc: Solid wedge.
7) Packing and Gasket: Asbestos free.

13. Iron Gate Valves, OS&Y:
 a. Description:
 1) Standard: MSS SP-70, Type I.
 2) CWP Rating: 200 psig (1380 kPa).
 3) Body Material: ASTM A 126, gray iron with bolted bonnet.
 4) Ends: Flanged.
 5) Trim: All bronze.
 6) Disc: Solid wedge.
 7) Packing and Gasket: Asbestos free.

E. Pressure-Reducing Valves
1. Water Regulators:
 a. Description:
 1) Standard: ASSE 1003.
 2) Body Material: Bronze for NPS 2 (DN 50) and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3 (DN 65 and DN 80).
 3) Pressure Rating: Initial pressure of 150 psig (1035 kPa).
 4) End Connections: Threaded for NPS 2 (DN 50) and smaller; flanged for NPS 2-1/2 (DN 65) and larger.

2. Water Control Valves:
 a. Description: Pilot-operation, diaphragm-type, single-seated main water control valve. Include small pilot control valve, restrictor device, specialty fittings, and sensor piping.
 1) Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
 2) Pattern: Angle-valve OR Globe-valve, as directed, design.
 3) Trim: Stainless steel.
 4) Pressure Rating: Initial pressure of 150 psig (1035 kPa) minimum.
 5) End Connections: Threaded for NPS 2 (DN 50) and smaller; flanged for NPS 2-1/2 (DN 65) and larger.

F. Automatic Control Valves
1. Bronze, Automatic Control Valves:
 a. Description: Cast-bronze body, normally closed, diaphragm type with manual-flow adjustment, and operated by 24-V ac solenoid.

2. Plastic, Automatic Control Valves:
 a. Description: Molded-plastic body, normally closed, diaphragm type with manual-flow adjustment, and operated by 24-V ac solenoid.

G. Automatic Drain Valves
1. Description: Spring-loaded-ball type of corrosion-resistant construction and designed to open for drainage if line pressure drops below 2-1/2 to 3 psig (17 to 20 kPa).

H. Transition Fittings
1. General Requirements: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
2. Transition Couplings:
 a. Description: AWWA C219, metal sleeve-type coupling for underground pressure piping.
3. Plastic-to-Metal Transition Fittings:
a. Description: PVC one-piece fitting with manufacturer’s Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-socket or threaded end.

4. Plastic-to-Metal Transition Unions:
 a. Description: MSS SP-107, PVC four-part union. Include one brass or stainless-steel threaded end, one solvent-cement-joint or threaded plastic end, rubber O-ring, and union nut.

I. Dielectric Fittings
 1. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.
 2. Dielectric Unions:
 a. Description: Factory-fabricated union, NPS 2 (DN 50) and smaller.
 1) Pressure Rating: 150 psig (1035 kPa) minimum OR 250 psig (1725 kPa), as directed, at 180 deg F (82 deg C).
 2) End Connections: Solder-joint copper alloy and threaded ferrous; threaded ferrous.
 3. Dielectric Flanges:
 a. Description: Factory-fabricated, bolted, companion-flange assembly, NPS 2-1/2 to NPS 4 (DN 65 to DN 100) and larger.
 1) Pressure Rating: 150 psig (1035 kPa) minimum OR 175 psig (1200 kPa) minimum OR 300 psig (2070 kPa), as directed.
 2) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
 4. Dielectric-Flange Kits:
 a. Description: Nonconducting materials for field assembly of companion flanges, NPS 2-1/2 (DN 65) and larger.
 1) Pressure Rating: 150 psig (1035 kPa) minimum.
 2) Gasket: Neoprene or phenolic.
 3) Bolt Sleeves: Phenolic or polyethylene.
 4) Washers: Phenolic with steel backing washers.
 5. Dielectric Couplings:
 a. Description: Galvanized-steel coupling.
 1) Pressure Rating: 300 psig (2070 kPa) at 225 deg F (107 deg C).
 2) End Connections: Female threaded.
 3) Lining: Inert and noncorrosive, thermoplastic lining.
 6. Dielectric Nipples:
 a. Description: Electroplated steel nipple complying with ASTM F 1545.
 1) Pressure Rating: 300 psig (2070 kPa) at 225 deg F (107 deg C).
 2) End Connections: Male threaded or grooved.
 3) Lining: Inert and noncorrosive, propylene.

J. Miscellaneous Piping Specialties
 1. Water Hammer Arresters: ASSE 1010 or PDI WH 201, with bellows or piston-type pressurized cushioning chamber and in sizes complying with PDI WH 201, Sizes A to F.
 2. Pressure Gages: ASME B40.1. Include 4-1/2-inch- (115-mm-) diameter dial, dial range of two times system operating pressure, and bottom outlet.

K. Sprinklers
 1. General Requirements: Designed for uniform coverage over entire spray area indicated at available water pressure.
 2. Metal, Exposed, Impact-Drive Rotary Sprinklers:
 a. Description:
 1) Construction: Brass and other corrosion-resistant metals.
 2) Mounting: Aboveground, exposed on riser.
3. Plastic, Exposed, Impact-Drive Rotary Sprinklers:
 a. Description:
 1) Construction: ABS and corrosion-resistant metals.
 2) Mounting: Aboveground, exposed on riser.

4. Plastic, Pop-up, Gear-Drive Rotary Sprinklers:
 a. Description:
 1) Body Material: ABS.
 2) Nozzle: ABS OR Brass, as directed.
 3) Retraction Spring: Stainless steel.
 4) Internal Parts: Corrosion resistant.

5. Metal, Pop-up, Impact-Drive Rotary Sprinklers:
 a. Description:
 1) Case: Brass.
 2) Body Material: Brass.
 3) Pop-up Height: Approximately 3 inches (75 mm).
 4) Sprinkler Construction: Brass and other corrosion-resistant metals.

6. Plastic, Pop-up, Impact-Drive Rotary Sprinklers:
 a. Description:
 1) Case: ABS.
 2) Pop-up Height: Approximately 3 inches (75 mm).
 3) Sprinkler Construction: ABS and other corrosion-resistant metals.

7. Metal, Surface Spray Sprinklers:
 a. Description:
 1) Body Material and Flange: Brass.
 2) Nozzle: Brass.
 3) Pattern: Fixed, with flow adjustment.

8. Plastic, Surface Spray Sprinklers:
 a. Description:
 1) Body Material and Flange: ABS.
 2) Pattern: Fixed, with flow adjustment.

9. Metal, Surface, Pop-up Spray Sprinklers:
 a. Description:
 1) Body Material and Flange: Brass.
 2) Nozzle: Brass.
 3) Pattern: Fixed, with flow adjustment.

10. Plastic, Surface, Pop-up Spray Sprinklers:
 a. Description:
 1) Body Material and Flange: ABS.
 2) Pattern: Fixed, with flow adjustment.

11. Plastic, Pop-up Spray Sprinklers:
 a. Description:
 1) Body Material: ABS.
 2) Nozzle: ABS OR Brass, as directed.
 3) Retraction Spring: Stainless steel.
 4) Internal Parts: Corrosion resistant.
 5) Pattern: Fixed, with flow adjustment.

12. Metal Shrub Sprinklers:
 a. Description:
 1) Body Material: Brass.
 2) Nozzle: Brass.
 3) Pattern: Fixed, with flow adjustment.

13. Plastic Shrub Sprinklers:
 a. Description:
 1) Body Material: ABS or other plastic.
2) Pattern: Fixed, with flow adjustment.

L. Quick Couplers
 1. Description: Factory-fabricated, bronze or brass, two-piece assembly. Include coupler water-seal valve; removable upper body with spring-loaded or weighted, rubber-covered cap; hose swivel with ASME B1.20.7, 3/4-11.5NH threads for garden hose on outlet; and operating key.
 a. Locking-Top Option: Vandal-resistant locking feature. Include one OR two, as directed, matching key(s).

M. Drip Irrigation Specialties
 1. Freestanding Emitters: Device to deliver water at approximately 20 psig (138 kPa).
 a. Body Material: PE or vinyl, with flow control.
 b. Riser to Emitter: PE or PVC flexible tubing.
 a. Manifold: With multiple outlets to deliver water to emitters.
 1) Body Material: Plastic.
 2) Outlet Caps: Plastic, for outlets without installed tubing.
 3) Operation: Automatic pressure compensating.
 b. Tubing: PE or PVC; 1/8-inch (3-mm) minimum ID.
 c. Emitter: Device to deliver water at approximately 20 psig (138 kPa).
 1) Body Material: PE or vinyl, with flow control.
 3. Multiple-Outlet Emitter Systems: Emitter with tubing and button-type outlets.
 a. Emitter: With multiple outlets to deliver water to remote outlets.
 1) Body Material: Plastic, with flow control.
 2) Outlet Caps: Plastic, for outlets without installed tubing.
 3) Operation: Automatic pressure compensating.
 4) Emitters: Devices to deliver water at approximately 20 psig (138 kPa).
 1) Body Material: PE or vinyl, with flow control.
 b. Tubing: PE or PVC; 1/8-inch (3-mm) minimum ID.
 4. Drip Tubes with Direct-Attached Emitters:
 a. Tubing: Flexible PE or PVC with plugged end.
 b. Emitters: Devices to deliver water at approximately 20 psig (138 kPa).
 1) Body Material: PE or vinyl, with flow control.
 2) Mounting: Inserted into tubing at set intervals.
 5. Drip Tubes with Remote Discharge:
 a. Tubing: Flexible PE or PVC with plugged end.
 b. Emitters: Devices to deliver water at approximately 20 psig (138 kPa).
 1) Body Material: PE or vinyl, with flow control.
 2) Mounting: Inserted into tubing at set intervals.
 7. Application Pressure Regulators: Brass or plastic housing, NPS 3/4 (DN 20), with corrosion-resistant internal parts; capable of controlling outlet pressure to approximately 20 psig (138 kPa).
 8. Filter Units: Brass or plastic housing, with corrosion-resistant internal parts; of size and capacity required for devices downstream from unit.
 9. Air Relief Valves: Brass or plastic housing, with corrosion-resistant internal parts.
 10. Vacuum Relief Valves: Brass or plastic housing, with corrosion-resistant internal parts.

N. Controllers
 1. Description:
 a. Controller Stations for Automatic Control Valves: Each station is variable from approximately 5 to 60 minutes. Include switch for manual or automatic operation of each station.
 b. Exterior Control Enclosures: NEMA 250, Type 4, weatherproof, with locking cover and two matching keys; include provision for grounding.
 1) Body Material: Enameded-steel sheet metal OR Stainless-steel sheet metal OR Molded plastic, as directed.
32 - Exterior Improvements

2) Mounting: Freestanding type for concrete base OR Surface type for wall, as directed.

c. Interior Control Enclosures: NEMA 250, Type 12, dripproof, with locking cover and two matching keys.
 1) Body Material: Enamed steel sheet metal OR Stainless-steel sheet metal OR Molded plastic, as directed.
 2) Mounting: Freestanding type for concrete base OR Surface type for wall, as directed.

d. Control Transformer: 24-V secondary, with primary fuse.

e. Timing Device: Adjustable, 24-hour, 14-day clock, with automatic operations to skip operation any day in timer period, to operate every other day, or to operate two or more times daily.
 1) Manual or Semiautomatic Operation: Allows this mode without disturbing preset automatic operation.
 2) Nickel-Cadmium Battery and Trickle Charger: Automatically powers timing device during power outages.
 3) Surge Protection: Metal-oxide-varistor type on each station and primary power.

f. Moisture Sensor: Adjustable from one to seven days, to shut off water flow during rain.

g. Wiring: UL 493, Type UF multiconductor, with solid-copper conductors; insulated cable; suitable for direct burial.
 1) Feeder-Circuit Cables: No. 12 AWG minimum, between building and controllers.
 2) Low-Voltage, Branch-Circuit Cables: No. 14 AWG minimum, between controllers and automatic control valves; color-coded different from feeder-circuit-cable jacket color; with jackets of different colors for multiple-cable installation in same trench.
 3) Splicing Materials: Manufacturer's packaged kit consisting of insulating, spring-type connector or crimped joint and epoxy resin moisture seal; suitable for direct burial.

h. Concrete Base: Reinforced precast concrete not less than 36 by 24 by 4 inches (900 by 600 by 100 mm) thick, and 6 inches (150 mm) greater in each direction than overall dimensions of controller. Include opening for wiring.

O. Boxes For Automatic Control Valves
 1. Plastic Boxes:
 a. Description: Box and cover, with open bottom and openings for piping; designed for installing flush with grade.
 1) Size: As required for valves and service.
 2) Shape: Round OR Square OR Rectangular, as directed.
 3) Sidewall Material: PE OR PE, ABS, or FRP, as directed.
 4) Cover Material: PE OR PE, ABS, or FRP, as directed.
 a) Lettering: "VALVE BOX" OR "IRRIGATION," as directed.

2. Polymer-Concrete Boxes:
 a. Description: Box and cover, with open bottom and openings for piping; designed for installing flush with grade.
 1) Size: As required for valves and service.
 2) Shape: Round OR Square OR Rectangular, as directed.
 3) Sidewall Material: Polymer concrete with lateral and vertical sidewall design loading of 5000 lb (2268 kg) OR 10,000 lb (4536 kg) OR 15,000 lb (6800 kg), as directed, minimum over 10 by 10 inches (254 by 254 mm) square.
 4) Cover Material: Polymer concrete OR Reinforced polymer concrete, as directed, with cover design loading of 5000 lb (2268 kg) OR 10,000 lb (4536 kg) OR 15,000 lb (6800 kg), as directed, minimum over 10 by 10 inches (254 by 254 mm) square.
 a) Lettering: "VALVE BOX" OR "IRRIGATION," as directed.

3. Drainage Backfill: Cleaned gravel or crushed stone, graded from 3/4 inch (19 mm) minimum to 3 inches (75 mm) maximum.
1.3 EXECUTION

A. Earthwork
1. Excavating, trenching, and backfilling are specified in Division 31 Section "Earth Moving".
2. Install warning tape directly above pressure piping, 12 inches (300 mm) below finished grades, except 6 inches (150 mm) below subgrade under pavement and slabs.
3. Drain Pockets: Excavate to sizes indicated. Backfill with cleaned gravel or crushed stone, graded from 3/4 to 3 inches (19 to 75 mm), to 12 inches (300 mm) below grade. Cover gravel or crushed stone with sheet of asphalt-saturated felt and backfill remainder with excavated material.
4. Provide minimum cover over top of underground piping according to the following:
 a. Irrigation Main Piping: Minimum depth of 36 inches (900 mm) below finished grade, or not less than 18 inches (450 mm) below average local frost depth, whichever is deeper.
 b. Circuit Piping: 12 inches (300 mm).
 c. Drain Piping: 12 inches (300 mm)
 d. Sleeves: 24 inches (600 mm).

B. Piping Installation
1. Location and Arrangement: Drawings indicate location and arrangement of piping systems. Install piping as indicated unless deviations are approved on Coordination Drawings.
2. Install piping at minimum uniform slope of 0.5 percent down toward drain valves.
3. Install piping free of sags and bends.
4. Install groups of pipes parallel to each other, spaced to permit valve servicing.
5. Install fittings for changes in direction and branch connections.
6. Install unions adjacent to valves and to final connections to other components with NPS 2 (DN 50) or smaller pipe connection.
7. Install flanges adjacent to valves and to final connections to other components with NPS 2-1/2 (DN 65) or larger pipe connection.
8. Install underground thermoplastic piping according to ASTM D 2774 and ASTM F 690.
9. Install expansion loops in control-valve boxes for plastic piping.
10. Lay piping on solid subbase, uniformly sloped without humps or depressions.
11. Install ductile-iron piping according to AWWA C600.
12. Install PVC piping in dry weather when temperature is above 40 deg F (5 deg C). Allow joints to cure at least 24 hours at temperatures above 40 deg F (5 deg C) before testing.
13. Install water regulators with shutoff valve and strainer on inlet and pressure gage on outlet. Install shutoff valve on outlet. Install aboveground or in control-valve boxes.
14. Water Hammer Arresters: Install between connection to building main and circuit valves aboveground or in control-valve boxes.
15. Install piping in sleeves under parking lots, roadways, and sidewalks.
16. Install sleeves made of Schedule 40 OR Schedule 80, as directed, PVC pipe and socket fittings, and solvent-cemented joints.
17. Install transition fittings for plastic-to-metal pipe connections according to the following:
 a. Underground Piping:
 1) NPS 1-1/2 (DN 40) and Smaller: Plastic-to-metal transition fittings.
 2) NPS 2 (DN 50) and Larger: AWWA transition couplings.
 b. Aboveground Piping:
 1) NPS 2 (DN 50) and Smaller: Plastic-to-metal transition fittings OR unions, as directed.
 2) NPS 2 (DN 50) and Larger: Use dielectric flange kits with one plastic flange.
18. Install dielectric fittings for dissimilar-metal pipe connections according to the following:
 a. Underground Piping:
 1) NPS 2 (DN 50) and Smaller: Dielectric coupling or dielectric nipple.
 2) NPS 2-1/2 (DN 65) and Larger: Prohibited except in control-valve box.
 b. Aboveground Piping:
 1) NPS 2 (DN 50) and Smaller: Dielectric union.
 2) NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Dielectric flange.
3) NPS 5 (DN 125) and Larger: Dielectric flange kit.

c. Piping in Control-Valve Boxes:
 1) NPS 2 (DN 50) and Smaller: Dielectric union.
 2) NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Dielectric flange.
 3) NPS 5 (DN 125) and Larger: Dielectric flange kit.

C. Joint Construction

1. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
2. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
3. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 a. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 b. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
4. Flanged Joints: Select rubber gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
5. Ductile-Iron Piping Gasketed Joints: Comply with AWWA C600 and AWWA M41.
7. Copper-Tubing Soldered Joints: Apply ASTM B 813 water-flushable flux to tube end unless otherwise indicated. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy (0.20 percent maximum lead content) complying with ASTM B 32.
8. PE Piping Fastener Joints: Join with insert fittings and bands or fasteners according to piping manufacturer's written instructions.
9. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 a. Plain-End PE Pipe and Fittings: Use butt fusion.
 b. Plain-End PE Pipe and Socket Fittings: Use socket fusion.
10. PVC Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 a. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 b. PVC Pressure Piping: Join schedule number, ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 c. PVC Nonpressure Piping: Join according to ASTM D 2855.

D. Valve Installation

1. Underground Curb Valves: Install in curb-valve casings with tops flush with grade.
2. Underground Iron Gate Valves, Resilient Seat: Comply with AWWA C600 and AWWA M44. Install in valve casing with top flush with grade.
 a. Install valves and PVC pipe with restrained, gasketed joints.
3. Aboveground Valves: Install as components of connected piping system.
4. Pressure-Reducing Valves: Install in boxes for automatic control valves or aboveground between shutoff valves. Install full-size valved bypass, as directed.
5. Throttling Valves: Install in underground piping in boxes for automatic control valves.

E. Sprinkler Installation

1. Install sprinklers after hydrostatic test is completed.
2. Install sprinklers at manufacturer's recommended heights.
3. Locate part-circle sprinklers to maintain a minimum distance of 4 inches (100 mm) from walls and 2 inches (50 mm) from other boundaries unless otherwise indicated.

F. Drip Irrigation Specialty Installation
1. Install freestanding emitters on pipe riser to mounting height indicated.
2. Install manifold emitter systems with tubing to emitters. Plug unused manifold outlets. Install emitters on off-ground supports at height indicated.
3. Install multiple-outlet emitter systems with tubing to outlets. Plug unused emitter outlets. Install outlets on off-ground supports at height indicated.
4. Install drip tubes with direct-attached emitters on ground.
5. Install drip tubes with remote-discharge on ground with outlets on off-ground supports at height indicated.
6. Install off-ground supports of length required for indicated mounted height of device.
7. Install application pressure regulators and filter units in piping near device being protected, and aboveground OR in control-valve boxes, as directed.
8. Install air relief valves and vacuum relief valves in piping, and aboveground OR in control-valve boxes, as directed.

G. Automatic Irrigation-Control System Installation
1. Equipment Mounting: Install interior controllers on floor OR concrete bases OR wall, as directed.
 a. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 b. Install anchor bolts to elevations required for proper attachment to supported equipment.
2. Equipment Mounting: Install exterior freestanding controllers on precast concrete bases.
 a. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 b. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install control cable in same trench as irrigation piping and at least 2 inches (51 mm) below or beside piping. Provide conductors of size not smaller than recommended by controller manufacturer. Install cable in separate sleeve under paved areas.

H. Connections
1. Comply with requirements for piping specified in Division 22 Section "Facility Water Distribution Piping" for water supply from exterior water service piping, water meters, protective enclosures, and backflow preventers. Drawings indicate general arrangement of piping, fittings, and specialties.
2. Install piping adjacent to equipment, valves, and devices to allow service and maintenance.
3. Connect wiring between controllers and automatic control valves.

I. Identification
1. Identify system components. Comply with requirements for identification specified in Division 22 Section "Identification For Plumbing Piping And Equipment".
2. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplates and signs on each automatic controller.
 a. Text: In addition to identifying unit, distinguish between multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.
3. Warning Tapes: Arrange for installation of continuous, underground, detectable warning tapes over underground piping during backfilling of trenches. See Division 31 Section "Earth Moving" for warning tapes.

J. Field Quality Control
1. Perform tests and inspections.
2. Tests and Inspections:
a. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
b. Operational Test: After electrical circuitry has been energized, operate controllers and automatic control valves to confirm proper system operation.
c. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3. Any irrigation product will be considered defective if it does not pass tests and inspections.
4. Prepare test and inspection reports.

K. Adjusting
1. Adjust settings of controllers.
2. Adjust automatic control valves to provide flow rate at rated operating pressure required for each sprinkler circuit.
3. Adjust sprinklers and devices, except those intended to be mounted aboveground, so they will be flush with, or not more than 1/2 inch (13 mm) above, finish grade.

L. Cleaning
1. Flush dirt and debris from piping before installing sprinklers and other devices.

M. Piping Schedule
1. Install components having pressure rating equal to or greater than system operating pressure.
2. Piping in control-valve boxes and aboveground may be joined with flanges or unions instead of joints indicated.
3. Aboveground irrigation main piping, NPS 4 (DN 100) and smaller, shall be one of the following:
 a. Galvanized-steel pipe and galvanized-steel pipe nipples; galvanized, gray-iron threaded fittings; and threaded joints.
 b. Type L (Type B) OR Type M (Type C), as directed, hard copper tube, wrought- or cast-copper fittings, and brazed OR soldered, as directed, joints.
 c. Schedule 40 OR Schedule 80, as directed, PVC pipe; socket-type PVC fittings; and solvent-cemented joints.
 d. Schedule 80, PVC pipe; Schedule 80, threaded PVC fittings; and threaded joints.
4. Aboveground irrigation main piping, NPS 5 (DN 125) and larger, shall be one of the following:
 a. Galvanized-steel pipe and galvanized-steel pipe nipples; galvanized, gray-iron threaded fittings; and threaded joints.
 b. Schedule 40 OR Schedule 80, as directed, PVC pipe and socket fittings; and solvent-cemented joints.
 c. Schedule 80, PVC pipe; Schedule 80, threaded PVC fittings; and threaded joints.
5. Underground irrigation main piping, NPS 4 (DN 100) and smaller, shall be one of the following:
 a. NPS 3 and NPS 4 (DN 80 and DN 100) ductile-iron, mechanical-joint pipe; ductile-iron, mechanical-joint fittings, glands, bolts, and nuts; and gasketed joints.
 b. NPS 3 and NPS 4 (DN 80 and DN 100) ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings and gaskets; and gasketed joints.
 c. Type L (Type B) soft copper tube, wrought-copper fittings, and brazed joints.
 d. NPS 4 (DN 100) PE pressure pipe; PE butt, heat-fusion or socket-type fittings; and heat-fusion joints.
 e. Schedule 40 OR Schedule 80, as directed, PVC pipe and socket fittings, and solvent-cemented joints.
 f. Schedule 80, PVC pipe; Schedule 80, threaded PVC fittings; and threaded joints.
 g. SDR 21, PVC, pressure-rated pipe; Schedule 80, PVC socket fittings; and solvent-cemented joints.
6. Underground irrigation main piping, NPS 5 (DN 125) and larger, shall be one of the following:
 a. NPS 6 (DN 150) and larger ductile-iron, mechanical-joint pipe; ductile-iron, mechanical-joint fittings, glands, bolts, and nuts; and gasketed joints.
b. NPS 6 (DN 150) and larger ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings and gaskets; and gasketed joints.

c. PE pressure pipe; PE butt, heat-fusion fittings; and heat-fusion joints.

d. Schedule 40 OR Schedule 80, as directed, PVC pipe and socket fittings; and solvent-cemented joints.

e. SDR 21, PVC, pressure-rated pipe; Schedule 80, PVC socket fittings; and solvent-cemented joints.

7. Circuit piping, NPS 2 (DN 50) and smaller, shall be one of the following:

a. SIDR 7 OR SIDR 9, as directed, PE, controlled ID pipe; insert fittings for PE pipe; and fastener joints.

b. DR 9 OR DR 11, as directed, PE, controlled OD pipe; PE butt, heat-fusion, or PE socket-type fittings; and heat-fusion joints.

c. Schedule 40, PVC pipe and socket fittings; and solvent-cemented joints.

d. SDR 26, PVC, pressure-rated pipe; Schedule 40, PVC socket fittings; and solvent-cemented joints.

8. Circuit piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100), shall be one of the following:

a. SIDR 7 OR SIDR 9, as directed, PE, controlled ID pipe; insert fittings for PE pipe; and banded or fastener joints.

b. DR 9 OR DR 11, as directed, PE, controlled OD pipe; PE socket or butt-fusion fittings; and heat-fusion joints. NPS 3 (DN 80) pipe and fittings if NPS 2-1/2 (DN 65) pipe and fittings are not available.

c. Schedule 40, PVC pipe and socket fittings; and solvent-cemented joints.

d. SDR 26, PVC, pressure-rated pipe; Schedule 40, PVC socket fittings; and solvent-cemented joints.

9. Underground Branches and Offsets at Sprinklers and Devices: Schedule 80, PVC pipe; threaded PVC fittings; and threaded joints.

a. Option: Plastic swing-joint assemblies, with offsets for flexible joints, manufactured for this application.

10. Risers to Aboveground Sprinklers and Specialties: Type L (Type B) OR Type M (Type C), as directed, hard copper tube, wrought-copper fittings, and brazed OR soldered, as directed, joints.

11. Risers to Aboveground Sprinklers and Specialties: Schedule 80, PVC pipe and socket fittings; and solvent-cemented joints.

12. Drain piping shall be one of the following:

a. SIDR 9, 11.5, or 15, PE, controlled ID pipe; insert fittings for PE pipe; and banded or fastener joints.

b. Schedule 40, PVC pipe and socket fittings; and solvent-cemented joints.

c. SDR 21, 26, or 32.5, PVC, pressure-rated pipe; Schedule 40, PVC socket fittings; and solvent-cemented joints.

N. Valve Schedule

1. Underground, Shutoff-Duty Valves: Use the following:

a. NPS 2 (DN 50) and Smaller: Curb valve, curb-valve casing, and shutoff rod.

b. NPS 3 (DN 80) and Larger: Iron gate valve, resilient seated; iron gate valve casing; and operating wrench(es).

2. Aboveground, Shutoff-Duty Valves:

a. NPS 2 (DN 50) and Smaller: Brass OR Bronze OR Plastic, as directed, ball valve.

b. NPS 2 (DN 50) and Smaller: Bronze gate valve.

c. NPS 2-1/2 (DN 65) and Larger: Iron ball valve.

d. NPS 2-1/2 (DN 65) and Larger: Iron gate valve, NRS OR OS&Y, as directed.

3. Throttling-Duty Valves:

a. NPS 2 (DN 50) and Smaller: Bronze OR Plastic, as directed, automatic control valve.

b. NPS 2 (DN 50) and Smaller: Brass OR Bronze OR Plastic, as directed, ball valve.

c. NPS 2-1/2 and NPS 3 (DN 65 and DN 80): Bronze OR Plastic, as directed, automatic control valve.

d. NPS 2-1/2 and NPS 3 (DN 65 and DN 80): Iron ball valve.
4. Drain Valves:
 b. NPS 1/2 and NPS 3/4 (DN 15 and DN 20): Brass OR Bronze OR Plastic, as directed, ball valve.
 d. NPS 1 to NPS 2 (DN 25 to DN 50): Brass OR Bronze OR Plastic, as directed, ball valve.
 e. NPS 1 to NPS 2 (DN 25 to DN 50): Bronze gate valve.

END OF SECTION 32 84 13 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 84 23 00</td>
<td>32 84 13 00</td>
<td>Irrigation Systems</td>
</tr>
</tbody>
</table>
SECTION 32 92 19 13 - LAWNS AND GRASSES

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for lawns and grasses. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Seeding.
 b. Hydroseeding.
 c. Sodding.
 d. Plugging.
 e. Sprigging.
 f. Meadow grasses and wildflowers.
 g. Turf renovation.
 h. Erosion-control material(s).
 i. Grass paving.

C. Definitions
1. Duff Layer: The surface layer of native topsoil that is composed of mostly decayed leaves, twigs, and detritus.
2. Finish Grade: Elevation of finished surface of planting soil.
3. Manufactured Topsoil: Soil produced off-site by homogeneously blending mineral soils or sand with stabilized organic soil amendments to produce topsoil or planting soil.
4. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. This includes insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. It also includes substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.
5. Pests: Living organisms that occur where they are not desired or that cause damage to plants, animals, or people. These include insects, mites, grubs, mollusks (snails and slugs), rodents (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.
6. Planting Soil: Standardized topsoil; existing, native surface topsoil; existing, in-place surface soil; imported topsoil; or manufactured topsoil that is modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.
7. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or top surface of a fill or backfill before planting soil is placed.
8. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.
9. Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil, but in disturbed areas such as urban environments, the surface soil can be subsoil.

D. Submittals
1. Product Data: For each type of product indicated.
2. Certification of Grass Seed.
 a. Certification of each seed mixture for turfgrass sod OR plugs, as directed.
3. Product Certificates: For soil amendments and fertilizers, from manufacturer.
4. Maintenance Instructions: Recommended procedures to be established by Owner for maintenance of turf and meadows during a calendar year. Submit before expiration of required initial maintenance periods.

E. Quality Assurance
1. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.
 a. Pesticide Applicator: State licensed, commercial.
2. Soil Analysis: For each unamended soil type, furnish soil analysis and a written report by a qualified soil-testing laboratory.
 a. The soil-testing laboratory shall oversee soil sampling.
 b. Report suitability of tested soil for turf growth.
 1) State recommendations for nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce satisfactory planting soil suitable for healthy, viable plants.
 2) Report presence of problem salts, minerals, or heavy metals; if present, provide additional recommendations for corrective action.

F. Delivery, Storage, And Handling
1. Seed and Other Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of conformance with state and federal laws, as applicable.
2. Sod: Harvest, deliver, store, and handle sod according to requirements in "Specifications for Turfgrass Sod Materials" and "Specifications for Turfgrass Sod Transplanting and Installation" in TPI's "Guideline Specifications to Turfgrass Sodding." Deliver sod in time for planting within 24 hours of harvesting. Protect sod from breakage and drying.
3. Bulk Materials:
 a. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
 b. Provide erosion-control measures to prevent erosion or displacement of bulk materials, discharge of soil-bearing water runoff, and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
 c. Accompany each delivery of bulk fertilizers, lime, and soil amendments with appropriate certificates.

G. Maintenance Service
1. Initial Turf Maintenance Service: Provide full maintenance by skilled employees of landscape Installer. Maintain as required in Part 1.3. Begin maintenance immediately after each area is planted and continue until acceptable turf is established but for not less than the following periods:
 a. Seeded Turf: 60 days from date of planting completion OR Substantial Completion, as directed.
 1) When initial maintenance period has not elapsed before end of planting season, or if turf is not fully established, continue maintenance during next planting season.
 b. Sodded Turf: 30 days from date of planting completion OR Substantial Completion, as directed.
 c. Plugged Turf: 30 days from date of planting completion OR Substantial Completion, as directed.
 d. Sprigged Turf: 30 days from date of planting completion OR Substantial Completion, as directed.
2. Initial Meadow Maintenance Service: Provide full maintenance by skilled employees of landscape Installer. Maintain as required in Part 1.3. Begin maintenance immediately after each area is planted and continue until acceptable meadow is established, but for not less than 40 days from date of planting completion OR Substantial Completion, as directed.
3. Continuing Maintenance Proposal: From Installer to Owner, in the form of a standard yearly (or other period) maintenance agreement, starting on date initial maintenance service is concluded. State services, obligations, conditions, and terms for agreement period and for future renewal options.

1.2 PRODUCTS

A. Seed
1. Grass Seed: Fresh, clean, dry, new-crop seed complying with AOSA’s “Journal of Seed Technology; Rules for Testing Seeds” for purity and germination tolerances.
2. Seed Species: If grass seed is required to be certified by the State Department of Agriculture, State-certified seed of grass species as follows:
 OR
 Seed Species: If grass seed is not required to be certified by the State Department of Agriculture, seed of grass species as follows, with not less than 95 percent germination, not less than 85 percent pure seed, and not more than 0.5 percent weed seed:
 a. Warm-season grass
 1) Full Sun: Bermudagrass (Cynodon dactylon).
 b. Cool-season grass
 1) Full Sun: Kentucky bluegrass (Poa pratensis), a minimum of three cultivars.
 2) Sun and Partial Shade: Proportioned by weight as follows:
 a) 50 percent Kentucky bluegrass (Poa pratensis).
 b) 30 percent chewings red fescue (Festuca rubra variety).
 c) 10 percent perennial ryegrass (Lolium perenne).
 d) 10 percent redtop (Agrostis alba).
 3) Shade: Proportioned by weight as follows:
 a) 50 percent chewings red fescue (Festuca rubra variety).
 b) 35 percent rough bluegrass (Poa trivialis).
 c) 15 percent redtop (Agrostis alba).
 3. Grass Seed Mix: Proprietary seed mix as directed by the Owner.

B. Turfgrass Sod
1. Turfgrass Sod: Certified OR Approved OR Number 1 Quality/Premium, including limitations on thatch, weeds, diseases, nematodes, and insects, as directed, complying with “Specifications for Turfgrass Sod Materials” in TPI’s “Guideline Specifications to Turfgrass Sodding.” Furnish viable sod of uniform density, color, and texture, strongly rooted, and capable of vigorous growth and development when planted.
2. Turfgrass Species (warm-season grass): Bermudagrass (Cynodon dactylon) OR Carpetgrass (Axonopus affinis) OR Centipedegrass (Eremochloa ophiuroides) OR St. Augustinegrass (Stenotaphrum secundatum) OR Zoysiagrass (Zoysia japonica) OR Zoysiagrass (Zoysia matrella), as directed.
3. Turfgrass Species (cool-season grass): Sod of grass species as follows, with not less than 95 percent germination, not less than 85 percent pure seed, and not more than 0.5 percent weed seed:
 a. Full Sun: Kentucky bluegrass (Poa pratensis), a minimum of three cultivars.
 b. Sun and Partial Shade: Proportioned by weight as follows:
 1) 50 percent Kentucky bluegrass (Poa pratensis).
 2) 30 percent chewings red fescue (Festuca rubra variety).
 3) 10 percent perennial ryegrass (Lolium perenne).
 4) 10 percent redtop (Agrostis alba).
 c. Shade: Proportioned by weight as follows:
 1) 50 percent chewings red fescue (Festuca rubra variety).
 2) 35 percent rough bluegrass (Poa trivialis).
 3) 15 percent redtop (Agrostis alba).
C. Plugs
1. Plugs: Turfgrass sod, certified OR approved OR Number 1 Quality/Premium, including limitations on thatch, weeds, diseases, nematodes, and insects, as directed, complying with "Specifications for Turfgrass Sod Materials" in TPI's "Guideline Specifications to Turfgrass Sodding." Furnish viable sod of uniform density, color, and texture, cut into square or round plugs, strongly rooted, and capable of vigorous growth and development when planted; of the following turfgrass species and plug size:
 a. Turfgrass Species (warm-season grass): Bermudagrass (Cynodon dactylon) OR Carpetgrass (Axonopus affinis) OR Centipedegrass (Eremochloa ophiuroides) OR St. Augustinegrass (Stenotaphrum secundatum) OR Zoysiagrass (Zoysia japonica) OR Zoysiagrass (Zoysia matrella), as directed.
 b. Plug Size: 2 inches (50 mm) OR 3 inches (75 mm) OR 4 inches (100 mm), as directed.

D. Sprigs
1. Sod Sprigs: Healthy living stems, rhizomes, or stolons with a minimum of two nodes and attached roots free of soil, of the following turfgrass species:
 a. Turfgrass Species (warm-season grass): Bermudagrass (Cynodon dactylon) OR Carpetgrass (Axonopus affinis) OR Centipedegrass (Eremochloa ophiuroides) OR St. Augustinegrass (Stenotaphrum secundatum) OR Zoysiagrass (Zoysia japonica) OR Zoysiagrass (Zoysia matrella), as directed.
 b. Turfgrass Species (cool-season grass): Creeping bentgrass (Agrostis palustris).

E. Meadow Grasses And Wildflowers
1. Wildflower Seed: Fresh, clean, and dry new seed, of mixed species as directed.
2. Native Grass Seed: Fresh, clean, and dry new seed, of mixed species as directed.
3. Wildflower and Native Grass Seed: Fresh, clean, and dry new seed, of mixed species as directed.
4. Seed Carrier: Inert material, sharp clean sand or perlite, mixed with seed at a ratio of not less than two parts seed carrier to one part seed.

F. Inorganic Soil Amendments
1. Lime: ASTM C 602, agricultural liming material containing a minimum of 80 percent calcium carbonate equivalent and as follows:
 a. Class T, with a minimum of 99 percent passing through No. 8 (2.36-mm) sieve and a minimum of 75 percent passing through No. 60 (0.25-mm) sieve.
 OR
 Class O, with a minimum of 95 percent passing through No. 8 (2.36-mm) sieve and a minimum of 55 percent passing through No. 60 (0.25-mm) sieve.
 b. Provide lime in form of ground dolomitic limestone OR calcitic limestone OR mollusk shells, as directed.
2. Sulfur: Granular, biodegradable, containing a minimum of 90 percent sulfur, and with a minimum of 99 percent passing through No. 6 (3.35-mm) sieve and a maximum of 10 percent passing through No. 40 (0.425-mm) sieve.
3. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.
5. Perlite: Horticultural perlite, soil amendment grade.
6. Agricultural Gypsum: Minimum 90 percent calcium sulfate, finely ground with 90 percent passing through No. 50 (0.30-mm) sieve.
7. Sand: Clean, washed, natural or manufactured, and free of toxic materials.
8. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight.
 OR
 Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight.
G. Organic Soil Amendments

1. Compost: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch (25-mm) OR 3/4-inch (19-mm) OR 1/2-inch (12.5-mm), as directed, sieve; soluble salt content of 5 to 10 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:
 a. Organic Matter Content: 50 to 60 percent of dry weight.
 b. Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.

2. Sphagnum Peat: Partially decomposed sphagnum peat moss, finely divided or of granular texture, with a pH range of 3.4 to 4.8.

3. Muck Peat: Partially decomposed moss peat, native peat, or reed-sedge peat, finely divided or of granular texture, with a pH range of 6 to 7.5, and having a water-absorbing capacity of 1100 to 2000 percent.

4. Wood Derivatives: Decomposed, nitrogen-treated sawdust, ground bark, or wood waste; of uniform texture and free of chips, stones, sticks, soil, or toxic materials.
 a. In lieu of decomposed wood derivatives, mix partially decomposed wood derivatives with ammonium nitrate at a minimum rate of 0.15 lb/cu. ft. (2.4 kg/cu. m) of loose sawdust or ground bark, or with ammonium sulfate at a minimum rate of 0.25 lb/cu. ft. (4 kg/cu. m) of loose sawdust or ground bark.

5. Manure: Well-rotted, unleached, stable or cattle manure containing not more than 25 percent by volume of straw, sawdust, or other bedding materials; free of toxic substances, stones, sticks, soil, weed seed, and material harmful to plant growth.

H. Fertilizers

1. Bonemeal: Commercial, raw or steamed, finely ground; a minimum of 1 OR 4, as directed, percent nitrogen and 10 OR 20, as directed, percent phosphoric acid.

2. Superphosphate: Commercial, phosphate mixture, soluble; a minimum of 20 percent available phosphoric acid.

3. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorus, and potassium in the following composition:
 a. Composition: 1 lb/1000 sq. ft. (0.45 kg/92.9 sq. m) of actual nitrogen, 4 percent phosphorous, and 2 percent potassium, by weight.
 b. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

4. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:
 a. Composition: 20 percent nitrogen, 10 percent phosphorous, and 10 percent potassium, by weight.
 OR
 Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

I. Planting Soils

1. Planting Soil: ASTM D 5268 topsoil, with pH range of 5.5 to 7, a minimum of 2 percent organic material content OR Existing, native surface topsoil formed under natural conditions with the duff layer retained during excavation process OR Existing, in-place surface soil OR Imported topsoil or manufactured topsoil from off-site sources; do not obtain from agricultural land, bogs or marshes, as directed. Verify suitability of soil to produce viable planting soil. Clean soil of roots, plants, sod, stones, clods, clay lumps, pockets of coarse sand, concrete slurry, concrete layers or chunks, cement, plaster, building debris, and other extraneous materials harmful to plant growth. Mix soil with the following soil amendments and fertilizers in the following quantities to produce planting soil:
 a. Ratio of Loose Compost to Topsoil by Volume: 1:4 OR 1:3 OR 1:2, as directed.
b. Ratio of Loose Sphagnum OR Muck, as directed, Peat to Topsoil by Volume: as directed by the Owner.

c. Ratio of Loose Wood Derivatives to Topsoil by Volume: as directed by the Owner.

d. Weight of Lime per 1000 Sq. Ft. (92.9 Sq. m): as directed by the Owner.

e. Weight of Sulfur OR Iron Sulfate OR Aluminum Sulfate, as directed, per 1000 Sq. Ft. (92.9 Sq. m): as directed by the Owner.

f. Weight of Agricultural Gypsum per 1000 Sq. Ft. (92.9 Sq. m): as directed by the Owner.

g. Volume of Sand Plus 10 Percent Diatomaceous Earth OR Zeolites, as directed, per 1000 Sq. Ft. (92.9 Sq. m): as directed by the Owner.

h. Weight of Bonemeal per 1000 Sq. Ft. (92.9 Sq. m): as directed by the Owner.

i. Weight of Superphosphate per 1000 Sq. Ft. (92.9 Sq. m): as directed by the Owner.

j. Weight of Commercial Fertilizer per 1000 Sq. Ft. (92.9 Sq. m): as directed by the Owner.

k. Weight of Slow-Release Fertilizer per 1000 Sq. Ft. (92.9 Sq. m): as directed by the Owner.

J. Mulches

1. Straw Mulch: Provide air-dry, clean, mildew- and seed-free, salt hay or threshed straw of wheat, rye, oats, or barley.

2. Sphagnum Peat Mulch: Partially decomposed sphagnum peat moss, finely divided or of granular texture, and with a pH range of 3.4 to 4.8.

3. Muck Peat Mulch: Partially decomposed moss peat, native peat, or reed-sedge peat, finely divided or of granular texture, with a pH range of 6 to 7.5, and having a water-absorbing capacity of 1100 to 2000 percent.

4. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch (25-mm) sieve; soluble salt content of 2 to 5 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:
 a. Organic Matter Content: 50 to 60 percent of dry weight.
 b. Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.

5. Fiber Mulch: Biodegradable, dyed-wood, cellulose-fiber mulch; nontoxic and free of plant-growth or germination inhibitors; with a maximum moisture content of 15 percent and a pH range of 4.5 to 6.5.

6. Nonasphaltic Tackifier: Colloidal tackifier recommended by fiber-mulch manufacturer for slurry application; nontoxic and free of plant-growth or germination inhibitors.

7. Asphalt Emulsion: ASTM D 977, Grade SS-1; nontoxic and free of plant-growth or germination inhibitors.

K. Pesticides

1. General: Pesticide, registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

2. Pre-Emergent Herbicide (Selective and Non-Selective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.

3. Post-Emergent Herbicide (Selective and Non-Selective): Effective for controlling weed growth that has already germinated.

L. Erosion-Control Materials

1. Erosion-Control Blankets: Biodegradable wood excelsior, straw, or coconut-fiber mat enclosed in a photodegradable plastic mesh. Include manufacturer's recommended steel wire staples, 6 inches (150 mm) long.

2. Erosion-Control Fiber Mesh: Biodegradable burlap or spun-coir mesh, a minimum of 0.92 lb/sq. yd. (0.5 kg/sq. m), with 50 to 65 percent open area. Include manufacturer's recommended steel wire staples, 6 inches (150 mm) long.
3. Erosion-Control Mats: Cellular, non-biodegradable slope-stabilization mats designed to isolate and contain small areas of soil over steeply sloped surface, of 3-inch (75-mm) OR 4-inch (100-mm) OR 6-inch (150-mm), as directed, nominal mat thickness. Include manufacturer's recommended anchorage system for slope conditions.

M. Grass-Paving Materials
 1. Grass Paving: Cellular, non-biodegradable plastic mats, designed to contain small areas of soil and enhance the ability of turf to support vehicular and pedestrian traffic, of 1-inch (25-mm) OR 1-3/4-inch (45-mm) OR 2-inch (50-mm) OR manufacturer's standard, as directed, nominal mat thickness. Include manufacturer's recommended anchorage system for slope conditions.
 2. Base Course: Sound crushed stone or gravel complying with ASTM D 448 for Size No. 8 OR Division 31 Section "Earth Moving" for base-course material, as directed.
 3. Sand: Sound, sharp, washed, natural sand or crushed stone complying with gradation requirements in ASTM C 33 for fine aggregate.
 4. Proprietary Growing Mix: As submitted and acceptable to the Owner.
 5. Sandy Loam Soil Mix: Sound, sharp, washed, natural sand or crushed stone complying with gradation requirements in ASTM C 33 for fine aggregate blended with planting soil as specified. Use blend consisting of 1/2 sand and 1/2 planting soil OR 2/3 sand and 1/3 planting soil, as directed.

1.3 EXECUTION

A. Preparation
 1. Protect structures, utilities, sidewalks, pavements, and other facilities, trees, shrubs, and plantings from damage caused by planting operations.
 a. Protect adjacent and adjoining areas from hydroseeding and hydromulching overspray.
 b. Protect grade stakes set by others until directed to remove them.
 2. Install erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

B. Turf Area Preparation
 1. Limit turf subgrade preparation to areas to be planted.
 2. Newly Graded Subgrades: Loosen subgrade to a minimum depth of 4 inches (100 mm) OR 6 inches (150 mm) OR 8 inches (200 mm), as directed. Remove stones larger than 1 inch (25 mm) OR 1-1/2 inches (38 mm) OR 2 inches (50 mm), as directed, in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 a. Apply superphosphate fertilizer directly to subgrade before loosening.
 b. Thoroughly blend planting soil off-site before spreading or spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil.
 1) Delay mixing fertilizer with planting soil if planting will not proceed within a few days.
 2) Mix lime with dry soil before mixing fertilizer.
 c. Spread planting soil to a depth of 4 inches (100 mm) OR 6 inches (150 mm) OR 8 inches (200 mm), as directed, but not less than required to meet finish grades after light rolling and natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.
 1) Spread approximately 1/2 the thickness of planting soil over loosened subgrade. Mix thoroughly into top 2 inches (50 mm) OR 4 inches (100 mm), as directed, of subgrade. Spread remainder of planting soil.
 2) Reduce elevation of planting soil to allow for soil thickness of sod.
 3. Unchanged Subgrades: If turf is to be planted in areas unaltered or undisturbed by excavating, grading, or surface-soil stripping operations, prepare surface soil as follows:
 a. Remove existing grass, vegetation, and turf. Do not mix into surface soil.
b. Loosen surface soil to a depth of at least 6 inches (150 mm) OR 8 inches (200 mm), as directed. Apply soil amendments and fertilizers according to planting soil mix proportions and mix thoroughly into top 4 inches (100 mm) OR 6 inches (150 mm), as directed, of soil. Till soil to a homogeneous mixture of fine texture.
 1) Apply superphosphate fertilizer directly to surface soil before loosening.
 2) Rake the surface soil to a fine texture.
 3) Remove stones larger than 1 inch (25 mm) OR 1-1/2 inches (38 mm) OR 2 inches (50 mm), as directed, in any dimension and sticks, roots, trash, and other extraneous matter.
 4) Legally dispose of waste material, including grass, vegetation, and turf, off Owner's property.

4. Finish Grading: Grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1/2 inch (13 mm) of finish elevation. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit finish grading to areas that can be planted in the immediate future.

5. Moisten prepared area before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

6. Before planting, obtain the Owner's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

C. Preparation For Erosion-Control Materials
 1. Prepare area as specified in "Turf Area Preparation" Article.
 2. For erosion-control mats, install planting soil in two lifts, with second lift equal to thickness of erosion-control mats. Install erosion-control mat and fasten as recommended by material manufacturer.
 3. Fill cells of erosion-control mat with planting soil and compact before planting.
 4. For erosion-control blanket or mesh, install from top of slope, working downward, and as recommended by material manufacturer for site conditions. Fasten as recommended by material manufacturer.
 5. Moisten prepared area before planting if surface is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

D. Preparation For Grass-Paving Materials
 1. Reduce subgrade elevation soil to allow for thickness of grass-paving system. Grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Grade so that installed paving is within plus or minus 1/2 inch (13 mm) of finish elevation. Roll and rake, remove ridges, and fill depressions.
 2. Install base course OR sand course OR base course and sand course, as directed, and sandy loam soil mix OR proprietary growing mix OR soil for paving fill, as directed, as recommended by paving-material manufacturer for site conditions; comply with details shown on Drawings. Compact according to paving-material manufacturer's written instructions.
 3. Install paving mat and fasten according to paving-material manufacturer's written instructions.
 4. Before planting, fill cells of paving mat with planting soil OR sandy loam soil mix OR proprietary growing mix OR sand half full, as directed, and compact according to manufacturer's written instructions.
 5. Moisten prepared area before planting if surface is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

E. Seeding
 1. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph (8 km/h). Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
 a. Do not use wet seed or seed that is moldy or otherwise damaged.
 b. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.
 2. Sow seed at a total rate of 2 lb/1000 sq. ft. (0.9 kg/92.9 sq. m) OR 3 to 4 lb/1000 sq. ft. (1.4 to 1.8 kg/92.9 sq. m) OR 5 to 8 lb/1000 sq. ft. (2.3 to 3.6 kg/92.9 sq. m), as directed.
3. Rake seed lightly into top 1/8 inch (3 mm) of soil, roll lightly, and water with fine spray.

4. Protect seeded areas with slopes exceeding 1:4 with erosion-control blankets and 1:6 with erosion-control fiber mesh installed and stapled according to manufacturer's written instructions.

5. Protect seeded areas with erosion-control mats where shown on Drawings; install and anchor according to manufacturer's written instructions.

6. Protect seeded areas with slopes not exceeding 1:6 by spreading straw mulch. Spread uniformly at a minimum rate of 2 tons/acre (42 kg/92.9 sq. m) to form a continuous blanket 1-1/2 inches (38 mm) in loose thickness over seeded areas. Spread by hand, blower, or other suitable equipment.
 a. Anchor straw mulch by crimping into soil with suitable mechanical equipment.
 b. Bond straw mulch by spraying with asphalt emulsion at a rate of 10 to 13 gal./1000 sq. ft. (38 to 49 L/92.9 sq. m). Take precautions to prevent damage or staining of structures or other plantings adjacent to mulched areas. Immediately clean damaged or stained areas.

7. Protect seeded areas from hot, dry weather or drying winds by applying compost mulch OR peat mulch OR planting soil, as directed, within 24 hours after completing seeding operations. Soak areas, scatter mulch uniformly to a thickness of 3/16 inch (4.8 mm), and roll surface smooth.

F. Hydroseeding

1. Hydroseeding: Mix specified seed, fertilizer, and fiber mulch in water, using equipment specifically designed for hydroteed application. Continue mixing until uniformly blended into homogeneous slurry suitable for hydraulic application.
 a. Mix slurry with nonasphaltic OR asphalt-emulsion OR fiber-mulch manufacturer's recommended, as directed, tackifier.
 b. Apply slurry uniformly to all areas to be seeded in a one-step process. Apply slurry at a rate so that mulch component is deposited at not less than 1500-lb/acre (15.6-kg/92.9 sq. m) dry weight, and seed component is deposited at not less than the specified seed-sowing rate.

OR

Apply slurry uniformly to all areas to be seeded in a two-step process. Apply first slurry coat at a rate so that mulch component is deposited at not less than 500-lb/acre (5.2-kg/92.9 sq. m) dry weight, and seed component is deposited at not less than the specified seed-sowing rate. Apply slurry cover coat of fiber mulch (hydromulching) at a rate of 1000 lb/acre (10.4 kg/92.9 sq. m).

G. Sodding

1. Lay sod within 24 hours of harvesting. Do not lay sod if dormant or if ground is frozen or muddy.

2. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to subgrade or sod during installation. Tamp and roll lightly to ensure contact with subgrade, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.
 a. Lay sod across angle of slopes exceeding 1:3.
 b. Anchor sod on slopes exceeding 1:6 with wood pegs or steel staples spaced as recommended by sod manufacturer but not less than 2 anchors per sod strip to prevent slippage.

3. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inches (38 mm) below sod.

H. Plugging

1. Plant plugs in holes or furrows, spaced 12 inches (300 mm) OR 18 inches (450 mm), as directed, apart in both directions. On slopes, contour furrows to near level.

I. Sprigging

1. Plant freshly shredded sod sprigs in furrows 1 to 1-1/2 inches (25 to 38 mm) OR 1-1/2 to 2 inches (38 to 50 mm) OR 2-1/2 to 3 inches (64 to 75 mm), as directed, deep. Place individual sprigs
32 - Exterior Improvements

with roots and portions of stem in moistened soil, 6 inches (150 mm) OR 12 inches (300 mm), as directed, apart in rows 10 inches (250 mm) OR 18 inches (450 mm), as directed, apart, and fill furrows without covering growing tips. Lightly roll and firm soil around sprigs after planting.

2. Broadcast sprigs uniformly over prepared surface at a rate of 10 cu. ft./1000 sq. ft. (0.28 cu. m/92.9 sq. m) and mechanically force sprigs into lightly moistened soil.
 a. Spread a 1/4-inch- (6-mm-) thick layer of compost mulch OR peat mulch OR planting soil, as directed, on sprigs.
 b. Lightly roll and firm soil around sprigs after planting.
 c. Water sprigs immediately after planting and keep moist by frequent watering until well rooted.

J. Turf Renovation
 1. Renovate existing turf.
 2. Renovate existing turf damaged by Contractor's operations, such as storage of materials or equipment and movement of vehicles.
 a. Reestablish turf where settlement or washouts occur or where minor regrading is required.
 b. Install new planting soil as required.
 3. Remove sod and vegetation from diseased or unsatisfactory turf areas; do not bury in soil.
 4. Remove topsoil containing foreign materials such as oil drippings, fuel spills, stones, gravel, and other construction materials resulting from Contractor's operations, and replace with new planting soil.
 5. Mow, dethatch, core aerate, and rake existing turf.
 6. Remove weeds before seeding. Where weeds are extensive, apply selective herbicides as required. Do not use pre-emergence herbicides.
 7. Remove waste and foreign materials, including weeds, soil cores, grass, vegetation, and turf, and legally dispose of them off Owner's property.
 8. Till stripped, bare, and compacted areas thoroughly to a soil depth of 6 inches (150 mm).
 9. Apply soil amendments and initial fertilizers required for establishing new turf and mix thoroughly into top 4 inches (100 mm) of existing soil. Install new planting soil to fill low spots and meet finish grades.
 10. Apply seed and protect with straw mulch OR sod, as directed, as required for new turf.
 11. Water newly planted areas and keep moist until new turf is established.

K. Turf Maintenance
 1. Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.
 a. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
 b. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.
 c. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use integrated pest management practices whenever possible to minimize the use of pesticides and reduce hazards.
 2. Watering: Install and maintain temporary piping, hoses, and turf-watering equipment to convey water from sources and to keep turf uniformly moist to a depth of 4 inches (100 mm).
 a. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas.
 b. Water turf with fine spray at a minimum rate of 1 inch (25 mm) per week unless rainfall precipitation is adequate.
 3. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than 1/3 of grass height. Remove no more than 1/3 of grass-leaf growth in
initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height:

a. Mow bentgrass to a height of 1/2 inch (13 mm) or less.
b. Mow bermudagrass to a height of 1/2 to 1 inch (13 to 25 mm).
c. Mow carpetgrass, centipedegrass, perennial ryegrass, and zoysiagrass to a height of 1 to 2 inches (25 to 50 mm).
d. Mow Kentucky bluegrass, buffalograss, annual ryegrass, and chewings red fescue to a height of 1-1/2 to 2 inches (38 to 50 mm).
e. Mow bahiagrass, turf-type tall fescue, and St. Augustinegrass to a height of 2 to 3 inches (50 to 75 mm).

4. Turf Postfertilization: Apply fertilizer after initial mowing and when grass is dry.
 a. Use fertilizer that will provide actual nitrogen of at least 1 lb/1000 sq. ft. (0.45 kg/92.9 sq. m) to turf area.

L. Satisfactory Turf
 1. Turf installations shall meet the following criteria as determined by Architect:
 a. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. (0.92 sq. m) and bare spots not exceeding 5 by 5 inches (125 by 125 mm).
 b. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, even-colored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities.
 c. Satisfactory Plugged Turf: At end of maintenance period, the required number of plugs has been established as well-rooted, viable patches of grass, and areas between plugs are free of weeds and other undesirable vegetation.
 d. Satisfactory Sprigged Turf: At end of maintenance period, the required number of sprigs has been established as well-rooted, viable plants, and areas between sprigs are free of weeds and other undesirable vegetation.

 2. Use specified materials to reestablish turf that does not comply with requirements and continue maintenance until turf is satisfactory.

M. Meadow
 1. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph (8 km/h). Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
 a. Do not use wet seed or seed that is moldy or otherwise damaged.
 2. Sow seed at a total rate of 4 oz./1000 sq. ft. (113 g/92.9 sq. m) OR 5 oz./1000 sq. ft. (142 g/92.9 sq. m) OR 6 oz./1000 sq. ft. (170 g/92.9 sq. m), as directed.
 3. Brush seed into top 1/16 inch (1.6 mm) of soil, roll lightly, and water with fine spray.
 4. Protect seeded areas from hot, dry weather or drying winds by applying peat or compost mulch within 24 hours after completing seeding operations. Soak areas, scatter mulch uniformly to a thickness of 3/16 inch (4.8 mm), and roll surface smooth.
 5. Water newly planted areas and keep moist until meadow is established.

N. Meadow Maintenance
 1. Maintain and establish meadow by watering, weeding, mowing, trimming, replanting, and performing other operations as required to establish a healthy, viable meadow. Roll, regrade, and replant bare or eroded areas and remulch. Provide materials and installation the same as those used in the original installation.
 a. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and meadow damaged or lost in areas of subsidence.
 b. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.
c. Apply treatments as required to keep meadow and soil free of pests and pathogens or disease. Use integrated pest management practices whenever possible to minimize the use of pesticides and reduce hazards.

2. Watering: Install and maintain temporary piping, hoses, and meadow-watering equipment to convey water from sources and to keep meadow uniformly moist.
 a. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas.
 b. Water meadow with fine spray at a minimum rate of 1/2 inch (13 mm) per week for four OR six OR eight, as directed, weeks after planting unless rainfall precipitation is adequate.

O. Pesticide Application
 1. Apply pesticides and other chemical products and biological control agents in accordance with requirements of authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.
 2. Post-Emergent Herbicides (Selective and Non-Selective): Apply only as necessary to treat already-germinated weeds and in accordance with manufacturer's written recommendations.

P. Cleanup And Protection
 1. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.
 2. Erect temporary fencing or barricades and warning signs as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after plantings are established.
 3. Remove nondegradable erosion-control measures after grass establishment period.

END OF SECTION 32 92 19 13
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 01 30 16</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
</tbody>
</table>
SECTION 33 01 30 51 - SEWER LINE CLEANING

1.1 GENERAL

A. Description Of Work
 1. This specification covers sewer line cleaning. Cleaning procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals: Submit product data and manufacturer’s instruction.

1.2 PRODUCTS

A. All materials shall be clean, free of defects, corrosion, and damage. All items shall be of proper type, size, design, and characteristics for the use intended. Unless otherwise specified, all items shall be factory-made.

B. Portable Cleaning Equipment: Equipment used in the cleaning of sewer lines shall be as required to complete the work for the size, length, and conditions of the sewer. Portable and mobile equipment shall comply with Water Pollution Control Federation Manual No. 7.

C. Chemicals shall be of the strength required to perform the work. The chemicals shall not be damaging to pipe materials, manholes, pumping equipment, nor treatment process and shall not be contaminated by foreign substances.

1.3 EXECUTION

A. Preparation
 1. Protection required to prevent damage to adjacent materials, equipment, fixtures, and finishes shall be provided. Necessary protective clothing and accessories for personnel working with chemicals shall be provided.
 2. Ventilation of Sewers: Contractor shall provide proper ventilation for personnel working in the sewer.
 3. Alternate Sewage Discharge: Contractor shall provide an alternate routing of sewage discharge to a downstream manhole.
 4. Traffic: Contractor shall provide all traffic signs required to safely direct traffic at and around work areas.

B. Installation
 1. Direction of Work: Sewer line cleaning work, with the exception of hydraulic scouring, shall proceed in the downstream direction. Cleaning by hydraulic scouring shall proceed in the upstream direction.
 2. Testing: Upon completion of cleaning operation, test sewer lines for proper operation and observe for a period of 24 hours. Clean out all stoppages and the retest the line for proper operation.

END OF SECTION 33 01 30 51
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 01 30 51</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
</tbody>
</table>
SECTION 33 01 30 72 - PIPE LINING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of pipe lining. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

1.2 PRODUCTS

A. Lining Material:
1. Polyethylene Pipe: Extruded, flexible industrial grade, high density (Type 3 or 4) in 40 foot lengths, complying with ASTM D 2239 and D 2447.
 a. Diameter: Outside diameter shall be as large as possible while allowing for ease of pulling into the existing pipes. Pipe dimensions shall comply with ASTM D 2447 and D 2837.
 b. Liner Thickness and Class shall be suitable for the use intended. The tolerance on the pipe wall thickness shall be as noted in Table 2 of ASTM D 2447.
 c. Gravity Sanitary, Gravity Storm, and Gravity Industrial Sewers shall be Schedule 40.
 d. Gravity Thermal Discharge Sewers shall be Schedule 80.
 e. Low Pressure Sewers shall be Schedule 40, complying with ASTM D 2239.
 f. High Pressure Sewers shall be Schedule 80, complying with ASTM D 2239 and D 2837.
 g. Chemical Resistance: Pipe liner shall be resistant to chemical attack, erosion, and corrosion.
 h. Fittings shall be fabricated from polyethylene pipe. The polyethylene fittings shall have the same pressure rating as the pipe and shall comply with ASTM D 3261.

2. Cement-Mortar Lining:
 a. Portland Cement shall comply with ASTM C 150, Type 1.
 b. Pozzolan Cement shall comply with ASTM C 618 and shall not comprise more than 20 percent of total cement amount, by weight.
 c. Sand shall be well graded, clean, free from organic and extraneous matter. One hundred percent shall pass the 16-mesh size screen.
 d. Lining Thickness: Cement lining shall be not less than 1/8 inch for pipe sizes 4 to 14 inches, not less than 3/16 inch for pipe sized 16 inches and larger, and not less than 1/4 inch for steel pipe 16 inches and larger.

3. Reinforced Mortar Pipe Slip-Lining:
 a. Gravity Sewers: Slip-lining shall be of glass fiber reinforced polyester mortar pipe, complying with ASTM D 3262.
 b. Pressure Sewers (Force Mains): Slip-lining shall be of glass fiber reinforced polyester mortar pipe complying with ASTM D 2517.
 c. Diameter: Outside diameter shall be as large as possible while allowing for ease of pulling into existing pipes, as recommended by the manufacturer.
 d. Chemical Resistance: Pipe liner shall be resistant to chemical attack, erosion, and corrosion.

4. Fittings: Fittings shall be manufactured of the same materials as is the glass fiber reinforced polyester mortar pipe.

5. Epoxy-Mortar Lining:
 a. Epoxy compound shall comply with ASTM D 1763.
 b. Admixtures shall be well graded with one hundred percent passing. The 16-mesh size screen. All admixtures shall improve the workability, density, and strength of the mortar.
c. Lining Thickness: For pipe sizes 4 to 14 inches, epoxy mortar lining thickness shall be not less than 1/8 inch. For pipe sizes 16 inches and larger, epoxy mortar lining shall be not less than 3/16 inch.

B. Joint:
1. Slip-Lining:
 a. Polyethylene Pipe Butt Joints: Pipe lengths, fittings, and flanged connections to be joined by thermal butt fusion shall be of the same time, grade, and class of polyethylene compound and supplied by pipe supplier.
 b. Flanged Joints shall consist of a polyethylene flange, thermally butt fused to the ends of the pipe. The companion flange shall be steel or cast iron and nylon-coated.
 c. Lateral Service Connections: Sidewall connections shall be made with polyethylene pipe sections of the same material, grade, and class as the liner material and shall have the same pressure ratings. Lateral connections shall be watertight.

2. Reinforced Mortar Lining:
 a. Bell and spigot joints shall be the inverted type.
 b. Manhole Joints and Connections shall be oakum ring and grout as required.

1.3 EXECUTION:

A. Slip-Lining, Polyethylene Pipe:
 1. Insertion of Liner: Liner shall be laid at a constant line and grade as the existing pipe, without undulations or damage. Where the existing pipe is not at constant grade, the liner shall follow as true a constant grade as possible.
 2. Grouting: At manholes, annular space shall be packed with oakum and expansion grout or nonshrink grout as required. At existing line, after liner has been inserted, grout wherever existing pipe has failed structurally.
 3. Concrete Encasement: Crown of liner shall be encased in concrete a minimum thickness of 6 inches for the entire length of the excavated trench and out at least 6 inches each side of the bottom half of the original pipe remaining down to firm soil. Wherever existing concrete encasement has been removed, the liner shall be encased in the same manner as the original pipe.
 4. Thrust Blocks: Concrete thrust blocks shall be provided as required.

B. Cement Mortar and Epoxy Mortar Lining:
 1. Cement Mortar Mixing: One part cement to one and one-half parts of sand by volume.
 2. Application of Lining: The lining shall be applied to produce a smooth, uniform thickness throughout the interior of the pipe line.
 3. Curing of the Cement Mortar Lining: Immediately upon completion of the lining of a length of pipe between access openings or at the end of a day's run, the section of pipe shall be closed at each end, the access openings covered to prevent the circulation of air, and the atmosphere kept moist.
 4. Reconnection of Pipes After Lining: Close and make watertight all openings in the lines.
 5. Pressure Test and Leaks: Hydrostatic and leakage tests shall be conducted on all pipe that is cleaned and lined.

C. Reinforced Mortar Pipe Lining:
 1. Joining of Pipe Ends: Liner sections containing bell and spigot joints shall be joined using an O-ring.
 2. Grouting Work shall be accomplished following the same techniques as described in paragraph Slip-Lining, Polyethylene Pipe.

D. Cement Mortar Lining:
1. Epoxy Mortar Lining: Excessive mortar shall be removed from the manhole walls and bottom. Manhole bottom shall receive special care in making all transitions smooth.

2. Work at Service Connections: Plugs or caps shall be placed at the access point of the service connection to the lines and shall be removed once the mortar has set. The completed lining shall not be damaged.

3. Reinforced Mortar Pipe Lining: Joining of fiberglass reinforced polyester mortar pipe shall be carried out in the trench, with the first section of liner already inserted.

4. Lateral Connections: Service to connections shall be provided for and continued after installation of the lining.

5. Testing: Upon completion of lining operation, the sewer line shall be tested for proper operation and shall be observed for a period of 24 hours. All deficiencies shall be corrected.

6. Pavement Restoration: All disturbed pavement shall be restored to its original condition and shall match existing adjacent.

7. Inspection: Large diameter sewers shall be inspected from inside to ensure that all lateral connections and joints are in proper order. Sewers that have been cement-lined may be inspected for a smooth finish, while plugs and caps are being removed.

END OF SECTION 33 01 30 72
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 01 30 72</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>33 01 30 72</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
</tbody>
</table>
SECTION 33 01 30 73 - SANITARY SEWERAGE

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for sanitary sewerage. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Pipe and fittings.
 b. Nonpressure and pressure couplings.
 c. Expansion joints and deflection fittings.
 d. Backwater valves.
 e. Cleanouts.
 f. Encasement for piping.
 g. Manholes.

C. Definitions
1. FRP: Fiberglass-reinforced plastic.

D. Submittals
1. Product Data: For the following:
 a. Expansion joints and deflection fittings.
 b. Backwater valves.
2. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.
3. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
4. Profile Drawings: Show system piping in elevation. Draw profiles to horizontal scale of not less than 1 inch equals 50 feet (1:500) and to vertical scale of not less than 1 inch equals 5 feet (1:50). Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing system piping.
5. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.
6. Field quality-control reports.

E. Delivery, Storage, And Handling
1. Do not store plastic manholes, pipe, and fittings in direct sunlight.
2. Protect pipe, pipe fittings, and seals from dirt and damage.
3. Handle manholes according to manufacturer's written rigging instructions.

F. Project Conditions
1. Interruption of Existing Sanitary Sewerage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 a. Notify the Owner no fewer than two days in advance of proposed interruption of service.
 b. Do not proceed with interruption of service without the Owner written permission.
1.2 PRODUCTS

A. Hub-And-Spigot, Cast-Iron Soil Pipe And Fittings
 1. Pipe and Fittings: ASTM A 74, Service class OR Service and Extra-Heavy classes OR Extra-Heavy class, as directed.
 2. Gaskets: ASTM C 564, rubber.

B. Hubless Cast-Iron Soil Pipe And Fittings
 1. Pipe and Fittings: ASTM A 888 or CISPI 301.
 2. CISPI-Trademark, Shielded Couplings:
 a. Description: ASTM C 1277 and CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
 3. Heavy-Duty, Shielded Couplings:
 a. Description: ASTM C 1277 and ASTM C 1540, with stainless-steel shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
 4. Cast-Iron, Shielded Couplings:
 a. Description: ASTM C 1277 with ASTM A 48/A 48M, two-piece, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.
 5. Unshielded Couplings:
 a. Description: ASTM C 1277 and ASTM C 1461, rigid, sleeve-type, reducing- or transition-type mechanical coupling, with integral, center pipe stop, molded from ASTM C 1440, TPE material; with corrosion-resistant-metal tension band and tightening mechanism on each end.

C. Ductile-Iron, Gravity Sewer Pipe And Fittings
 1. Pipe: ASTM A 746, for push-on joints.
 2. Standard Fittings: AWWA C110, ductile or gray iron, for push-on joints.
 3. Compact Fittings: AWWA C153, ductile iron, for push-on joints.

D. Ductile-Iron, Pressure Pipe And Fittings
 1. Push-on-Joint Piping:
 b. Standard Fittings: AWWA C110, ductile or gray iron.
 d. Gaskets: AWWA C111, rubber, of shape matching pipe and fittings.
 2. Mechanical-Joint Piping:
 a. Pipe: AWWA C151, with bolt holes in bell.
 b. Standard Fittings: AWWA C110, ductile or gray iron, with bolt holes in bell.
 c. Compact Fittings: AWWA C153, with bolt holes in bells.
 d. Glands: Cast or ductile iron; with bolt holes and high-strength, cast-iron or high-strength, low-alloy steel bolts and nuts.
 e. Gaskets: AWWA C111, rubber, of shape matching pipe, fittings, and glands.

E. ABS Pipe And Fittings
 a. NPS 3 to NPS 6 (DN 80 to DN 150): SDR 35.
 b. NPS 8 to NPS 12 (DN 200 to DN 300): SDR 42.
F. PVC Pipe And Fittings
 1. PVC Cellular-Core Sewer Piping:
 a. Pipe: ASTM F 891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellular-core
 pipe with plain ends for solvent-cemented joints.
 b. Fittings: ASTM D 3034, SDR 35, PVC socket-type fittings.
 2. PVC Corrugated Sewer Piping:
 b. Fittings: ASTM F 949, PVC molded or fabricated, socket type.
 3. PVC Profile Sewer Piping:
 a. Pipe: ASTM F 794, PVC profile, gravity sewer pipe with bell-and-spigot ends for gasketed
 joints.
 b. Fittings: ASTM D 3034, PVC with bell ends.
 4. PVC Type PSM Sewer Piping:
 a. Pipe: ASTM D 3034, SDR 35, PVC Type PSM sewer pipe with bell-and-spigot ends for
 gasketed joints.
 b. Fittings: ASTM D 3034, PVC with bell ends.
 5. PVC Gravity Sewer Piping:
 a. Pipe and Fittings: ASTM F 679, T-1 OR T-2, as directed, wall thickness, PVC gravity
 sewer pipe with bell-and-spigot ends and with integral ASTM F 477, elastomeric seals for
 gasketed joints.
 6. PVC Pressure Piping:
 a. Pipe: AWWA C900, Class 100 OR Class 150 OR Class 200, as directed, PVC pipe with
 bell-and-spigot ends for gasketed joints.
 b. Fittings: AWWA C900, Class 100 OR Class 150 OR Class 200, as directed, PVC pipe
 with bell ends.
 7. PVC Water-Service Piping:
 a. Pipe: ASTM D 1785, Schedule 40 OR Schedule 80, as directed, PVC, with plain ends for
 solvent-cemented joints.
 b. Fittings: ASTM D 2466, Schedule 40 OR ASTM D 2467, Schedule 80, as directed, PVC,
 socket type.

G. Fiberglass Pipe And Fittings
 1. Fiberglass Sewer Pipe: ASTM D 3262, RTRP, for gasketed joints fabricated with Type 2,
 polyester OR Type 4, epoxy, as directed, resin.
 a. Liner: Reinforced thermoset OR Nonreinforced thermoset OR Thermoplastic OR No liner,
 as directed.
 b. Grade: Reinforced, surface layer matching pipe resin OR Nonreinforced, surface layer
 matching pipe resin OR No surface layer, as directed.
 c. Stiffness: 9 psig (62 kPa) OR 18 psig (124 kPa) OR 36 psig (248 kPa) OR 72 psig (496
 kPa), as directed.
 2. Fiberglass Nonpressure Fittings: ASTM D 3840, RTRF, for gasketed joints.
 a. Laminating Resin: Type 1, polyester OR Type 2, epoxy, as directed, resin.
 b. Reinforcement: Grade with finish compatible with resin.

H. Concrete Pipe And Fittings
 1. Nonreinforced-Concrete Sewer Pipe and Fittings: ASTM C 14 (ASTM C 14M), Class 1 OR
 Class 2 OR Class 3, as directed, with bell-and-spigot OR tongue-and-groove, as directed, ends
 for gasketed joints with ASTM C 443 (ASTM C 443M), rubber gaskets.
a. Bell-and-spigot OR tongue-and-groove, as directed, ends for gasketed joints, with ASTM C 443 (ASTM C 443M), rubber gaskets.
b. Class II, Wall A OR Wall B OR Wall C, as directed.
c. Class III, Wall A OR Wall B OR Wall C, as directed.
d. Class IV, Wall A OR Wall B OR Wall C, as directed.
e. Class V, Wall A OR Wall B, as directed.

I. Nonpressure-Type Transition Couplings
1. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.
2. Sleeve Materials:
 b. For Concrete Pipes: ASTM C 443 (ASTM C 443M), rubber.
 c. For Fiberglass Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 d. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 e. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
3. Unshielded, Flexible Couplings:
 a. Description: Elastomeric sleeve, with stainless-steel shear ring, as directed, and corrosion-resistant-metal tension band and tightening mechanism on each end.
4. Shielded, Flexible Couplings:
 a. Description: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
5. Ring-Type, Flexible Couplings:
 a. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.
6. Nonpressure-Type, Rigid Couplings:
 a. Description: ASTM C 1461, sleeve-type, reducing- or transition-type mechanical coupling, molded from ASTM C 1440, TPE material; with corrosion-resistant-metal tension band and tightening mechanism on each end.

J. Pressure-Type Pipe Couplings
1. Tubular-Sleeve Couplings: AWWA C219, with center sleeve, gaskets, end rings, and bolt fasteners.
2. Metal, bolted, sleeve-type, reducing or transition coupling, for joining underground pressure piping. Include 150-psig (1035-kPa) OR 200-psig (1380-kPa), as directed, minimum pressure rating and ends of same sizes as piping to be joined.
3. Center-Sleeve Material: Manufacturer's standard OR Carbon steel OR Stainless steel OR Ductile iron OR Malleable iron, as directed.
4. Gasket Material: Natural or synthetic rubber.
5. Metal Component Finish: Corrosion-resistant coating or material.

K. Expansion Joints And Deflection Fittings
1. Ductile-Iron, Flexible Expansion Joints:
 a. Description: Compound fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections, rated for 250-psig (1725-kPa) minimum working pressure and for offset and expansion indicated.
2. Ductile-Iron Expansion Joints:
 a. Description: Three-piece assembly of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153.
Include rating for 250-psig (1725-kPa) minimum working pressure and for expansion indicated.

3. Ductile-Iron Deflection Fittings:
 a. Description: Compound coupling fitting with ball joint, flexing section, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include rating for 250-psig (1725-kPa) minimum working pressure and for up to 15 degrees of deflection.

L. Backwater Valves
 1. Cast-Iron Backwater Valves:
 a. Description: ASME A112.14.1, gray-iron body and bolted cover, with bronze seat.
 b. Horizontal type; with swing check valve and hub-and-spigot ends.
 c. Combination horizontal and manual gate-valve type; with swing check valve, integral gate valve, and hub-and-spigot ends.
 d. Terminal type; with bronze seat, swing check valve, and hub inlet.
 2. PVC Backwater Valves:
 a. Description: Horizontal type; with PVC body, PVC removable cover, and PVC swing check valve.

M. Cleanouts
 1. Cast-Iron Cleanouts:
 a. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 b. Top-Loading Classification(s): Light Duty OR Medium Duty OR Heavy Duty OR Extra-Heavy Duty, as directed.
 c. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.
 2. PVC Cleanouts:
 a. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

N. Encasement For Piping
 1. Standard: ASTM A 674 or AWWA C105.
 2. Material: Linear low-density polyethylene film of 0.008-inch (0.20-mm) OR high-density, cross-laminated polyethylene film of 0.004-inch (0.10-mm), as directed, minimum thickness.
 3. Form: Sheet OR Tube, as directed.
 4. Color: Black OR Natural, as directed.

O. Manholes
 1. Standard Precast Concrete Manholes:
 a. Description: ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 b. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.
 c. Ballast: Increase thickness of precast concrete sections or add concrete to base section, as required to prevent flotation.
 d. Base Section: 6-inch (150-mm) minimum thickness for floor slab and 4-inch (100-mm) minimum thickness for walls and base riser section; with separate base slab or base section with integral floor.
 e. Riser Sections: 4-inch (100-mm) minimum thickness, of length to provide depth indicated.
 f. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated; with top of cone of size that matches grade rings.
 g. Joint Sealant: ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.
 h. Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.
i. Steps: Individual FRP steps or FRP ladder OR Individual FRP steps, FRP ladder, or ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP OR ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP, as directed; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches (1500 mm).

j. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.

OR

Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

2. Designed Precast Concrete Manholes:

 a. Description: ASTM C 913; designed according to ASTM C 890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.

 b. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.

 c. Joint Sealant: ASTM C 990 (ASTM 990M), bitumen or butyl rubber.

 d. Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.

 e. Steps: Individual FRP steps or FRP ladder OR Individual FRP steps, FRP ladder, or ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP OR ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP, as directed; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches (1500 mm).

 f. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.

OR

Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

3. Fiberglass Manholes:

 a. Description: ASTM D 3753.

 b. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.

 c. Ballast: Increase thickness of concrete base as required to prevent flotation.

 d. Base Section: Concrete, 6-inch (150-mm) minimum thickness.

 e. Resilient Pipe Connectors (if required): ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.

 f. Steps: Individual FRP steps or FRP ladder, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches (1500 mm).

 g. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
OR
Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

4. Manhole Frames and Covers:
 a. Description: Ferrous; 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser, with 4-inch- (100-mm-) minimum-width flange and 26-inch- (660-mm-) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to “SANITARY SEWER.”
 b. Material: ASTM A 536, Grade 60-40-18 ductile OR ASTM A 48/A 48M, Class 35 gray, as directed, iron unless otherwise indicated.

5. Manhole-Cover Inserts:
 a. Description: Manufactured, plastic form, of size to fit between manhole frame and cover and designed to prevent stormwater inflow. Include handle for removal and gasket for gastight sealing.
 b. Type: Solid OR Drainage with vent holes OR Valve, as directed.

P. Concrete
1. General: Cast-in-place concrete complying with ACI 318, ACI 350/350R (ACI 350M/350RM), and the following:
 a. Cement: ASTM C 150, Type II.
 b. Fine Aggregate: ASTM C 33, sand.
 d. Water: Potable.

2. Portland Cement Design Mix: 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio.
 b. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

3. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.
 a. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 1) Invert Slope: 1 OR 2, as directed, percent through manhole.
 b. Benches: Concrete, sloped to drain into channel.
 1) Slope: 4 OR 8, as directed, percent.

4. Ballast and Pipe Supports: Portland cement design mix, 3000 psi (20.7 MPa) minimum, with 0.58 maximum water/cementitious materials ratio.
 b. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

1.3 EXECUTION

A. Earthwork
1. Excavating, trenching, and backfilling are specified in Division 31 Section "Earth Moving".

B. Piping Installation
1. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
2. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves,
and couplings according to manufacturer’s written instructions for using lubricants, cements, and other installation requirements.

3. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

4. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

5. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

6. Install gravity-flow, nonpressure, drainage piping according to the following:
 a. Install piping pitched down in direction of flow, at minimum slope of 1 OR 2, as directed, percent unless otherwise indicated.
 b. Install piping NPS 6 (DN 150) and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer’s proprietary restraint system, or cast-in-place-concrete supports or anchors.
 c. Install piping with 36-inch (915-mm) OR 48-inch (1220-mm) OR 60-inch (1520-mm) OR 72-inch (1830-mm), as directed, minimum cover.
 d. Install hub-and-spigot, cast-iron soil piping according to CISPI’s “Cast Iron Soil Pipe and Fittings Handbook.”
 e. Install hubless cast-iron soil piping according to CISPI 310 and CISPI’s “Cast Iron Soil Pipe and Fittings Handbook.”
 f. Install ductile-iron, gravity sewer piping according to ASTM A 746.
 g. Install ABS sewer piping according to ASTM D 2321 and ASTM F 1668.
 h. Install PVC cellular-core sewer piping according to ASTM D 2321 and ASTM F 1668.
 i. Install PVC corrugated sewer piping according to ASTM D 2321 and ASTM F 1668.
 j. Install PVC profile sewer piping according to ASTM D 2321 and ASTM F 1668.
 k. Install PVC Type PSM sewer piping according to ASTM D 2321 and ASTM F 1668.
 l. Install PVC gravity sewer piping according to ASTM D 2321 and ASTM F 1668.
 m. Install fiberglass sewer piping according to ASTM D 3839 and ASTM F 1668.
 n. Install nonreinforced-concrete sewer piping according to ASTM C 1479 and ACPA’s “Concrete Pipe Installation Manual.”
 o. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA’s “Concrete Pipe Installation Manual.”

7. Install force-main, pressure piping according to the following:
 a. Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer’s proprietary restraint system, or cast-in-place-concrete supports or anchors.
 b. Install piping with 36-inch (915-mm) OR 48-inch (1220-mm) OR 60-inch (1520-mm) OR 72-inch (1830-mm), as directed, minimum cover.
 c. Install ductile-iron pressure piping according to AWWA C600 or AWWA M41.
 d. Install ductile-iron special fittings according to AWWA C600.
 e. Install PVC pressure piping according to AWWA M23 or to ASTM D 2774 and ASTM F 1668.
 f. Install PVC water-service piping according to ASTM D 2774 and ASTM F 1668.

8. If required to provide protection for metal piping, install corrosion-protection piping encasement over the following underground metal piping according to ASTM A 674 or AWWA C105:
 b. Hubless cast-iron soil pipe and fittings.
 c. Ductile-iron pipe and fittings.
 d. Expansion joints and deflection fittings.

9. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

C. Pipe Joint Construction
1. Join gravity-flow, nonpressure, drainage piping according to the following:
 d. Join ductile-iron, gravity sewer piping according to AWWA C600 for push-on joints.
 e. Join ABS sewer piping according to ASTM D 2321 and ASTM D 2751 for elastomeric-seal joints.
 f. Join PVC cellular-core sewer piping according to ASTM D 2321 and ASTM F 891 for solvent-cemented joints.
 g. Join PVC corrugated sewer piping according to ASTM D 2321.
 h. Join PVC profile sewer piping according to ASTM D 2321 for elastomeric-seal joints or ASTM F 794 for gasketed joints.
 i. Join PVC Type PSM sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
 j. Join PVC gravity sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
 k. Join fiberglass sewer piping according to ASTM D 2321.
 l. Join reinforced-concrete sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
 m. Join nonreinforced-concrete sewer piping according to ASTM C 14 (ASTM C 14M) and ACPA's "Concrete Pipe Installation Manual" for rubber-gasket joints.
 n. Join dissimilar pipe materials with nonpressure-type, flexible OR rigid, as directed, couplings.
 o. Join dissimilar pipe materials with pressure-type couplings.

2. Join force-main, pressure piping according to the following:
 a. Join ductile-iron pressure piping according to AWWA C600 or AWWA M41 for push-on joints.
 b. Join ductile-iron special fittings according to AWWA C600 or AWWA M41 for push-on joints.
 c. Join PVC pressure piping according to AWWA M23 for gasketed joints.
 d. Join PVC water-service piping according to ASTM D 2855.
 e. Join dissimilar pipe materials with pressure-type couplings.

3. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 a. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 1) Unshielded OR Shielded, as directed, flexible OR rigid, as directed, couplings for pipes of same or slightly different OD.
 2) Unshielded, increaser/reducer-pattern, flexible OR rigid, as directed, couplings for pipes with different OD.
 3) Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.
 b. Use pressure pipe couplings for force-main joints.

D. Manhole Installation
 1. General: Install manholes complete with appurtenances and accessories indicated.
 2. Install precast concrete manhole sections with sealants according to ASTM C 891.
 3. Install FRP manholes according to manufacturer's written instructions.
 4. Form continuous concrete channels and benches between inlets and outlet.
 5. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches (76 mm) above finished surface elsewhere unless otherwise indicated.
 6. Install manhole-cover inserts in frame and immediately below cover.
E. Concrete Placement
1. Place cast-in-place concrete according to ACI 318.

F. Backwater Valve Installation
1. Install horizontal-type backwater valves in piping manholes or pits.
2. Install combination horizontal and manual gate valves in piping and in manholes.
3. Install terminal-type backwater valves on end of piping and in manholes. Secure units to sidewalls.

G. Cleanout Installation
1. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 a. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic, as directed, areas.
 b. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 c. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
 d. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
2. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches (450 by 450 by 300 mm) deep. Set with tops 1 inch (25 mm) above surrounding grade.
3. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

H. Connections
1. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains specified in Division 22 Section "Sanitary Waste And Vent Piping".
2. Connect force-main piping to building's sanitary force mains specified in Division 22 Section "Sanitary Waste And Vent Piping". Terminate piping where indicated.
3. Make connections to existing piping and underground manholes.
 a. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch (150-mm) overlap with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
 b. Make branch connections from side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500). Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
 c. Make branch connections from side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes by cutting opening into existing unit large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in 6 inches (150 mm) of concrete for minimum length of 12 inches (300 mm) to provide additional support of collar from connection to undisturbed ground.
 1) Use concrete that will attain a minimum 28-day compressive strength of 3000 psi (20.7 MPa) unless otherwise indicated.
 2) Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
 d. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.
4. Connect to grease OR oil OR sand, as directed, interceptors specified in Division 22 Section "Sanitary Waste Interceptors".
I. Closing Abandoned Sanitary Sewer Systems
 1. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:
 a. Close open ends of piping with at least 8-inch- (203-mm-) thick, brick masonry bulkheads.
 b. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.
 2. Abandoned Manholes: Excavate around manhole as required and use either procedure below:
 a. Remove manhole and close open ends of remaining piping.
 b. Remove top of manhole down to at least 36 inches (915 mm) below final grade. Fill to within 12 inches (300 mm) of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.
 3. Backfill to grade according to Division 31 Section "Earth Moving".

J. Identification
 1. Materials and their installation are specified in Division 31 Section "Earth Moving". Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.
 a. Use warning tape OR detectable warning tape, as directed, over ferrous piping.
 b. Use detectable warning tape over nonferrous piping and over edges of underground manholes.

K. Field Quality Control
 1. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches (600 mm) of backfill is in place, and again at completion of Project.
 a. Submit separate report for each system inspection.
 b. Defects requiring correction include the following:
 1) Alignment: Less than full diameter of inside of pipe is visible between structures.
 2) Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 3) Damage: Crushed, broken, cracked, or otherwise damaged piping.
 4) Infiltration: Water leakage into piping.
 5) Exfiltration: Water leakage from or around piping.
 c. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 d. Reinspect and repeat procedure until results are satisfactory.
 2. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 a. Do not enclose, cover, or put into service before inspection and approval.
 b. Test completed piping systems according to requirements of authorities having jurisdiction.
 c. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
 d. Submit separate report for each test.
 e. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 1) Fill sewer piping with water. Test with pressure of at least 10-foot (3-m) head of water, and maintain such pressure without leakage for at least 15 minutes.
 2) Close openings in system and fill with water.
 3) Purge air and refill with water.
 4) Disconnect water supply.
 5) Test and inspect joints for leaks.
 OR
 Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
6) Option: Test plastic gravity sewer piping according to ASTM F 1417.

7) Option: Test concrete gravity sewer piping according to ASTM C 924 (ASTM C 924M).

f. Force Main: Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psig (1035 kPa).

1) Ductile-Iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.

2) PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.

g. Manholes: Perform hydraulic test according to ASTM C 969 (ASTM C 969M).

3. Leaks and loss in test pressure constitute defects that must be repaired.

4. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

L. Cleaning

1. Clean dirt and superfluous material from interior of piping. Flush with potable water.

END OF SECTION 33 01 30 73
SECTION 33 01 30 73a - REPAIR AND MAINTENANCE OF IMHOFF TANKS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for repair and maintenance of sewage treatment plant Imhoff tanks. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Coatings:
2. Coal-Tar Epoxy shall comply with SSPC-PAINT 16.
3. Epoxy Paint shall comply with Mil. Spec. MIL-P-24441.
4. Red-Lead Base Paint shall comply with Fed. Spec. TT-P-86, Type I.

B. Steel Tank Repair Material for minor leaks shall be a two-component epoxy sealing compound. For badly corroded areas, a steel plate of the same composition and thickness as the original tank shall be used.

C. Pipe and Fittings for replacement shall be equivalent to the existing pipe and fittings.

1.3 EXECUTION

A. Preparation: Drain the contents of the tank and dispose of the sludge and sewage.

B. Leak Repair:
1. Concrete Tanks: Repair concrete tank leaks by cleaning and chipping or sandblasting the area of the leak and applying two-component epoxy concrete sealant.
2. Steel Tanks: Repair steel tank leaks by cleaning, scraping, chipping, or sandblasting the area of the leak and applying epoxy steel sealant. Repair badly corroded areas of steel tanks by cutting out the corroded area and welding a section of new steel plate in place. Welding shall be in compliance with AWS D1.1.

C. Pipe and Fittings: Replace pipe and fittings as required.

D. Cleaning and Coatings:
1. Interior Concrete Surfaces of the tank shall be cleaned with high pressure water or steam to remove dirt and residue, allowed to dry, and brush sandblasted.
2. Holes and Voids in the concrete surfaces left from the blast cleaning shall be filled by means of troweling and squeeze application of epoxy filler. Two coats of coal-tar epoxy shall be applied to the surface after the epoxy has cured.
3. Submerged Ferrous Metal Surfaces such as piping and equipment that are exposed to the sewage shall be sandblasted and coated with two coats of coal-tar epoxy.

4. Exterior Concrete Surfaces of the tank shall be cleaned by means of brush sandblast. The surfaces shall be blown down with air to remove the blasting residue and dust, and two coats of epoxy-polyamide paint shall be applied.

5. Ferrous Metal Surfaces that are not submerged shall be cleaned by means of sandblasting. Coat surfaces with one coat of red-lead base paint. After the base paint has dried sufficiently, apply two coats of aluminum finish paint.

END OF SECTION 33 01 30 73a
SECTION 33 01 30 73b - REPAIR AND MAINTENANCE OF SIPHON TANK AND SIPHONS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for the repair and maintenance of sewage treatment plant dosing siphon tanks. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.

1.2 PRODUCTS

B. Concrete Coatings:
1. Outside and Above Grade shall be epoxy type in compliance with Mil. Spec. MIL-P-24441.
2. Inside and Below Grade shall be coal-tar epoxy type in compliance with SSPC-PAINT 16.

C. Steel Repair Material shall be steel plate or epoxy cement and fiberglass cloth.

D. Corroded or Defective Siphons: Replace those parts corroded or defective with new parts compatible with the unit, as recommended by the manufacturer.

E. Steel Coatings:
1. Red-Lead Base Coat shall comply with Fed. Spec. TT-P-86, Type I.

1.3 EXECUTION

A. Corroded or Broken Pipe and Fittings: Replace as required.

B. Minor Leaks: Repair minor leaks in the tank using material and surface preparation and application methods recommended by the material manufacturer.

C. Spalled Areas: Repair as required.

D. Cleaning and Coating:
1. Interior Concrete Surfaces of the tank shall be cleaned with high pressure water or steam to remove all dirt and residue, allowed to dry, and brush sandblasted in compliance with SSPC-SP 7.
2. The Exterior Concrete Surfaces of the tank shall be cleaned by means of brush sandblasting in compliance with SSPC-SP 7. The surfaces shall be blown down with air to remove the blasting residue and dust, and two coats of epoxy-polyamide paint shall be applied.
3. Holes and Voids in the concrete surfaces left from the blast cleaning shall be filled by means of troweling and squeeze application of an epoxy filler. The surfacing material shall be allowed to cure overnight, and then two coats of coal-tar epoxy complying with SSPC-PAINT 16 shall be applied.
4. Submerged Ferrous Metal Surfaces that are exposed to the sewage shall be sandblasted in compliance with SSPC-SP 10 and coated with two coats of coal-tar epoxy.

5. Ferrous Metal Surfaces that are not submerged shall be cleaned by means of sandblasting in compliance with SSPC-SP 6. Surfaces inaccessible to sandblasting shall be power tool cleaned in compliance with SSPC-SP 3. Surfaces shall be coated with one coat of red-lead base paint. After the base paint has dried sufficiently, two coats of aluminum finish paint shall be applied.

END OF SECTION 33 01 30 73b
SECTION 33 01 30 73c - UNDERGROUND DUCTS AND UTILITY STRUCTURES

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of materials for underground ducts and utility structures. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
 1. This Section includes the following:
 a. Conduit, ducts, and duct accessories for direct-buried and concrete-encased duct banks, and in single duct runs.
 b. Handholes and pull boxes.
 c. Manholes.

C. Definition
 1. RNC: Rigid nonmetallic conduit.

D. Submittals
 1. Product Data: For the following:
 a. Duct-bank materials, including separators and miscellaneous components.
 b. Ducts and conduits and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 c. Accessories for manholes, handholes, pull boxes, and other utility structures.
 d. Warning tape.
 e. Warning planks.
 2. Shop Drawings for Precast or Factory-Fabricated Underground Utility Structures: Include plans, elevations, sections, details, attachments to other work, and accessories, including the following:
 a. Duct entry provisions, including locations and duct sizes.
 b. Reinforcement details.
 c. Frame and cover design and manhole frame support rings.
 d. Ladder OR Step, as directed, details.
 e. Grounding details.
 f. Dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
 g. Joint details.
 3. Shop Drawings for Factory-Fabricated Handholes and Pull Boxes Other Than Precast Concrete: Include dimensioned plans, sections, and elevations, and fabrication and installation details, including the following:
 a. Duct entry provisions, including locations and duct sizes.
 b. Cover design.
 c. Grounding details.
 d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
 4. Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 a. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 b. Drawings shall be signed and sealed by a qualified professional engineer.
 5. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C 858.
 6. Qualification Data: For qualified professional engineer and testing agency.
 7. Source quality-control reports.
8. Field quality-control test reports.

E. Quality Assurance
2. Comply with NFPA 70.

F. Delivery, Storage, And Handling
1. Deliver ducts to Project site with ends capped. Store nonmetallic ducts with supports to prevent bending, warping, and deforming.
2. Store precast concrete and other factory-fabricated underground utility structures at Project site as recommended by manufacturer to prevent physical damage. Arrange so identification markings are visible.
3. Lift and support precast concrete units only at designated lifting or supporting points.

G. Project Conditions
1. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 a. Notify Owner no fewer than two days in advance of proposed interruption of electrical service.
 b. Do not proceed with interruption of electrical service without Owner's written permission.

1.2 PRODUCTS

A. Conduit
2. RNC: NEMA TC 2, Type EPC-40-PVC and Type EPC-80-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

B. Nonmetallic Ducts And Duct Accessories
1. Underground Plastic Utilities Duct: NEMA TC 6 & 8, Type EB-20-PVC, ASTM F 512, UL 651A, with matching fittings by the same manufacturer as the duct, complying with NEMA TC 9.
2. Underground Plastic Utilities Duct: NEMA TC 6 & 8, Type DB-60-PVC and Type DB-120-PVC, ASTM F 512, with matching fittings by the same manufacturer as the duct, complying with NEMA TC 9.
3. Duct Accessories:
 a. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and sizes of ducts with which used, and selected to provide minimum duct spacings indicated while supporting ducts during concreting or backfilling.
 b. Warning Tape: Underground-line warning tape specified in Division 26 Section "Identification For Electrical Systems".
 c. Concrete Warning Planks: Nominal 12 by 24 by 3 inches (300 by 600 by 76 mm) in size, manufactured from 6000-psi (41-MPa) concrete.
 1) Color: Red dye added to concrete during batching.
 2) Mark each plank with "ELECTRIC" in 2-inch- (50-mm-) high, 3/8-inch- (10-mm-) deep letters.

C. Precast Concrete Handholes And Pull Boxes
2. Ferrous metal hardware shall be hot-dip galvanized in accordance with ASTM A153 (ASTM A153M) and ASTM A123 (ASTM A123M).
3. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or pull box.
 a. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
 b. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
 c. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.
 1) Cover Hinges: Concealed, with hold-open ratchet assembly.
 2) Cover Handle: Recessed.
 d. Frame and Cover: Weatherproof aluminum frame with hinged aluminum access door assembly with tamper-resistant, captive, cover-securing stainless-steel bolts.
 1) Cover Hinges: Concealed, with hold-open ratchet assembly.
 2) Cover Handle: Recessed.
 e. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 f. Cover Legend: Molded lettering, "ELECTRIC" OR "TELEPHONE" OR As indicated for each service, as directed.
 g. Configuration: Units shall be designed for flush burial and have open OR closed OR integral closed, as directed, bottom, unless otherwise indicated.
 h. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 1) Extension shall provide increased depth of 12 inches (300 mm).
 2) Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.
 i. Windows: Precast openings in walls, arranged to match dimensions and elevations of approaching ducts and duct banks plus an additional 12 inches (300 mm) vertically and horizontally to accommodate alignment variations.
 1) Windows shall be located no less than 6 inches (150 mm) from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.
 2) Window opening shall have cast-in-place, welded wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct banks.
 3) Window openings shall be framed with at least two additional No. 4 steel reinforcing bars in concrete around each opening.
 j. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 1) Type and size shall match fittings to duct or conduit to be terminated.
 2) Fittings shall align with elevations of approaching ducts and be located near interior corners of handholes to facilitate racking of cable.
 k. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

D. Handholes and Pull Boxes Other Than Precast Concrete
1. Description: Comply with SCTE 77.
 a. Color: Gray OR Green, as directed.
 b. Configuration: Units shall be designed for flush burial and have open OR closed OR integral closed, as directed, bottom, unless otherwise indicated.
 c. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
 d. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 e. Cover Legend: Molded lettering, "ELECTRIC" OR "TELEPHONE" OR As indicated for each service, as directed.
 f. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
33 - Utilities

Underground Ducts And Utility Structures

July 2012

3301 30 73c - 4

County of Santa Clara Roads and Airports Department,

RAD-2012-01

3. Polymer Concrete Handholes and Pull Boxes with Polymer Concrete Cover: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.

4. Fiberglass Handholes and Pull Boxes with Polymer Concrete Frame and Cover: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.

5. Fiberglass Handholes and Pull Boxes: Molded of fiberglass-reinforced polyester resin, with covers of polymer concrete OR reinforced concrete OR cast iron OR hot-dip galvanized-steel diamond plate OR fiberglass, as directed.

5. High-Density Plastic Pull Boxes: Injection molded of high-density polyethylene or copolymer-polypropylene. Cover shall be polymer concrete OR hot-dip galvanized-steel diamond plate OR plastic, as directed.

E. Precast Manholes

1. Comply with ASTM C 858, with structural design loading as specified in Para. 1.3 "Underground Enclosure Application" Article and with interlocking mating sections, complete with accessories, hardware, and features.

a. Windows: Precast openings in walls, arranged to match dimensions and elevations of approaching ducts and duct banks plus an additional 12 inches (300 mm) vertically and horizontally to accommodate alignment variations.

1) Windows shall be located no less than 6 inches (150 mm) from interior surfaces of walls, floors, or roofs of manholes, but close enough to corners to facilitate racking of cables on walls.

2) Window opening shall have cast-in-place, welded wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct banks.

3) Window openings shall be framed with at least two additional No. 4 steel reinforcing bars in concrete around each opening.

b. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.

1) Type and size shall match fittings to duct or conduit to be terminated.

2) Fittings shall align with elevations of approaching ducts and be located near interior corners of manholes to facilitate racking of cable.

2. Concrete Knockout Panels: 1-1/2 to 2 inches (38 to 50 mm) thick, for future conduit entrance and sleeve for ground rod.

3. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

F. Cast-In-Place Manholes

1. Description: Underground utility structures, constructed in place, complete with accessories, hardware, and features. Include concrete knockout panels for conduit entrance and sleeve for ground rod.

2. Materials: Comply with ASTM C 858 and with Division 03 Section "Cast-in-place Concrete".

a. Concrete shall have a minimum compressive strength of 3000 psi (20 MPa).

G. Utility Structure Accessories

1. Ferrous metal hardware, where indicated, shall be hot-dip galvanized complying with ASTM A 153 (A 153M) and A 123 (A 123M).

a. **Frame and Cover:** Weatherproof, gray cast iron complying with ASTM A 48/A 48M, Class 30B OR cast aluminum, as directed, with milled cover-to-frame bearing surfaces; diameter, 26 inches (660 mm) OR 29 inches (737 mm), as directed.
 1) **Cover Finish:** Nonskid finish shall have a minimum coefficient of friction of 0.50.
 2) **Special Covers:** Recess in face of cover designed to accept finish material in paved areas.

b. **Cover Legend:** Cast in. Selected to suit system.
 1) **Legend:** "ELECTRIC-LV" for duct systems with power wires and cables for systems operating at 600 V and less.
 2) **Legend:** "ELECTRIC-HV" for duct systems with medium-voltage cables.
 3) **Legend:** "SIGNAL" for communications, data, and telephone duct systems.

c. **Manhole Chimney Components:** Precast concrete rings with dimensions matched to those of roof opening.
 1) **Legend:** Mortar for Chimney Ring and Frame and Cover Joints: Comply with ASTM C 270, Type M, except for quantities less than 2.0 cu. ft. (60 L) where packaged mix complying with ASTM C 387, Type M, may be used.

3. **Manhole Sump Frame and Grate:** ASTM A 48/A 48M, Class 30B, gray cast iron.

4. **Pulling Eyes in Concrete Walls:** Eyebolt with reinforcing-bar fastening insert, 2-inch- (50-mm-) diameter eye, and 1-by-4-inch (25-by-100-mm) bolt.
 a. **Working Load Embedded in 6-Inch (150-mm), 4000-psi (27.6-MPa) Concrete:** 13,000-lbf (58-kN) minimum tension.

5. **Pulling Eyes in Nonconcrete Walls:** Eyebolt with reinforced fastening, 1-1/4-inch- (32-mm-) diameter eye, rated 2500-lbf (11-kN) minimum tension.

6. **Pulling-In and Lifting Irons in Concrete Floors:** 7/8-inch- (22-mm-) diameter, hot-dip galvanized, bent steel rod; stress relieved after forming; and fastened to reinforcing rod. Exposed triangular opening.
 a. **Ultimate Yield Strength:** 40,000-lbf (180-kN) shear and 60,000-lbf (270-kN) tension.

7. **Bolting Inserts for Concrete Utility Structure Cable Racks and Other Attachments:** Flared, threaded inserts of noncorrosive, chemical-resistant, nonconductive thermoplastic material; 1/2-inch (13-mm) ID by 2-3/4 inches (69 mm) deep, flared to 1-1/4 inches (32 mm) minimum at base.
 a. **Tested Ultimate Pullout Strength:** 12,000 lbf (53 kN) minimum.

8. **Expansion Anchors for Installation after Concrete Is Cast:** Zinc-plated, carbon-steel-wedge type with stainless-steel expander clip with 1/2-inch (13-mm) bolt, 5300-lbf (24-kN) rated pullout strength, and minimum 6800-lbf (30-kN) rated shear strength.

9. **Cable Rack Assembly:** Steel, hot-rolled OR hot-dip, as directed, galvanized, except insulators.
 a. **Stanchions:** T-section or channel; 2-1/4-inch (57-mm) nominal size; punched with 14 holes on 1-1/2-inch (38-mm) centers for cable-arm attachment.
 b. **Arms:** 1-1/2 inches (38 mm) wide, lengths ranging from 3 inches (75 mm) with 450-lb (204-kg) minimum capacity to 18 inches (460 mm) with 250-lb (114-kg) minimum capacity. Arms shall have slots along full length for cable ties and be arranged for secure mounting in horizontal position at any vertical location on stanchions.
 c. **Insulators:** High-glaze, wet-process porcelain arranged for mounting on cable arms.

10. **Cable Rack Assembly:** Nonmetallic. Components fabricated from nonconductive, fiberglass-reinforced polymer.
 a. **Stanchions:** Nominal 36 inches (900 mm) high by 4 inches (100 mm) wide, with minimum of 9 holes for arm attachment.
 b. **Arms:** Arranged for secure, drop-in attachment in horizontal position at any location on cable stanchions, and capable of being locked in position. Arms shall be available in lengths ranging from 3 inches (75 mm) with 450-lb (204-kg) minimum capacity to 20 inches (508 mm) with 250-lb (114-kg) minimum capacity. Top of arm shall be nominally 4 inches (100 mm) wide, and arm shall have slots along full length for cable ties.

11. **Duct-Sealing Compound:** Nonhardening, safe for contact with human skin, not deleterious to cable insulation, workable at temperatures as low as 35 deg F (2 deg C). Capable of withstanding temperature of 300 deg F (150 deg C) without slump and adhering to clean surfaces.
of plastic ducts, metallic conduits, conduit coatings, concrete, masonry, lead, cable sheaths, cable jackets, insulation materials, and common metals.

12. **Fixed Manhole Ladders**: Arranged for attachment to roof or wall OR and floor, as directed, of manhole. Ladder and mounting brackets and braces shall be fabricated from nonconductive, structural-grade, fiberglass-reinforced resin OR hot-dip galvanized steel, as directed.

13. **Portable Manhole Ladders**: UL-listed, heavy-duty wood OR fiberglass, as directed, specifically designed for portable use for access to electrical manholes. Minimum length equal to distance from deepest manhole floor to grade plus 36 inches (900 mm). One required.

14. **Cover Hooks**: Heavy duty, designed for lifts 60 lbf (270 N) and greater OR Light duty, designed for lifts less than 60 lbf (270 N), as directed. Two required.

H. Source Quality Control
1. Test and inspect precast concrete utility structures according to ASTM C 1037.
2. **Nonconcrete Handhole and Pull-Box Prototype Test**: Test prototypes of manholes and pull boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 a. Engage a qualified testing agency to evaluate nonconcrete handholes and pull boxes.
 b. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

1.3 EXECUTION

A. Corrosion Protection
1. Aluminum shall not be installed in contact with earth or concrete.

B. Underground Duct Application
1. Ducts for Electrical Cables Over 600 V: RNC, NEMA Type EPC-80 OR EPC-40 OR EB-20, as directed, PVC, in concrete-encased duct bank, unless otherwise indicated.
2. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-80 OR EPC-40 OR EB-20, as directed, PVC, in concrete-encased duct bank, unless otherwise indicated.
3. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-80 OR EPC-40 as directed, PVC, in direct-buried duct bank, unless otherwise indicated.
4. Ducts for Electrical Branch Circuits: RNC, NEMA Type EPC-80 OR EPC-40, as directed, PVC, in direct-buried duct bank, unless otherwise indicated.
5. Underground Ducts for Telephone, Communications, or Data Utility Service Cables: RNC, NEMA Type EPC-40 OR EB-20, as directed, PVC, in concrete-encased duct bank, unless otherwise indicated.
6. Underground Ducts for Telephone, Communications, or Data Utility Service Cables: RNC, NEMA Type EPC-40-PVC OR Underground plastic utilities duct, NEMA Type DB-60-PVC OR Underground plastic utilities duct, NEMA Type DB-120-PVC, as directed, installed in direct-buried OR concrete-encased, as directed, duct bank, unless otherwise indicated.
7. Underground Ducts for Telephone, Communications, or Data Circuits: RNC, NEMA Type EPC-40 OR DB-60 OR DB-120, as directed, PVC, in direct-buried duct bank, unless otherwise indicated.
8. Underground Ducts for Telephone, Communications, or Data Circuits: RNC, NEMA Type EB-20-PVC, in concrete-encased duct bank, unless otherwise indicated.
9. Underground Ducts Crossing Paved Paths OR Walks and Driveways OR Roadways and Railroads, as directed: RNC, NEMA Type EPC-40-PVC, encased in reinforced concrete.

C. Underground Enclosure Application
1. Handholes and Pull Boxes for 600 V and Less, Including Telephone, Communications, and Data Wiring:
a. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-10 OR H-20, as directed, structural load rating.
b. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 OR Polymer concrete, SCTE 77, Tier 15 OR Fiberglass enclosures with polymer concrete frame and cover, SCTE 77, Tier 15 OR Fiberglass-reinforced polyester resin, SCTE 77, Tier 15 OR High-density plastic, SCTE 77, Tier 15, as directed, structural load rating.
c. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Precast concrete, AASHTO HB 17, H-10 OR Polymer concrete units, SCTE 77, Tier 8 OR Heavy-duty fiberglass units with polymer concrete frame and cover, SCTE 77, Tier 8 OR High-density plastic, SCTE 77, Tier 8, as directed, structural load rating.
d. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin OR High-density plastic, as directed, structurally tested according to SCTE 77 with 3000-lbf (13345-N) vertical loading.

 a. Units Located in Roadways and Other Deliberate Traffic Paths by Heavy or Medium Vehicles: H-20 structural load rating according to AASHTO HB 17.
 b. Units Not Located in Deliberate Traffic Paths by Heavy or Medium Vehicles: H-10 load rating according to AASHTO HB 17.

D. Earthwork
 1. Excavation and Backfill: Comply with Division 31 Section "Earth Moving", but do not use heavy-duty, hydraulic-operated, compaction equipment.
 2. Restore surface features at areas disturbed by excavation and reestablish original grades, unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
 3. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Division 32 Section(s) "Turf And Grasses" AND "Plants".
 4. Cut and patch existing pavement in the path of underground ducts and utility structures according to Division 01 Section "Cutting And Patching".

E. Duct Installation
 1. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two manholes to drain in both directions.
 2. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1220 mm) OR 12.5 feet (4 m) OR 25 feet (7.5 m), as directed, both horizontally and vertically, at other locations, unless otherwise indicated.
 3. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.
 4. Duct Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches (250 mm) o.c. for 5-inch (125-mm) ducts, and vary proportionately for other duct sizes.
 a. Begin change from regular spacing to end-bell spacing 10 feet (3 m) from the end bell without reducing duct line slope and without forming a trap in the line.
 b. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to manhole or handhole.
 c. Grout end bells into structure walls from both sides to providewatertight entrances.
 5. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 feet (3 m) outside the building wall without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition.
Install conduit penetrations of building walls as specified in Division 26 Section "Common Work Results For Electrical".

6. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.

7. Pulling Cord: Install 100-lbf- (445-N-) test nylon cord in ducts, including spares.

8. Concrete-Encased Ducts: Support ducts on duct separators.
 a. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than 4 OR 5, as directed, spacers per 20 feet (6 m) of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches (150 mm) between tiers. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 b. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 1) Start at one end and finish at the other, allowing for expansion and contraction of ducts as their temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written recommendations, or use other specific measures to prevent expansion-contraction damage.
 2) If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch (19-mm) reinforcing rod dowels extending 18 inches (450 mm) into concrete on both sides of joint near corners of envelope.
 c. Pouring Concrete: Spade concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Use a plank to direct concrete down sides of bank assembly to trench bottom. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.
 d. Reinforcement: Reinforce concrete-encased duct banks where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
 e. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
 f. Minimum Space between Ducts: 3 inches (75 mm) between ducts and exterior envelope wall, 2 inches (50 mm) between ducts for like services, and 4 inches (100 mm) between power and signal ducts.
 g. Depth: Install top of duct bank at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles, unless otherwise indicated.
 h. Stub-Ups:
 1) Use manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Extend concrete encasement throughout the length of the elbow.
 OR
 Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a) Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 b) Stub-Ups to Equipment: For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.
 i. Warning Tape: Bury warning tape approximately 12 inches (300 mm) above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches (75 mm) of the
centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

9. Direct-Buried Duct Banks:
 a. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.
 b. Space separators close enough to prevent sagging and deforming of ducts, with not less than 4 OR 5, as directed, spacers per 20 feet (6 m) of duct. Secure separators to earth and to ducts to prevent displacement during backfill and yet permit linear duct movement due to expansion and contraction as temperature changes. Stagger spacers approximately 6 inches (150 mm) between tiers.
 c. Excavate trench bottom to provide firm and uniform support for duct bank. Prepare trench bottoms as specified in Division 31 Section "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
 d. Install backfill as specified in Division 31 Section "Earth Moving".
 e. After installing first tier of ducts, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand-place backfill to 4 inches (100 mm) over ducts and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving".
 f. Install ducts with a minimum of 3 inches (75 mm) between ducts for like services and 6 inches (150 mm) between power and signal ducts.
 g. Depth: Install top of duct bank at least 36 inches (900 mm) below finished grade, unless otherwise indicated.
 h. Set elevation of bottom of duct bank below the frost line.
 i. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow.
 OR
 Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 1) Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 2) For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.
 j. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried ducts and duct banks, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of duct bank. Provide an additional plank for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional planks 12 inches (300 mm) apart, horizontally.

F. Installation Of Concrete Manholes, Handholes, And Pull Boxes
 1. Cast-in-Place Manhole Installation:
 a. Finish interior surfaces with a smooth-troweled finish.
 b. Windows for Future Duct Connections: Form and pour concrete knockout panels 1-1/2 to 2 inches (38 to 50 mm) thick, arranged as indicated.
 c. Cast-in-place concrete, formwork, and reinforcement are specified in Division 03 Section "Cast-in-place Concrete".
 2. Precast Concrete Handhole and Manhole Installation:
 a. Comply with ASTM C 891, unless otherwise indicated.
b. Install units level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances.

c. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch (25-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

3. Elevations:
 a. Manhole Roof: Install with rooftop at least 15 inches (380 mm) below finished grade.
 b. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch (25 mm) above finished grade.
 c. Install handholes with bottom below the frost line, below grade.
 d. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
 e. Where indicated, cast handhole cover frame integrally with handhole structure.

5. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 a. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 b. Install chimney, constructed of precast concrete collars and rings to support frame and cover and to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for cast-iron frame to chimney.

6. Waterproofing: Apply waterproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Waterproofing materials and installation are specified in Division 07 Section(s) “Elastomeric Sheet Waterproofing” OR “Thermoplastic Sheet Waterproofing”, as directed. After ducts have been connected and grouted, and before backfilling, waterproof joints and connections and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.

7. Dampproofing: Apply dampproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Dampproofing materials and installation are specified in Division 07 Section “Bituminous Dampproofing”. After ducts have been connected and grouted, and before backfilling, dampproof joints and connections and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.

8. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.

9. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.

10. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches (98 mm) for manholes and 2 inches (50 mm) for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

11. Warning Sign: Install "Confined Space Hazard" warning sign on the inside surface of each manhole cover.

G. Installation Of Handholes And Pull Boxes Other Than Precast Concrete

1. Install handholes and pull boxes level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of ducts, and seal joint between box and extension as recommended by the manufacturer.

2. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.7-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

3. Elevation: In paved areas and trafficways, set so cover surface will be flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.

4. Install handholes and pull boxes with bottom below the frost line, below grade.
5. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure.

6. Field-cut openings for ducts and conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

7. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 a. Concrete: 3000 psi (20 kPa), 28-day strength, complying with Division 03 Section "Cast-in-place Concrete", with a troweled finish.
 b. Dimensions: 10 inches wide by 12 inches deep (250 mm wide by 300 mm deep).

H. Grounding
 1. Ground underground ducts and utility structures according to Division 26 Section "Grounding And Bonding For Electrical Systems".

I. Field Quality Control
 1. Perform the following tests and inspections:
 a. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.
 b. Pull aluminum or wood test mandrel through duct to prove joint integrity and test for out-of-round duct. Provide mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.
 c. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Division 26 Section "Grounding And Bonding For Electrical Systems".
 2. Correct deficiencies and retest as specified above to demonstrate compliance.
 3. Prepare test and inspection reports.

J. Cleaning
 1. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.
 2. Clean internal surfaces of manholes, including sump. Remove foreign material.

END OF SECTION 33 01 30 73c
SECTION 33 01 30 73d - STORM DRAINAGE

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for storm drainage. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. Section Includes:
 a. Pipe and fittings.
 b. Nonpressure transition couplings.
 c. Pressure pipe couplings.
 d. Expansion joints and deflection fittings.
 e. Backwater valves.
 f. Cleanouts.
 g. Drains.
 h. Encasement for piping.
 i. Manholes.
 j. Channel drainage systems.
 k. Catch basins.
 l. Stormwater inlets.
 m. Stormwater detention structures.
 n. Pipe outlets.
 o. Dry wells.
 p. Stormwater disposal systems.

C. Definitions
1. FRP: Fiberglass-reinforced plastic.

D. Submittals
1. Product Data: For each type of product indicated.
2. Shop Drawings:
 a. Manholes: Include plans, elevations, sections, details, frames, and covers.
 b. Catch basins, stormwater inlets, and dry wells. Include plans, elevations, sections, details, frames, covers, and grates.
 c. Stormwater Detention Structures: Include plans, elevations, sections, details, frames, covers, design calculations, and concrete design-mix reports.
3. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from storm drainage system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
4. Profile Drawings: Show system piping in elevation. Draw profiles at horizontal scale of not less than 1 inch equals 50 feet (1:50) and vertical scale of not less than 1 inch equals 5 feet (1:50). Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing system piping.
5. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.
6. Field quality-control reports.

E. Delivery, Storage, And Handling
1. Do not store plastic manholes, pipe, and fittings in direct sunlight.
2. Protect pipe, pipe fittings, and seals from dirt and damage.
3. Handle manholes according to manufacturer's written rigging instructions.
4. Handle catch basins and stormwater inlets according to manufacturer's written rigging instructions.

F. Project Conditions
1. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 a. Notify the Owner no fewer than two days in advance of proposed interruption of service.
 b. Do not proceed with interruption of service without the Owner written permission.

1.2 PRODUCTS

A. Hub-And-Spigot, Cast-Iron Soil Pipe And Fittings
1. Pipe and Fittings: ASTM A 74, Service class OR Extra-Heavy class, as directed.
2. Gaskets: ASTM C 564, rubber.

B. Hubless Cast-Iron Soil Pipe And Fittings
1. Pipe and Fittings: ASTM A 888 or CISPI 301.
2. CISPI-Trademarked, Shielded Couplings:
 a. Description: ASTM C 1277 and CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
3. Heavy-Duty, Shielded Couplings:
 a. Description: ASTM C 1277 and ASTM C 1540, with stainless-steel shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
4. Cast-Iron, Shielded Couplings:
 a. Description: ASTM C 1277 and ASTM A 48/A 48M, two-piece, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.

C. Ductile-Iron, Culvert Pipe And Fittings
1. Pipe: ASTM A 716, for push-on joints.
2. Standard Fittings: AWWA C110, ductile or gray iron, for push-on joints.
3. Compact Fittings: AWWA C153, for push-on joints.

D. Ductile-Iron, Pressure Pipe And Fittings
1. Push-on-Joint Piping:
 a. Pipe: AWWA C151, for push-on joints.
 b. Standard Fittings: AWWA C110, ductile or gray iron, for push-on joints.
 c. Compact Fittings: AWWA C153, for push-on joints.
 d. Gaskets: AWWA C111, rubber, of shape matching pipe and fittings.
2. Mechanical-Joint Piping:
 a. Pipe: AWWA C151, with bolt holes in bell.
 b. Standard Fittings: AWWA C110, ductile or gray iron, with bolt holes in bell.
 c. Compact Fittings: AWWA C153, with bolt holes in bells.
 d. Glands: Cast or ductile iron, with bolt holes and high-strength, cast-iron or high-strength, low-alloy steel bolts and nuts.
 e. Gaskets: AWWA C111, rubber, of shape matching pipe, fittings, and glands.
E. Steel Pipe And Fittings
 1. Corrugated-Steel Pipe and Fittings: ASTM A 760/A 760M, Type I with fittings of similar form and construction as pipe.
 a. Special-Joint Bands: Corrugated steel with O-ring seals.
 c. Coating: Aluminum OR Zinc, as directed.

F. Aluminum Pipe And Fittings
 1. Corrugated Aluminum Pipe and Fittings: ASTM B 745/B 745M, Type I with fittings of similar form and construction as pipe.
 a. Special-Joint Bands: Corrugated steel with O-ring seals.

G. ABS Pipe And Fittings
 a. NPS 3 to NPS 6 (DN 80 to DN 150): SDR 35.
 b. NPS 8 to NPS 12 (DN 200 to DN 300): SDR 42.

H. PE Pipe And Fittings
 1. Corrugated PE Drainage Pipe and Fittings NPS 3 to NPS 10 (DN 80 to DN 250): AASHTO M 252M, Type S, with smooth waterway for coupling joints.
 a. Silttight Couplings: PE sleeve with ASTM D 1056, Type 2, Class A, Grade 2 gasket material that mates with tube and fittings.
 2. Corrugated PE Pipe and Fittings NPS 12 to NPS 60 (DN 300 to DN 1500): AASHTO M 294M, Type S, with smooth waterway for coupling joints.
 a. Silttight Couplings: PE sleeve with ASTM D 1056, Type 2, Class A, Grade 2 gasket material that mates with pipe and fittings.

I. PVC Pipe And Fittings
 1. PVC Cellular-Core Piping:
 a. PVC Cellular-Core Pipe and Fittings: ASTM F 891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellular-core pipe with plain ends for solvent-cemented joints.
 b. Fittings: ASTM D 3034, SDR 35, PVC socket-type fittings.
 2. PVC Corrugated Sewer Piping:
 b. Fittings: ASTM F 949, PVC molded or fabricated, socket type.
 3. PVC Profile Sewer Piping:
 b. Fittings: ASTM D 3034, PVC with bell ends.
 4. PVC Type PSM Sewer Piping:
 b. Fittings: ASTM D 3034, PVC with bell ends.
 5. PVC Gravity Sewer Piping:
 a. Pipe and Fittings: ASTM F 679, T-1 OR T-2, as directed, wall thickness, PVC gravity sewer pipe with bell-and-spigot ends and with integral ASTM F 477, elastomeric seals for gasketed joints.
 6. PVC Pressure Piping:
a. Pipe: AWWA C900, Class 100 OR Class 150 OR Class 200, as directed, PVC pipe with bell-and-spigot ends for gasketed joints.
b. Fittings: AWWA C900, Class 100 OR Class 150 OR Class 200, as directed, PVC pipe with bell ends

7. PVC Water-Service Piping:
a. Pipe: ASTM D 1785, Schedule 40 OR Schedule 80, as directed, PVC, with plain ends for solvent-cemented joints.
b. Fittings: ASTM D 2466, Schedule 40 OR ASTM D 2467, Schedule 80, as directed, PVC, socket type.

J. Fiberglass Pipe And Fittings
1. Fiberglass Sewer Pipe: ASTM D 3262, RTRP for gasketed joints fabricated with Type 2, polyester OR Type 4, epoxy, as directed, resin.
 a. Liner: Reinforced thermoset OR Nonreinforced thermoset OR Thermoplastic OR No liner, as directed.
 b. Grade: Reinforced, surface layer matching pipe resin OR Nonreinforced, surface layer matching pipe resin OR No surface layer, as directed.
 c. Stiffness: 9 psig (62 kPa) OR 18 psig (124 kPa) OR 36 psig (248 kPa) OR 72 psig (496 kPa), as directed.
 a. Laminating Resin: Type 1, polyester OR Type 2, epoxy, as directed, resin.
 b. Reinforcement: Grade with finish compatible with resin.

K. Concrete Pipe And Fittings
1. Nonreinforced-Concrete Sewer Pipe and Fittings: ASTM C 14 (ASTM C 14M), Class 1 OR Class 2 OR Class 3, as directed, with bell-and-spigot OR tongue-and-groove, as directed ends and gasketed joints with ASTM C 443 (ASTM C 443M), rubber gaskets OR sealant joints with ASTM C 990 (ASTM C 990M), bitumen or butyl-rubber sealant, as directed.
 a. Bell-and-spigot OR Tongue-and-groove, as directed, ends and gasketed joints with ASTM C 443 (ASTM C 443M), rubber gaskets OR sealant joints with ASTM C 990 (ASTM C 990M), bitumen or butyl-rubber sealant, as directed.
 b. Class I, Wall A OR Wall B, as directed.
 c. Class II, Wall A OR Wall B OR Wall C, as directed.
 d. Class III, Wall A OR Wall B OR Wall C, as directed.
 e. Class IV, Wall A OR Wall B OR Wall C, as directed.
 f. Class V, Wall B OR Wall C, as directed.

L. Nonpressure Transition Couplings
1. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.
2. Sleeve Materials:
 a. For Concrete Pipes: ASTM C 443 (ASTM C 443M), rubber.
 b. For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 c. For Fiberglass Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 d. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 e. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
3. Unshielded, Flexible Couplings:
 a. Description: Elastic sleeve, with stainless-steel shear ring, as directed, and corrosion-resistant-metal tension band and tightening mechanism on each end.
4. Shielded, Flexible Couplings:
 a. Description: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

5. Ring-Type, Flexible Couplings:
 a. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

M. Pressure Pipe Couplings
1. Description: AWWA C219, tubular-sleeve coupling, with center sleeve, gaskets, end rings, and bolt fasteners.
2. Metal, bolted, sleeve-type, reducing or transition coupling, for joining underground pressure piping. Include 150-psig (1035-kPa) OR 200-psig (1380-kPa), as directed, minimum pressure rating and ends sized to fit adjoining pipes.
3. Center-Sleeve Material: Manufacturer's standard OR Carbon steel OR Stainless steel OR Ductile iron OR Malleable iron, as directed.
4. Gasket Material: Natural or synthetic rubber.
5. Metal Component Finish: Corrosion-resistant coating or material.

N. Expansion Joints And Deflection Fittings
1. Ductile-Iron Flexible Expansion Joints:
 a. Description: Compound fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections, rated for 250-psig (1725-kPa) minimum working pressure and for offset and expansion indicated.
2. Ductile-Iron Expansion Joints:
 a. Description: Three-piece assembly of telescoping sleeve with gaskets and restrained-type, ductile-iron or steel with protective coating, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Include rating for 250-psig (1725-kPa) minimum working pressure and for expansion indicated.
3. Ductile-Iron Deflection Fittings:
 a. Description: Compound-coupling fitting, with ball joint, flexing section, gaskets, and restrained-joint ends, complying with AWWA C110 or AWWA C153. Include rating for 250-psig (1725-kPa) minimum working pressure and for up to 15 degrees of deflection.

O. Backwater Valves
1. Cast-Iron Backwater Valves:
 a. Description: ASME A112.14.1, gray-iron body and bolted cover, with bronze seat.
 b. Horizontal type; with swing check valve and hub-and-spigot ends.
 c. Combination horizontal and manual gate-valve type; with swing check valve, integral gate valve, and hub-and-spigot ends.
 d. Terminal type; with bronze seat, swing check valve, and hub inlet.
2. Plastic Backwater Valves:
 a. Description: Horizontal type; with PVC body, PVC removable cover, and PVC swing check valve.

P. Cleanouts
1. Cast-Iron Cleanouts:
 a. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 b. Top-Loading Classification(s): Light Duty OR Medium Duty OR Heavy Duty OR Extra-Heavy Duty, as directed.
 c. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.
2. Plastic Cleanouts:
 a. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

Q. Drains
 1. Cast-Iron Area Drains:
 a. Description: ASME A112.6.3 gray-iron round body with anchor flange and round secured OR non-secured, as directed, grate. Include bottom outlet with inside calk or spigot connection, of sizes indicated.
 b. Top-Loading Classification(s): Medium Duty OR Heavy Duty, as directed.
 2. Cast-Iron Trench Drains:
 a. Description: ASME A112.6.3, 6-inch- (150-mm-) wide top surface, rectangular body with anchor flange or other anchoring device, and rectangular secured OR non-secured, as directed, grate. Include units of total length indicated and quantity of bottom outlets with inside calk or spigot connections, of sizes indicated.
 b. Top-Loading Classification(s): Medium Duty OR Heavy Duty OR Extra-Heavy Duty OR Medium and Heavy Duty OR Medium and Extra-Heavy Duty OR Heavy and Extra-Heavy Duty OR Medium, Heavy, and Extra-Heavy Duty, as directed.
 3. Steel Trench Drains:
 a. Description: Factory fabricated from ASTM A 242/A 242M, welded steel plate, to form rectangular body with uniform bottom downward slope of 2 percent toward outlet, anchor flange, and grate. Include units of total length indicated, bottom outlet of size indicated, outlet strainer, acid-resistant enamel coating on inside and outside surfaces, and grate with openings of total free area at least two times cross-sectional area of outlet.
 b. Plate Thicknesses: 1/8 inch (3.2 mm) OR 1/4 inch (6.4 mm), as directed.
 c. Overall Widths: 7-1/2 inches (190 mm) OR 12-1/3 inches (313 mm), as directed.
 1) Grate Openings: 1/4 inch (6.4 mm) circular OR 3/8 inch (9.5 mm) circular OR 3/8-by-3-inch (9.5-by-76-mm) slots, as directed.

R. Encasement For Piping
 1. Standard: ASTM A 674 or AWWA C105.
 2. Material: Linear low-density polyethylene film of 0.008-inch (0.20-mm) OR high-density, cross-laminated polyethylene film of 0.004-inch (0.10-mm), as directed, minimum thickness.
 3. Form: Sheet OR Tube, as directed.
 4. Color: Black OR Natural, as directed.

S. Manholes
 1. Standard Precast Concrete Manholes:
 a. Description: ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 b. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.
 c. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
 d. Base Section: 6-inch (150-mm) minimum thickness for floor slab and 4-inch (102-mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 e. Riser Sections: 4-inch (102-mm) minimum thickness, and lengths to provide depth indicated.
 f. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.
 g. Joint Sealant: ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.
 h. Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.
i. Steps: Individual FRP steps or FRP ladder OR Individual FRP steps; FRP ladder; or ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP OR ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP, as directed, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches (1500 mm).

j. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.

OR

Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

2. Designed Precast Concrete Manholes:
 a. Description: ASTM C 913; designed according to ASTM C 890 for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
 b. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
 d. Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.
 e. Steps: Individual FRP steps or FRP ladder OR Individual FRP steps; FRP ladder; or ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP OR ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP, as directed, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches (1500 mm).
 f. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.

OR

Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

3. Fiberglass Manholes:
 a. Description: ASTM D 3753.
 b. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.
 c. Ballast: Increase thickness of concrete base as required to prevent flotation.
 d. Base Section: Concrete, 6-inch (150-mm) minimum thickness.
 e. Resilient Pipe Connectors (if required): ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.
 f. Steps: Individual FRP steps or FRP ladder, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches (1500 mm).
 g. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.

OR
Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

4. Manhole Frames and Covers:
 a. Description: Ferrous; 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with 4-inch- (102-mm-) minimum width flange and 26-inch- (660-mm-) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."
 b. Material: ASTM A 536, Grade 60-40-18 ductile OR ASTM A 48/A 48M, Class 35 gray, as directed, iron unless otherwise indicated.

T. Concrete
1. General: Cast-in-place concrete according to ACI 318, ACI 350/350R (ACI 350M/350RM), and the following:
 a. Cement: ASTM C 150, Type II.
 b. Fine Aggregate: ASTM C 33, sand.
 d. Water: Potable.
2. Portland Cement Design Mix: 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio.
 b. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.
3. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.
 a. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 1) Invert Slope: 1 OR 2, as directed, percent through manhole.
 b. Benches: Concrete, sloped to drain into channel.
 1) Slope: 4 OR 8, as directed, percent.
4. Ballast and Pipe Supports: Portland cement design mix, 3000 psi (20.7 MPa) minimum, with 0.58 maximum water/cementitious materials ratio.
 b. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

U. Polymer-Concrete, Channel Drainage Systems
1. General Requirements for Polymer-Concrete, Channel Drainage Systems: Modular system of precast, polymer-concrete channel sections, grates, and appurtenances; designed so grates fit into channel recesses without rocking or rattling. Include quantity of units required to form total lengths indicated.
2. Sloped-Invert, Polymer-Concrete Systems:
 a. Channel Sections:
 1) Interlocking-joint, precast, modular units with end caps.
 2) 4-inch (102-mm) inside width and deep, rounded bottom, with built-in invert slope of 0.6 percent and with outlets in quantities, sizes, and locations indicated.
 3) Extension sections necessary for required depth.
 4) Frame: Include gray-iron or steel frame for grate.
 b. Grates:
 1) Manufacturer's designation "Heavy OR "Medium, as directed, Duty," with slots or perforations that fit recesses in channels.
 2) Material: Fiberglass OR Galvanized steel OR Gray iron OR Stainless steel, as directed.
 c. Covers: Solid gray iron if indicated.
d. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

3. Narrow-Width, Level-Invert, Polymer-Concrete Systems:
 a. Channel Sections:
 1) Interlocking-joint, precast, modular units with end caps.
 2) 5-inch (127-mm) inside width and 9-3/4-inch (248-mm) deep, rounded bottom, with level invert and with NPS 4 (DN 100) outlets in quantities, sizes, and locations indicated.
 b. Grates:
 1) Slots or perforations that fit recesses in channels.
 2) Material: Fiberglass OR Galvanized steel OR Gray iron OR Stainless steel, as directed.
 c. Covers: Solid gray iron if indicated.
 d. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

4. Wide-Width, Level-Invert, Polymer-Concrete Systems:
 a. Channel Sections:
 1) Interlocking-joint, precast, modular units with end caps.
 2) 8-inch (203-mm) inside width and 13-3/4-inch (350-mm) deep, rounded bottom, with level invert and with outlets in quantities, sizes, and locations indicated.
 b. Grates:
 1) Slots or other openings that fit recesses in channels.
 2) Material: Fiberglass OR Gray iron, as directed.
 c. Covers: Solid gray iron if indicated.
 d. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

5. Drainage Specialties: Precast, polymer-concrete units.
 a. Large Catch Basins:
 1) 24-by-12-inch (610-by-305-mm) polymer-concrete body, with outlets in quantities and sizes indicated.
 2) Gray-iron slotted grate.
 3) Frame: Include gray-iron or steel frame for grate.
 b. Small Catch Basins:
 1) 19- to 24-inch by approximately 6-inch (483- to 610-mm by approximately 150-mm) polymer-concrete body, with outlets in quantities and sizes indicated.
 2) Gray-iron slotted grate.
 3) Frame: Include gray-iron or steel frame for grate.
 c. Oil Interceptors:
 1) Polymer-concrete body with interior baffle and four steel support channels and two 1/4-inch (6.4-mm) thick, steel-plate covers.
 2) Steel-plate covers.
 3) Capacity: 140 gal. (530 L) OR 200 gal. (757 L) OR 260 gal. (984 L), as directed.
 4) Inlet and Outlet: NPS 4 (DN 100) OR NPS 6 (DN 150), as directed.
 d. Sediment Interceptors:
 1) 27-inch (686-mm) square, polymer-concrete body, with outlets in quantities and sizes indicated.
 2) 24-inch (610-mm) square, gray-iron frame and slotted grate.

7. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

V. Plastic, Channel Drainage Systems

1. General Requirements for Plastic, Channel Drainage Systems:
 a. Modular system of plastic channel sections, grates, and appurtenances.
 b. Designed so grates fit into frames without rocking or rattling.
 c. Number of units required to form total lengths indicated.
2. Fiberglass Systems:
 a. Channel Sections:
 1) Interlocking-joint, fiberglass modular units, with built-in invert slope of approximately 1 percent and with end caps.
 2) Rounded or inclined inside bottom surface, with outlets in quantities, sizes, and locations indicated.
 3) Width: 6 inches (150 mm) OR 6 or 8 inches (150 or 203 mm) OR 8 inches (203 mm), as directed.
 b. Factory- or field-attached frames that fit channel sections and grates.
 1) Material: Galvanized steel OR Stainless steel OR Manufacturer’s standard metal, as directed.
 c. Grates with slots or perforations that fit frames.
 1) Material: Fiberglass OR Galvanized steel OR Gray iron OR Stainless steel, as directed.
 d. Covers: Solid gray iron if indicated.
 e. Drainage Specialties:
 1) Large Catch Basins: 24-inch- (610-mm-) square plastic body, with outlets in quantities and sizes indicated. Include gray-iron frame and slotted grate.
 2) Small Catch Basins: 12-by-24-inch (305-by-610-mm) plastic body, with outlets in quantities and sizes indicated. Include gray-iron frame and slotted grate.
 f. PE Systems:
 a. Channel Sections: Interlocking-joint, PE modular units, 4 inches (102 mm) wide, with end caps. Include rounded bottom, with level invert and with outlets in quantities, sizes, and locations indicated.
 b. Grates: PE, ladder shaped; with stainless-steel screws.
 c. Color: Gray unless otherwise indicated.
 d. Drainage Specialties: Include the following PE components:
 1) Drains: 4-inch- (102-mm-) diameter, round, slotted top; with NPS 4 (DN 100) bottom outlet.
 OR Drains: 8-inch- (203-mm-) diameter, round, slotted top; with NPS 6 (DN 150) bottom outlet.
 OR Drains: 4-inch- (102-mm-) square, slotted top; with NPS 3 (DN 80) bottom outlet.
 OR Drains: 8-inch- (203-mm-) square, slotted top; with NPS 6 (DN 150) bottom outlet.
 OR Catch Basins: 12-inch- (305-mm-) square plastic body, with outlets in quantities and sizes indicated. Include PE slotted grate 11-3/4 inches (298 mm) square by 1-1/8 inches (28.6 mm) thick.
 g. Supports, Anchors, and Setting Devices: Manufacturer’s standard unless otherwise indicated.
 h. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

W. Catch Basins
1. Standard Precast Concrete Catch Basins:
 a. Description: ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 b. Base Section: 6-inch (150-mm) minimum thickness for floor slab and 4-inch (102-mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 c. Riser Sections: 4-inch (102-mm) minimum thickness, 48-inch (1200-mm) diameter, and lengths to provide depth indicated.
 d. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated. Top of cone of size that matches grade rings.
e. Joint Sealant: ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.

f. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.

OR

Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 225-mm) total thickness, that match 24-inch (610-mm) diameter frame and grate.

g. Steps: Individual FRP steps or FRP ladder OR Individual FRP steps; FRP ladder; or ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP OR ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP, as directed, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of catch basin to finished grade is less than 60 inches (1500 mm).

h. Pipe Connectors: ASTM C 923 (ASTM C 923M), resilient, of size required, for each pipe connecting to base section.

2. Designed Precast Concrete Catch Basins: ASTM C 913, precast, reinforced concrete; designed according to ASTM C 890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for joint sealants.

b. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.

OR

Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 225-mm) total thickness, that match 24-inch (610-mm) diameter frame and grate.

c. Steps: Individual FRP steps or FRP ladder OR Individual FRP steps; FRP ladder; or ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP OR ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP, as directed, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of catch basin to finished grade is less than 60 inches (1500 mm).

d. Pipe Connectors: ASTM C 923 (ASTM C 923M), resilient, of size required, for each pipe connecting to base section.

3. Frames and Grates (for rectangular structures): ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include flat grate with small square or short-slotted drainage openings.

a. Size: 24 by 24 inches (610 by 610 mm) minimum unless otherwise indicated.

b. Grate Free Area: Approximately 50 percent unless otherwise indicated.

4. Frames and Grates (for round, manhole-type structures): ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with 4-inch (102-mm) minimum width flange, and 26-inch (660-mm) diameter flat grate with small square or short-slotted drainage openings.

a. Grate Free Area: Approximately 50 percent unless otherwise indicated.

X. Stormwater Inlets

1. Curb Inlets: Made with vertical curb opening, of materials and dimensions according to utility standards.

2. Gutter Inlets: Made with horizontal gutter opening, of materials and dimensions according to utility standards. Include heavy-duty frames and grates.

3. Combination Inlets: Made with vertical curb and horizontal gutter openings, of materials and dimensions according to utility standards. Include heavy-duty frames and grates.

4. Frames and Grates: Heavy duty, according to utility standards.
Y. Stormwater Detention Structures
1. **Cast-in-Place Concrete, Stormwater Detention Structures:** Constructed of reinforced-concrete bottom, walls, and top; designed according to ASTM C 890 for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, dimensions, and appurtenances indicated.
 a. Ballast: Increase thickness of concrete as required to prevent flotation.
 b. Grade Rings (if required): Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 229-mm) total thickness, that match 24-inch- (610-mm-) diameter frame and cover.
 c. Steps: Individual FRP steps or FRP ladder OR Individual FRP steps; FRP ladder; or ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP OR ASTM A 615/A 615M, deformed, 1/2-inch (13-mm) steel reinforcing rods encased in ASTM D 4101, PP, as directed, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of structure to finished grade is less than 60 inches (1500 mm).

2. **Manhole Frames and Covers:** ASTM A 536, Grade 60-40-18, ductile-iron castings designed for heavy-duty service. Include 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with 4-inch (102-mm) minimum width flange, and 26-inch- (660-mm-) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."

Z. Pipe Outlets
1. **Head Walls:** Cast-in-place reinforced concrete, with apron and tapered sides.
2. **Riprap Basins:** Broken, irregularly sized and shaped, graded stone according to NSSGA's "Quarried Stone for Erosion and Sediment Control."
 a. Average Size: NSSGA No. R-3, screen opening 2 inches (51 mm).
 b. Average Size: NSSGA No. R-4, screen opening 3 inches (76 mm).
 c. Average Size: NSSGA No. R-5, screen opening 5 inches (127 mm).
3. **Filter Stone:** According to NSSGA's "Quarried Stone for Erosion and Sediment Control," No. FS-2, No. 4 screen opening, average-size graded stone.
4. **Energy Dissipaters:** According to NSSGA's "Quarried Stone for Erosion and Sediment Control," No. A-1, 3-ton (2721-kg) average weight armor stone, unless otherwise indicated.

AA. **Dry Wells**
1. **Description:** ASTM C 913, precast, reinforced, perforated concrete rings. Include the following:
 b. Cover: Liftoff-type concrete cover with cast-in lift rings.
 c. Wall Thickness: 4 inches (102 mm) minimum with 1-inch (25-mm) diameter or 1-by-3-inch- (25-by-76-mm-) maximum slotted perforations arranged in rows parallel to axis of ring.
 1) Total Free Area of Perforations: Approximately 15 percent of ring interior surface.
 2) Ring Construction: Designed to be self-aligning.
 d. Filtering Material: ASTM D 448, Size No. 24, 3/4- to 2-1/2-inch (19- to 63-mm) washed, crushed stone or gravel.
 OR
 Description: Manufactured PE side panels and top cover that assemble into 50-gal. (190-L) storage capacity units.
 b. Top Cover: With knockout port for drain.
 c. Filter Fabric: As recommended by unit manufacturer.
 d. Filtering Material: ASTM D 448, Size No. 24, 3/4- to 2-1/2-inch (19- to 63-mm) washed, crushed stone or gravel.
 OR
 Description: Constructed-in-place aggregate type. Include the following:
 a. Lining: Clay or concrete bricks.

OR
Lining: Concrete blocks or precast concrete rings with notches or weep holes.

b. Filtering Material: ASTM D 448, Size No. 24, 3/4- to 2-1/2-inch (19- to 63-mm) washed, crushed stone or gravel.

c. Cover: Precast, reinforced-concrete slab, designed for structural loading according to ASTM C 890 and made according to ASTM C 913. Include slab dimensions that will extend 12 inches (300 mm) minimum beyond edge of excavation, with bituminous coating over entire surface. Cast cover with opening for manhole in center.

d. Manhole: 24-inch- (610-mm-) diameter, reinforced-concrete access lid with steel lift rings. Include bituminous coating over entire surface.

BB. Stormwater Disposal Systems
1. Chamber Systems:
 a. Storage and Leaching Chambers: Molded PE with perforated sides and open bottom. Include number of chambers, distribution piping, end plates, and other standard components as required for system total capacity.
 b. Filtering Material: ASTM D 448, Size No. 24, 3/4- to 2-1/2-inch (19- to 63-mm) washed, crushed stone or gravel.
 c. Filter Mat: Geotextile woven or spun filter fabric, in one or more layers, for minimum total unit weight of 4 oz./sq. yd. (135 g/sq. m).

 OR

 Pipe Systems: Perforated manifold, header, and lateral piping complying with AASHTO M 252M for NPS 10 (DN 250) and smaller, AASHTO M 294M for NPS 12 to NPS 60 (DN 300 to DN 1500). Include proprietary fittings, couplings, seals, and filter fabric.

1.3 EXECUTION

1.4 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Division 31 Section "Earth Moving".

B. Piping Installation
1. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

2. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

3. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

4. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

5. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

6. Install gravity-flow, nonpressure drainage piping according to the following:
 a. Install piping pitched down in direction of flow.
 b. Install piping NPS 6 (DN 150) and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.
 c. Install piping with 36-inch (915-mm) OR 48-inch (1220-mm) OR 60-inch (1520-mm) OR 72-inch (1830-mm), as directed, minimum cover.
d. Install hub-and-spigot, cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook."

e. Install hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook."

f. Install ductile-iron piping and special fittings according to AWWA C600 or AWWA M41.

g. Install corrugated steel piping according to ASTM A 798/A 798M.

h. Install corrugated aluminum piping according to ASTM B 788/B 788M.

i. Install ABS sewer piping according to ASTM D 2321 and ASTM F 1668.

j. Install PE corrugated sewer piping according to ASTM D 2321.

k. Install PVC cellular-core piping according to ASTM D 2321 and ASTM F 1668.

l. Install PVC sewer piping according to ASTM D 2321 and ASTM F 1668.

m. Install PVC profile gravity sewer piping according to ASTM D 2321 and ASTM F 1668.

n. Install PVC water-service piping according to ASTM D 2321 and ASTM F 1668.

o. Install corrugated PE sewer piping according to ASTM D 2321 for push-on joints.

p. Install PVC corrugated sewer piping according to ASTM D 2321 for elastomeric-seal joints.

q. Install fiberglass sewer piping according to ASTM D 3839 and ASTM F 1668.

r. Install nonreinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."

s. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."

7. Install force-main pressure piping according to the following:

a. Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.

b. Install piping with 36-inch (915-mm) OR 48-inch (1220-mm) OR 60-inch (1520-mm) OR 72-inch (1830-mm), as directed, minimum cover.

c. Install ductile-iron pressure piping according to AWWA C600 or AWWA M41.

d. Install ductile-iron special fittings according to AWWA C600.

e. Install PVC pressure piping according to AWWA M23, or ASTM D 2774 and ASTM F 1668.

f. Install PVC water-service piping according to ASTM D 2774 and ASTM F 1668.

8. Install corrosion-protection piping encasement over the following underground metal piping according to ASTM A 674 or AWWA C105:

b. Hubless cast-iron soil pipe and fittings.

c. Ductile-iron pipe and fittings.

d. Expansion joints and deflection fittings.

C. Pipe Joint Construction

1. Join gravity-flow, nonpressure drainage piping according to the following:

d. Join ductile-iron culvert piping according to AWWA C600 for push-on joints.

e. Join ductile-iron piping and special fittings according to AWWA C600 or AWWA M41.

f. Join corrugated steel sewer piping according to ASTM A 798/A 798M.

g. Join corrugated aluminum sewer piping according to ASTM B 788/B 788M.

h. Join ABS sewer piping according to ASTM D 2321 and ASTM D 2751 for elastomeric-seal joints.

i. Join corrugated PE piping according to ASTM D 3212 for push-on joints.

j. Join PVC cellular-core piping according to ASTM D 2321 and ASTM F 891 for solvent-cemented joints.

k. Join PVC corrugated sewer piping according to ASTM D 2321 for elastomeric-seal joints.
l. Join PVC sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasketed joints.
m. Join PVC profile gravity sewer piping according to ASTM D 2321 for elastomeric-seal joints or ASTM F 794 for gasketed joints.
n. Join fiberglass sewer piping according to ASTM D 3839 for elastomeric-seal joints.
o. Join nonreinforced-concrete sewer piping according to ASTM C 14 (ASTM C 14M) and ACPA’s "Concrete Pipe Installation Manual" for rubber-gasketed joints.
q. Join dissimilar pipe materials with nonpressure-type flexible couplings.

2. Join force-main pressure piping according to the following:
a. Join ductile-iron pressure piping according to AWWA C600 or AWWA M41 for push-on joints.
b. Join ductile-iron special fittings according to AWWA C600 or AWWA M41 for push-on joints.
c. Join PVC pressure piping according to AWWA M23 for gasketed joints.
d. Join PVC water-service piping according to ASTM D 2855 for solvent-cemented joints.
e. Join dissimilar pipe materials with pressure-type couplings.

D. Backwater Valve Installation
1. Install horizontal-type backwater valves in piping where indicated.
2. Install combination horizontal and manual gate-valve type in piping and in manholes where indicated.
3. Install terminal-type backwater valves on end of piping and in manholes where indicated.

E. Cleanout Installation
1. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 a. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 b. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 c. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
 d. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
 e. Set cleanout frames and covers in earth in cast-in-place concrete block, 18 by 18 by 12 inches (450 by 450 by 300 mm) deep. Set with tops 1 inch (25 mm) above surrounding earth grade.
 f. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.
2. Drain Installation
1. Install type of drainage pipes or piping in different locations indicated.
 a. Use Light-Duty, top-loading classification drains in earth or unpaved foot-traffic areas.
 b. Use Medium-Duty, top-loading classification drains in paved foot-traffic areas.
 c. Use Heavy-Duty, top-loading classification drains in vehicle-traffic service areas.
 d. Use Extra-Heavy-Duty, top-loading classification drains in roads.
2. Embed drains in 4-inch (102-mm) minimum concrete around bottom and sides.
3. Fasten grates to drains if indicated.
4. Set drain frames and covers with tops flush with pavement surface.
5. Assemble trench sections with flanged joints.
6. Embed trench sections in 4-inch (102-mm) minimum concrete around bottom and sides.

G. Manhole Installation
1. General: Install manholes, complete with appurtenances and accessories indicated.
2. Install precast concrete manhole sections with sealants according to ASTM C 891.
3. Where specific manhole construction is not indicated, follow manhole manufacturer’s written instructions.
4. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches (76 mm) above finished surface elsewhere unless otherwise indicated.

H. Catch Basin Installation
1. Construct catch basins to sizes and shapes indicated.
2. Set frames and grates to elevations indicated.

I. Stormwater Inlet And Outlet Installation
1. Construct inlet head walls, aprons, and sides of reinforced concrete, as indicated.
2. Construct riprap of broken stone, as indicated.
3. Install outlets that spill onto grade, anchored with concrete, where indicated.
4. Install outlets that spill onto grade, with flared end sections that match pipe, where indicated.
5. Construct energy dissipaters at outlets, as indicated.

J. Dry Well Installation
1. Excavate hole to diameter of at least 6 inches (150 mm) greater than outside of dry well. Do not extend excavation into ground-water table.
2. Install precast, concrete-ring dry wells according to the following:
 a. Assemble rings to depth indicated.
 b. Extend rings to height where top of cover will be approximately 8 inches (203 mm) below finished grade.
 c. Backfill bottom of inside of rings with filtering material to level at least 12 inches (300 mm) above bottom.
 d. Extend effluent inlet pipe 12 inches (300 mm) into rings and terminate into side of tee fitting.
 e. Backfill around outside of rings with filtering material to top level of rings.
 f. Install cover over top of rings.
3. Install manufactured, PE dry wells according to manufacturer’s written instructions and the following:
 a. Assemble and install panels and cover.
 b. Backfill bottom of inside of unit with filtering material to level at least 12 inches (300 mm) above bottom.
 c. Extend effluent inlet pipe 12 inches (300 mm) into unit and terminate into side of tee fitting.
 d. Install filter fabric around outside of unit.
 e. Install filtering material around outside of unit.
4. Install constructed-in-place dry wells according to the following:
 a. Install brick lining material dry and laid flat, with staggered joints for seepage. Build to diameter and depth indicated.
 b. Install block lining material dry, with staggered joints and 20 percent minimum of blocks on side for seepage. Install precast concrete rings with notches or weep holes for seepage. Build to diameter and depth indicated.
 c. Extend lining material to height where top of manhole will be approximately 8 inches (203 mm) below finished grade.
 d. Backfill bottom of inside of lining with filtering material to level at least 12 inches (300 mm) above bottom.
 e. Extend effluent inlet pipe 12 inches (300 mm) into lining and terminate into side of tee fitting.
 f. Backfill around outside of lining with filtering material to top level of lining.
 g. Install manhole over top of dry well. Support cover on undisturbed soil. Do not support cover on lining.

K. Concrete Placement
1. Place cast-in-place concrete according to ACI 318.

L. Channel Drainage System Installation
 1. Install with top surfaces of components, except piping, flush with finished surface.
 2. Assemble channel sections to form slope down toward drain outlets. Use sealants, adhesives, fasteners, and other materials recommended by system manufacturer.
 3. Embed channel sections and drainage specialties in 4-inch (102-mm) minimum concrete around bottom and sides.
 4. Fasten grates to channel sections if indicated.
 5. Assemble channel sections with flanged or interlocking joints.
 6. Embed channel sections in 4-inch (102-mm) minimum concrete around bottom and sides.

M. Stormwater Disposal System Installation
 1. Chamber Systems: Excavate trenches of width and depth, and install system and backfill according to chamber manufacturer's written instructions. Include storage and leaching chambers, filtering material, and filter mat. OR Piping Systems: Excavate trenches of width and depth, and install piping system, filter fabric, and backfill, according to piping manufacturer's written instructions.

N. Connections
 1. Connect nonpressure, gravity-flow drainage piping in building's storm building drains specified in Division 22 Section "Facility Storm Drainage Piping".
 2. Connect force-main piping to building's storm drainage force mains specified in Division 22 Section "Facility Storm Drainage Piping". Terminate piping where indicated.
 3. Make connections to existing piping and underground manholes.
 a. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch (150-mm) overlap, with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
 b. Make branch connections from side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500). Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
 c. Make branch connections from side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes and structures by cutting into existing unit and creating an opening large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, encase entering connection in 6 inches (150 mm) of concrete for minimum length of 12 inches (300 mm) to provide additional support of collar from connection to undisturbed ground.
 1) Use concrete that will attain a minimum 28-day compressive strength of 3000 psi (20.7 MPa) unless otherwise indicated.
 2) Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
 d. Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.
 4. Connect to sediment interceptors specified in Division 22 Section "Sanitary Waste Interceptors".
 5. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 a. Use nonpressure-type flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
1) Unshielded **OR** Shielded, as directed, flexible couplings for same or minor difference OD pipes.

2) Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.

3) Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

b. Use pressure-type pipe couplings for force-main joints.

O. Closing Abandoned Storm Drainage Systems

1. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:
 a. Close open ends of piping with at least 8-inch- (203-mm-) thick, brick masonry bulkheads.
 b. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.

2. Abandoned Manholes and Structures: Excavate around manholes and structures as required and use one procedure below:
 a. Remove manhole or structure and close open ends of remaining piping.
 b. Remove top of manhole or structure down to at least 36 inches (915 mm) below final grade. Fill to within 12 inches (300 mm) of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.

3. Backfill to grade according to Division 31 Section "Earth Moving".

P. Identification

1. Materials and their installation are specified in Division 31 Section "Earth Moving". Arrange for installation of green warning tape directly over piping and at outside edge of underground structures.
 a. Use warning tape **OR** detectable warning tape, as directed, over ferrous piping.
 b. Use detectable warning tape over nonferrous piping and over edges of underground structures.

Q. Field Quality Control

1. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches (610 mm) of backfill is in place, and again at completion of Project.
 a. Submit separate reports for each system inspection.
 b. Defects requiring correction include the following:
 1) Alignment: Less than full diameter of inside of pipe is visible between structures.
 2) Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 3) Damage: Crushed, broken, cracked, or otherwise damaged piping.
 4) Infiltration: Water leakage into piping.
 5) Exfiltration: Water leakage from or around piping.
 c. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 d. Reinspect and repeat procedure until results are satisfactory.

2. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 a. Do not enclose, cover, or put into service before inspection and approval.
 b. Test completed piping systems according to requirements of authorities having jurisdiction.
 c. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
 d. Submit separate report for each test.
 e. Gravity-Flow Storm Drainage Piping: Test according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
1) Exception: Piping with soiltight joints unless required by authorities having jurisdiction.
2) Option: Test plastic piping according to ASTM F 1417.
3) Option: Test concrete piping according to ASTM C 924 (ASTM C 924M).

f. Force-Main Storm Drainage Piping: Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psig (1035 kPa).

1) Ductile-Iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.
2) PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.

3. Leaks and loss in test pressure constitute defects that must be repaired.
4. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

R. Cleaning
1. Clean interior of piping of dirt and superfluous materials. Flush with potable water OR Flush with water, as directed.

END OF SECTION 33 01 30 73d
THIS PAGE INTENTIONALLY LEFT BLANK
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 01 30 73</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>33 01 30 73</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 01 30 73</td>
<td>31 32 19 16</td>
<td>Sewage Treatment Lagoons</td>
</tr>
<tr>
<td>33 05 16 13</td>
<td>33 01 30 73c</td>
<td>Underground Ducts And Utility Structures</td>
</tr>
</tbody>
</table>
1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of trenchless excavation using microtunneling. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Design Requirements
1. Pipe Casing: Provide pipe casing in thickness indicated of polyvinyl chloride (PVC) plastic OR clay tile OR concrete OR steel, as directed, pipe. Provide utility line accessories, valves, connections, and manholes as specified and where indicated. Submit design calculations of pipe casing.

C. Submittals: Submit the following:
1. Preconstruction Submittals: Microtunneling Boring Machine equipment to be used.
2. Product Data
 a. Piping casing, joints, fittings, valves, and couplings
 b. Bentonite
 c. Submit manufacturer’s standard drawings or catalog cuts, except submit both drawings and cuts for push-on and rubber-gasketed bell-and-spigot joints. Include information concerning gaskets with submittal for joints and couplings.
3. Design Data: Design calculations of pipe casing
4. Certificates
 a. Piping casing piping, fittings, joints, valves, and coupling
 b. Shop-applied linings
 c. Certificates shall attest that tests set forth in each applicable referenced publication have been performed, whether specified in that publication to be mandatory or otherwise and that production control tests have been performed at the intervals or frequency specified in the publication. Other tests shall have been performed within 3 years of the date of submittal or certificates on the same type, class, grade, and size of material as is being provided for the project.
5. Manufacturer’s Instructions: Installation procedures for pipe casing

D. Delivery, Storage, and Handling:
1. Inspect materials delivered to site for damage. Unload and store with minimum handling. Store materials on site in enclosures or under protective covering. Store plastic piping, jointing materials and rubber gaskets under cover out of direct sunlight. Do not store materials directly on the ground. Keep inside of pipes, fittings, and valves free of dirt and debris.
2. Handle pipe, fittings, valves, hydrants, and other accessories in a manner to ensure delivery to the excavation in sound undamaged condition. Take special care to avoid injury to coatings and linings on pipe and fittings; make satisfactory repairs if coatings or linings are damaged. Carry, do not drag pipe to the excavation. Store plastic piping, jointing materials and rubber gaskets that are not to be installed immediately, under cover out of direct sunlight. Handle steel pipe with coal-tar enamel OR coal-tar epoxy, as directed, coating in accordance with the provisions for handling coal-tar enamel coated pipe in AWWA C203.

E. Quality Assurance
1. Design Calculations of Pipe Casing: Submit design calculations of pipe casing demonstrating that the pipe casing selected has been designed to support the maximum anticipated earth loads and superimposed live loads, both static and dynamic, which may be imposed on the pipe casing.
1.2 PRODUCTS

A. Piping Casing Materials
1. Ductile-Iron Piping
 a. Pipe and Fittings: Pipe, except flanged pipe, ANSI/AWWA C151/A21.51 Pressure Class
 and/or Thickness Class as required to meet Project requirements. The outside diameter
 of ductile iron microtunneling pipe shall be in accordance with AWWA C150/A21.50.
 b. Joints and Jointing Material: Joints: Pressure and gravity microtunneling pipe shall have
 either an integral-bell push-on or rubber gasket coupled joint meeting the following criteria:
 1) Integral-bell push-on joint microtunneling pile shall consist of a rubber-gasket joint
 manufactured to conform with AWWA C111/A21.11 and the dimensions shown in
 ANSI/AWWA C151/A21.51. The exterior of the pipe shall be coated with a durable
 cement-mortar or concrete coating applied in such a manner as to provide a uniform
 outside diameter.
 2) Cement-mortar or concrete strength, reinforcement and method of placement shall
 be in accordance with manufacturer's recommendations. Durable Coatings of other
 types may be substituted provided they maintain a uniform outside diameter and
 they are approved by the designer. Rubber gasket coupled microtunneling joint
 shall be manufactured so as to provide a joint which has the same nominal outside
 diameter as the pipe barrel.

2. Polyvinyl Chloride Pipe (PVC): ASTM F 794. ASTM D 3212 for gasketed joint systems. ASTM F
 477 for gasket materials.

3. Reinforced Concrete Pipe
 a. Nominal dimensions: Typical nominal dimensions for reinforced concrete pipe are detailed
 in ASTM standards ASTM C 76 (ASTM C 76M), ASTM C 361 (ASTM C361M), ASTM C
 655 (ASTM C 655M), ASTM C 822. Pipe meeting these requirements is generally
 acceptable for jacking. The permissible variation allowed with respect to these and other
 dimensions shall be in accordance with the variations listed in the section.
 b. Joints and Jointing Material: Joint shall be formed entirely of concrete and as detailed
 in the contract drawings, may OR shall, as directed, utilize a rubber gasket or mastic to
 provide the seal. Incorporate an assembly of steel bands or steel bell ends and spigot
 rings and rubber gaskets in accordance with contract drawings.

4. Steel Pipe
 a. Steel pipe shall be in conformance with ASTM A 139, Grade B with a minimum yield
 strength of 35,000 psi (242 MPa) OR AWWA C200 OR API SPEC 5L Grade B OR ASTM
 A 53 OR ASTM A 716 OR ASTM A 746, as directed. Steel pipe shall be welded,
 seamless, square cut with even lengths and shall comply of Articles 4.2, 4.3, and 4.4 of the
 API SPEC 5L.
 b. Joints: The connection of adjacent pieces of microtunneling steel pipe may be
 accomplished by field buttwelding, internal weld sleeves, integral press fit connectors, as
 long as loading and installation design criteria are met.

5. Fiberglass Pipe
 a. Pipe: Fiberglass pipe shall meet the requirements of ASTM D 3262, Type 1, Liner 2,
 Grade 3. The method of the manufacture shall be centrifugal casting resulting in a
 controlled outside diameter. Minimum wall thickness shall be +1.5 inches (+38 mm).
 b. Joints: The pipes shall be connected by gasket-sealed bell-spigot joints. The gasket
 material shall meet requirements of ASTM F 477. The joint shall meet the requirements
 of ASTM D 4161 and shall be leak-free under the following conditions:
 1) External pressures up to 2 bars, 29 psi (200 kPa) from bentonite injection, slurry
 system operation or groundwater head.
 2) Internal air testing up to 5 psi (35 kPa).
 3) Gaps between the pipe ends up to two percent of the diameter (maximum of 1-inch
 (25 mm)).
c. The liner shall consist of a minimum thickness of 0.04 inch (1.2 mm) of reinforced polyester resin. The outside pipe coating shall have a minimum thickness of 0.03 inches (one mm) and shall consist of thermosetting polyester resin and sand.

 a. Pipe: Vitrified clay pipe shall be manufactured from fire clay, shale, surface clay, or a combination that can meet three edge bearing strength for nominal diameters ranging from 4 inches 2000 lb/linear foot (100 mm 2980 kg/m) to 42 inches 7000 lb/linear foot (1050 mm 10430 kg/m).
 b. Joints: Joints shall be capable of supporting a shear load of 50 pounds per inch (8755 N/m) of nominal diameter uniformly applied over an arc of not less than 120 degrees (2.09 rad) and along a distance of 12 inches (300 mm) adjacent to the joint. Apply an internal 10 foot (3 m) head 4.3 psi (30 kPa) of water pressure for a period of one hour. Joints shall fully comply with ASTM C 1208 (ASTM C 1208M).

7. Concrete: Concrete shall be 3000 psi (25 MPa) and conform with Division 03 Section "Cast-in-place Concrete".

8. Bentonite: Bentonite shall conform with API SPEC 13A and have the capacity of mixing with water to form a stable and homogeneous suspension.

9. Backfill: Reuse excavated sand for backfill that conforms with Division 31 Section "Earth Moving".

1.3 EXECUTION

A. Preparation

1. Access Shafts
 a. Construction methods required to provide access shafts for microtunneling shall be subject to approval of the Owner. Acceptable construction methods may include the use of interlocked steel sheet piling or precast circular concrete segments lowered in place during excavation.
 b. Final dimensions of access shafts selected by the Contractor shall be modified as required following installation of pipe casings to the size and shape of acceptable manhole designs shown on the Contract Drawings to permit installation of conveyance piping.
 c. Shafts shall be of a size commensurate with safe working practices and located as shown on plans. With the approval of the Owner, the Contractor may relocate shafts to better suit the capabilities of the microtunneling method proposed. Where no locations are given, the Contractor shall determine suchfficer.
 d. Shaft locations shall, where possible, be kept clear of road intersections and within a single traffic lane, in order to minimize disruption to the flow of traffic. Support equipment, spoil piles, and materials shall also be located such as to minimize disruption to traffic and are subject to the approval of the Owner.
 e. The Contractor shall properly support all excavations and prevent movement of the soil, pavement, utilities or structures outside of the excavation. The Contractor shall furnish, place and maintain sheeting, bracing, and lining required to support the sides and floor of all pits and to provide adequate protection of the work, personnel, and the general public. Design loads on the sides of the jacking and receiving pit walls are dependent on the construction method and flexibility of the wall systems.
 f. Construct a starter shaft to accommodate the installation of pipe casings, slurry shield and piping jacking device. Install thrust block as required and consolidate the ground (grout) where the casings exit the shaft.
 g. Construct a receiver shaft to accommodate the installation of pipe casings and the slurry shield. Consolidate the ground (grout) where the casings enter the shaft.
 h. The Contractor shall furnish, install, and maintain equipment to keep the jacking shaft free of excess water. The Contractor shall also provide surface protection during the period of construction to ensure that surface runoff does not enter driving shaft(s). Groundwater dewatering shall comply with the approved dewatering plan and shall not affect...
surrounding soils or structures beyond the tolerances stated in paragraph entitled "Settlement, Alignment and Tolerances."

i. Provide security fence around all access shaft areas and provide shaft cover(s) when the shaft area is not in use.

j. Design of the jacking and receiving pit supports should also take into account the loading from shield or pipe jacking where appropriate, as well as special provisions and reinforcement around the breakout location. The base of the pits shall be designed to withstand uplift forces from the full design head of water, unless approved dewatering or other ground modification methods are employed.

k. Where a thrust block is required to transfer jacking loads into the soil, it shall be properly designed and constructed by the Contractor. The backstop shall be normal (square) with the proposed pipe alignment and shall be designed to withstand the maximum jacking pressure to be used with a factor of safety of at least 2.0. It shall also be designed to minimize excessive deflections in such a manner as to avoid disturbance of adjacent structures or utilities or excessive ground movement. If a concrete thrust block or treated soil zone is utilized to transfer jacking loads into the soil, the tunnel boring is not to be jacked until the concrete or other materials have attained the required strength.

l. Pit Backfill and Compaction: Upon completion of the pipe drive and approval of the installed pipeline by the Owner, remove all equipment, debris, and unacceptable materials from the pits and commence backfilling operation. Backfilling, compaction and pavement repairs shall be completed in accordance with Division 31 Section "Earth Moving".

m. If tremie concrete sealing slabs are placed within the earth support system to prevent groundwater inflow when access shafts are dewatered, the sealing slabs shall be of sufficient thickness to provide a factor of safety equal to 1.2 against hydrostatic uplift in order to prevent bottom blowout when the excavation is completely dewatered.

B. Installation

1. Installation of Tracer Wire: Install a continuous length of tracer wire for the full length of each run of nonmetallic pipe. Attach wire to top of pipe in such a manner that will not be displaced during construction operations.

2. Connections to Existing Lines: Make connections to existing lines after the Owner approval is obtained and with a minimum interruption of service on the existing line. Make connections to existing lines under pressure in accordance with the recommended procedures of the manufacturer of the pipe being tapped.

3. Minimum depth of cover over the pipe being installed shall be 6 feet (1.8 m) or 1.5 times the outer diameter of the pipe being installed.

4. Settlement, Alignment and Tolerances
 a. Settlement or heave of ground surface along centerline of microtunneling alignments during and after installation of pipe casings shall not exceed 1 inch (25 mm).
 b. No more than 1 inch (25 mm) lateral and 1 inch (25 mm) vertical deviation shall be permitted in the position of the completed jacked pipe casings. Water shall be free draining between any two points at the pipe invert. No reverse grades will be allowed.
 c. Overcut shall not exceed 1 inch (25 mm) on the radius of the pipe being installed. The annular space created by the overcut must be filled with the lubrication material that is used to reduce soil friction drag on the pipe.

5. Microtunneling
 a. Using Unmanned Tunneling Machine
 1) The microtunneling boring machine shall be an unmanned mechanical type earth pressure counter-balanced bentonite slurry shield system. The machine shall be laser guided and monitored continuously, with a closed circuit television system. The machine shall be capable of fully supporting the face both during excavation and during shutdown and shall have the capability, of positively measuring the earth pressure at the face. Excavation face pressure shall be maintained at all times between the measured active earth pressure and 50 percent of the computed...
passive earth pressure. Fluid pressure applied at the face to stabilize the excavation shall be maintained at a level slightly in excess of normal hydrostatic pressure and shall be monitored continuously. The machine shall be operated so as to prevent either surface heave or loss of ground during tunneling and shall be steerable and capable of controlling the advance of the heading to maintain line and grade within the tolerances specified in paragraph entitled "Settlement, Alignment and Tolerances." The machine shall be capable of handling and removing materials of high water content from the machine head.

2) Each pipe casing section shall be jacked forward as the excavation progresses in such a way to provide complete and adequate, ground support at all times. A bentonite slurry (driller's mud) shall be applied to the external surface of the pipe to reduce skin friction. A jacking frame shall be provided for developing a uniform distribution of jacking forces around the periphery of the pipe. A plywood spacer shall be placed on the outer shoulder of the pipe casing joint. The thrust reaction backstop shall be properly designed and constructed.

3) The backstop shall be normal (square) with the proposed pipe casing alignment and shall be designed to support the maximum obtainable jacking pressure with a safety factor at least 2.0.

4) The jacking system shall be capable of continuously monitoring the jacking pressure and rate of advancement. Special care shall be taken when setting the pipe guard rails in the starter shaft to ensure correctness of the alignment, grade and stability.

b. Using Tunneling Shields

1) Only tunneling equipment capable of fully supporting the face of the tunnel shall be used for pipe jacking work described.

2) Tunneling equipment selected for the project shall be compatible with the geotechnical information contained in this contract. The tunneling equipment shall be capable of tunneling through mixed face conditions without exceeding the settlement tolerances specified in paragraph "Settlement, Alignment and Tolerances."

3) Face pressure exerted at the heading by the tunneling machine shall be maintained as required to prevent loss of ground, groundwater inflows, and settlement or heave of the ground surface by balancing soils and groundwater pressures present.

4) Dewatering for groundwater control shall be allowed at the jacking and receiving pits only.

c. Do not jack pipe casing until the concrete thrust block and tremie seal (if selected), and grouted soil zone in starter and receiving shafts have attained the required strength.

d. The pipe casing shall be jacked in place without damaging the pipe casing joints or completed pipe casing section.

e. After completion of the jacking operation between starter and receiver shafts, the lubricate material shall be displaced from between the pipe casing exterior and the surrounding ground by a cement grout. Pressure and the amount of grout shall be controlled to avoid pipe damage and displacement of the pipe and soil beyond the tolerances specified in paragraph "Settlement, Alignment and Tolerances." Grouting shall be accomplished promptly after pipe installation has been completed to prevent any surface settlement due to movement of soil material into the void space or loosened zone around the pipe casing.

f. Any pipe casing which has been damaged during installation shall be replaced by the Contractor at no additional cost. If a new replacement pipe casing is required extending from the starter to the receiver shaft, it shall be installed in conformance with the contract drawings and this section.

g. Steel pipe casing joints shall be continuously welded with butt joint per AWS D1.1. The welds shall attain the full strength of the pipe and shall result in a full watertight section. The inner face of internal weld seam shall be flush with the pipe to facilitate the installation of the conveyance pipe in the pipe casing.

h. Perform all welding in accordance with requirements for shielded metal arc welding of AWS D1.5 for bridges and AWS D1.1 for buildings and other structures.
i. Fiberglass pipe casing joints shall be fully watertight and shall attain the full strength of the pipe. Casing joints shall be field connected with sleeve couplings or bell and spigot type joints that utilize elastomeric sealing gaskets as the sole means to maintain joint water tightness.

j. The joint shall have the same outside diameter as the pipe so when the pipelines are assembled such that the joints are flush with the pipe inside and outside surface to facilitate installation of the conveyance pipe in the pipe casing.

k. All excavated material from tunnel and shaft construction shall be disposed of away from the construction site. On-site storage of material must comply with Division 01 requirements and must be stored in areas shown on site drawings or as directed. Stockpiling shall be permitted on the construction site and material shall be removed at regular intervals as directed by the Owner.

l. Monitor ground movements associated with the project and make suitable changes in the construction methods that control ground movements and prevent damage or detrimental movement to the work and adjacent structures and pavements.

m. Install instrumentation, take readings and provide the Owner with weekly reports containing measurements data with weekly reports to inspector. These actions are meant to supplement the Contractor's monitoring system and do not relieve the Contractor of his responsibility, nor place on the Owner, responsibility for control of ground movement and protection of the project and adjacent structures. Instrumentation readings shall be continued for a period of time as directed by the Owner after pipe casings have been installed to establish that detrimental settlement has not occurred.

n. Unprotected mining of the tunnel bore is not permitted. The tunnel face and bore shall be fully supported at all times.

o. A topographic survey will be performed by the Contractor before and after microtunneling and at intervals as directed by the Owner. Survey markers will be installed by the contractor at grid points located as directed by the Owner centered on the proposed tunnel alignments. Perform all remedial work including repaired if heave or settlement greater than 1 inch (25 mm) is recorded.

p. Approval by the Owner of the topographic survey and final set of readings provided by the Contractor will constitute partial approval of the microtunneling phase of work.

6. Ventilation: Adequate ventilation shall be provided for all cased tunnels and shafts. Follow confined space entry procedures. Local burn permit regulations must be obeyed and complied with. The design of ventilating system shall include such factors as the volume required to furnish fresh air in the shafts, and the volume to remove dust that may be caused by the cutting of the face and other operations which may impact the laser guidance system.

7. Lighting: Adequate lighting shall be provided for the nature of the activity being conducted by workers for the microtunneling. Both power and lighting circuits shall be separated and thoroughly insulated with ground fault interrupters are required. Lights shall comply with requirements with regards to shatter resistance and illumination requirements.

8. Spoil Transportation: The soil transportation system shall match the excavation rate with rate of spoil removal. The system must also be capable of balancing groundwater pressures and adjustment to maintain face stability for the particular soil conditions of this project.

9. Pipe Jacking Equipment: The main jacking equipment installed must have a capacity greater than the anticipated jacking load. Intermediate jacking stations shall be provided by the Contractor when the total anticipated jacking force needed to complete the installation may exceed the capacity of the main jacks or the designed maximum jacking force for the pipe. The jacking system shall develop a uniform distribution of jacking forces on the end of the pipe by use of thruster rings and cushioning material.

10. Jacking Pipe: In general, pipe used for jacking shall be smooth, round, have an even outer surface, and joints that allow for easy connections between pipes. Pipe ends shall be square and smooth so that jacking loads are minimized when the pipe is jacking. Pipe used for pipe jacking shall be capable of withstanding the jacking forces that will be imposed by the process or
installation, as well as the final place loading conditions. The driving ends of the pipe and intermediate joints shall be protected from damage.

a. Any pipe showing signs of failure may be jacked through to the receiving shaft and removed. Other methods of repairing the damaged pipe may be used, as recommended by the manufacturer and subject to approval by the Owner.

b. The pipe manufacturer's design jacking loads shall not be exceeded during the installation process. The pipe shall be designed to take full account of all temporary installation loads.

C. Field Quality Control

1. Field Tests and Inspections: The Contractor shall perform field tests, and provide labor, equipment, and incidentals required for testing. The Contractor shall produce evidence, when required, that any item of work has been constructed in accordance with drawings and specifications.

2. Testing Requirements: For pressure test, use a hydrostatic pressure 50 percent greater than the maximum working pressure of the system. Hold this pressure for not less than 2 hours. For leakage test, use a hydrostatic pressure not less than the maximum working pressure of the system. Leakage test may be performed at the same time and at the same test pressure as the pressure test.
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 05 23 13</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>33 05 23 16</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>33 05 23 16</td>
<td>33 05 23 13</td>
<td>Trenchless Excavation Using Microtunneling</td>
</tr>
<tr>
<td>33 05 26 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
</tbody>
</table>
SECTION 33 11 13 23 - SAND DRAINS

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of sand drains. Products shall match
 existing materials and/or shall be as follows or as directed by the Owner. Installation procedures
 shall be in accordance with the product manufacturer's recommendations. Demolition and
 removal of materials shall be as required to support the work.

B. Submittals
 1. Product Data: For each type of product indicated.

1.2 PRODUCTS

A. Galvanized Perforated Corrugated Metal Pipe: AASHTO M36.

C. Aggregate shall be sand, gravel, crushed rock, or chat that is clean, sound, and of a good quality.
 Gradation shall conform to the following table:
 Retained on the 1-inch sieve 0%
 Retained on the 3/8-inch sieve 0-15%
 Retained on the No. 8 sieve 40-60%
 Retained on the No. 30 sieve 70-95%
 Retained on the No. 100 sieve 98-100%

1.3 EXECUTION

A. Pipe Bedding: Aggregate shall be placed in uniform layers on level excavation.

B. Perforated Pipe shall be installed with securely aligned joints to lines and grades, which will allow proper
 drainage.

C. Perforated Pipe shall be embedded with a minimum coverage of two feet of aggregate or as directed.

END OF SECTION 33 11 13 23
THIS PAGE INTENTIONALLY LEFT BLANK
1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for water distribution. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes water-distribution piping and related components outside the building for water service OR fire-service mains OR combined water service and fire-service mains, as directed.
2. Utility-furnished products include water meters that will be furnished to the site, ready for installation.

C. Definitions
1. EPDM: Ethylene propylene diene terpolymer rubber.
2. LLDPE: Linear, low-density polyethylene plastic.
3. PA: Polyamide (nylon) plastic.
4. PE: Polyethylene plastic.
5. PP: Polypropylene plastic.
6. PVC: Polyvinyl chloride plastic.
7. RTRF: Reinforced thermosetting resin (fiberglass) fittings.
8. RTRP: Reinforced thermosetting resin (fiberglass) pipe.

D. Submittals
1. Product Data: For each type of product indicated.
2. Shop Drawings: Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.
3. Field quality-control test reports.
4. Operation and Maintenance Data.

E. Quality Assurance
1. Regulatory Requirements:
 a. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 b. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 c. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.
2. Piping materials shall bear label, stamp, or other markings of specified testing agency.
3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
4. Comply with ASTM F 645 for selection, design, and installation of thermoplastic water piping.
6. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.
7. NSF Compliance:
F. Delivery, Storage, And Handling
1. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 a. Ensure that valves are dry and internally protected against rust and corrosion.
 b. Protect valves against damage to threaded ends and flange faces.
 c. Set valves in best position for handling. Set valves closed to prevent rattling.
2. During Storage: Use precautions for valves, including fire hydrants, according to the following:
 a. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 b. Protect from weather. Store indoors and maintain temperature higher than ambient dew-point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.
3. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
4. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.
5. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.
6. Protect flanges, fittings, and specialties from moisture and dirt.
7. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

G. Project Conditions
1. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:
 a. Notify Owner no fewer than two days in advance of proposed interruption of service.
 b. Do not proceed with interruption of water-distribution service without Owner’s written permission.

H. Coordination
1. Coordinate connection to water main with utility company.

1.2 PRODUCTS
A. Copper Tube And Fittings
1. Soft Copper Tube: ASTM B 88, Type K (ASTM B 88M, Type A) OR ASTM B 88, Type L (ASTM B 88M, Type B), as directed, water tube, annealed temper.
 b. Copper, Pressure-Seal Fittings:
 1) NPS 2 (DN 50) and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 2) NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.
2. Hard Copper Tube: ASTM B 88, Type K (ASTM B 88M, Type A) OR ASTM B 88, Type L (ASTM B 88M, Type B), as directed, water tube, drawn temper.
 b. Copper, Pressure-Seal Fittings:
1) NPS 2 (DN 50) and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
2) NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.
3. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.

B. Ductile-Iron Pipe And Fittings
1. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 a. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 b. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
2. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 a. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 b. Gaskets: AWWA C111, rubber.
 a. Grooved-End, Ductile-Iron Pipe Appurtenances:
 1) Grooved-End, Ductile-Iron Fittings: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron castings with dimensions matching pipe.
 2) Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

C. PE Pipe And Fittings
1. PE, ASTM Pipe: ASTM D 2239, SIDR No. 5.3, 7, or 9; with PE compound number required to give pressure rating not less than 160 psig (1100 kPa) OE 200 psig (1380 kPa), as directed.
 a. Insert Fittings for PE Pipe: ASTM D 2609, made of PA, PP, or PVC with serrated male insert ends matching inside of pipe. Include bands or crimp rings.
 b. Molded PE Fittings: ASTM D 3350, PE resin, socket- or butt-fusion type, made to match PE pipe dimensions and class.
2. PE, AWWA Pipe: AWWA C906, DR No. 7.3, 9, or 9.3; with PE compound number required to give pressure rating not less than 160 psig (1100 kPa) OR 200 psig (1380 kPa), as directed.
 a. PE, AWWA Fittings: AWWA C906, socket- or butt-fusion type, with DR number matching pipe and PE compound number required to give pressure rating not less than 160 psig (1100 kPa) OR 200 psig (1380 kPa), as directed.
3. PE, Fire-Service Pipe: ASTM F 714, AWWA C906, or equivalent for PE water pipe; FMG approved, with minimum thickness equivalent to FMG Class 150 and Class 200.
 a. Molded PE Fittings: ASTM D 3350, PE resin, socket- or butt-fusion type, made to match PE pipe dimensions and class.

D. PVC Pipe And Fittings
1. PVC, Schedule 40 Pipe: ASTM D 1785.
2. PVC, Schedule 80 Pipe: ASTM D 1785.
 a. PVC, Schedule 80 Socket Fittings: ASTM D 2467.
 b. PVC, Schedule 80 Threaded Fittings: ASTM D 2464.
3. PVC, AWWA Pipe: AWWA C900, Class 150 OR Class 200, as directed, with bell end with gasket, and with spigot end.
a. Comply with UL 1285 for fire-service mains if indicated.
b. PVC Fabricated Fittings: AWWA C900, Class 150 OR Class 200, as directed, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
c. PVC Molded Fittings: AWWA C907, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
d. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 1) Gaskets: AWWA C111, rubber.
e. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 1) Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

E. Fiberglass Pipe And Fittings
1. AWWA RTRP: AWWA C950, Class 150 OR Class 200 OR Class 250, as directed, Type I OR II, as directed, Grade 1, epoxy OR Grade 2, polyester, as directed, with bell-and-spigot ends for bonded OR with gasket or seal for gasketed, as directed, joints. Liner is optional, unless otherwise indicated. Include FMG approval if used for fire-service mains.
 a. RTRF: AWWA C950, similar to pipe in material, pressure class, and joining method.
2. UL RTRP: UL 1713, Class 150 OR Class 200 OR Class 250, as directed, with bell-and-spigot ends with gasket or seal for gasketed joints. Liner is optional, unless otherwise indicated.
 a. RTRF: Similar to pipe in material, pressure class, and joining method.

F. Special Pipe Fittings
1. Ductile-Iron Rigid Expansion Joints:
 a. Description: Three-piece, ductile-iron assembly consisting of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 1) Pressure Rating: 250 psig (1725 kPa) minimum.
 2) Expansion Required: As directed by the manufacturer or as directed by the Owner.
2. Ductile-Iron Flexible Expansion Joints:
 a. Description: Compound, ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 1) Pressure Rating: 250 psig (1725 kPa) minimum.
 2) Offset: As directed by the manufacturer or as directed by the Owner.
 3) Expansion Required: As directed by the manufacturer or as directed by the Owner.
3. Ductile-Iron Deflection Fittings:
 a. Description: Compound, ductile-iron coupling fitting with sleeve and 1 or 2 flexing sections for up to 15-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 1) Pressure Rating: 250 psig (1725 kPa) minimum.

G. Joining Materials
1. Refer to Division 33 Section "Common Work Results For Utilities" for commonly used joining materials.
4. Plastic Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
H. Piping Specialties

1. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

2. Tubular-Sleeve Pipe Couplings:
 a. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners and with ends of same sizes as piping to be joined.
 2) Center-Sleeve Material: Manufacturer's standard OR Carbon steel OR Stainless steel OR Ductile iron OR Malleable iron, as directed.
 3) Gasket Material: Natural or synthetic rubber.
 4) Pressure Rating: 150 psig (1035 kPa) OR 200 psig (1380 kPa), as directed, minimum.
 5) Metal Component Finish: Corrosion-resistant coating or material.

3. Split-Sleeve Pipe Couplings:
 a. Description: Metal, bolted, split-sleeve-type, reducing or transition coupling with sealing pad and closure plates, O-ring gaskets, and bolt fasteners.
 2) Sleeve Material: Manufacturer's standard OR Carbon steel OR Stainless steel, as directed.
 3) Sleeve Dimensions: Of thickness and width required to provide pressure rating.
 4) Gasket Material: O-rings made of EPDM rubber, unless otherwise indicated.
 5) Pressure Rating: 150 psig (1035 kPa) OR 200 psig (1380 kPa), as directed, minimum.
 6) Metal Component Finish: Corrosion-resistant coating or material.

4. Flexible Connectors:
 a. Nonferrous-Metal Piping: Bronze hose covered with bronze wire braid; with copper-tube, pressure-type, solder-joint ends or bronze flanged ends brazed to hose.
 b. Ferrous-Metal Piping: Stainless-steel hose covered with stainless-steel wire braid; with ASME B1.20.1, threaded steel pipe nipples or ASME B16.5, steel pipe flanges welded to hose.

5. Dielectric Fittings: Combination of copper alloy and ferrous; threaded, soldered, or plain end types; and matching piping system materials.
 a. Dielectric Unions: Factory-fabricated union assembly, designed for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C). Include insulating material that isolates dissimilar metals and ends with inside threads according to ASME B1.20.1.
 b. Dielectric Flanges: Factory-fabricated companion-flange assembly, for 150- or 300-psig (1035- or 2070-kPa) minimum working pressure to suit system pressures.
 c. Dielectric-Flange Insulation Kits: Field-assembled companion-flange assembly, full-face or ring type. Components include neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 1) Provide separate companion flanges and steel bolts and nuts for 150- or 300-psig (1035- or 2070-kPa) minimum working pressure to suit system pressures.
 d. Dielectric Couplings: Galvanized-steel couplings with inert and noncorrosive thermoplastic lining, with threaded ends and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
 e. Dielectric Nipples: Electroplated steel nipples with inert and noncorrosive thermoplastic lining, with combination of plain, threaded, or grooved end types, and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

I. Corrosion-Protection Piping Encasement

1. Encasement for Underground Metal Piping:
 a. Standards: ASTM A 674 or AWWA C105.
 b. Form: Sheet OR Tube, as directed.
 c. Material: LLDPE film of 0.008-inch (0.20-mm) minimum thickness.
d. Material: LLDPE film of 0.008-inch (0.20-mm) minimum thickness, or high-density, crosslaminated PE film of 0.004-inch (0.10-mm) minimum thickness.

e. Material: High-density, crosslaminated PE film of 0.004-inch (0.10-mm) minimum thickness.

f. Color: Black OR Natural, as directed.

J. Gate Valves

1. AWWA, Cast-Iron Gate Valves:
 a. Nonrising-Stem, Metal-Seated Gate Valves:
 1) Description: Gray- or ductile-iron body and bonnet; with cast-iron or bronze double-disc gate, bronze gate rings, bronze stem, and stem nut.
 a) Standard: AWWA C500.
 b) Minimum Pressure Rating: 200 psig (1380 kPa).
 c) End Connections: Mechanical joint.
 d) Interior Coating: Complying with AWWA C550.

 b. Nonrising-Stem, Resilient-Seated Gate Valves:
 1) Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 a) Standard: AWWA C509.
 b) Minimum Pressure Rating: 200 psig (1380 kPa).
 c) End Connections: Mechanical joint.
 d) Interior Coating: Complying with AWWA C550.

 c. Nonrising-Stem, High-Pressure, Resilient-Seated Gate Valves:
 1) Description: Ductile-iron body and bonnet; with bronze or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 a) Standard: AWWA C509.
 b) Minimum Pressure Rating: 250 psig (1725 kPa).
 c) End Connections: Push on or mechanical joint.
 d) Interior Coating: Complying with AWWA C550.

 d. OS&Y, Rising-Stem, Metal-Seated Gate Valves:
 1) Description: Cast- or ductile-iron body and bonnet, with cast-iron double disc, bronze disc and seat rings, and bronze stem.
 a) Standard: AWWA C500.
 b) Minimum Pressure Rating: 200 psig (1380 kPa).
 c) End Connections: Flanged.

 e. OS&Y, Rising-Stem, Resilient-Seated Gate Valves:
 1) Description: Cast- or ductile-iron body and bonnet, with bronze or gray- or ductile-iron gate, resilient seats, and bronze stem.
 a) Standard: AWWA C509.
 b) Minimum Pressure Rating: 200 psig (1380 kPa).
 c) End Connections: Flanged.

2. UL/FMG, Cast-Iron Gate Valves:
 a. UL/FMG, Nonrising-Stem Gate Valves:
 1) Description: Iron body and bonnet with flange for indicator post, bronze seating material, and inside screw.
 a) Standards: UL 262 and FMG approved.
 b) Minimum Pressure Rating: 175 psig (1207 kPa).
 c) End Connections: Flanged.

 b. OS&Y, Rising-Stem Gate Valves:
 1) Description: Iron body and bonnet and bronze seating material.
 a) Standards: UL 262 and FMG approved.
 b) Minimum Pressure Rating: 175 psig (1207 kPa).
 c) End Connections: Flanged.

3. Bronze Gate Valves:
a. **OS&Y, Rising-Stem Gate Valves:**
 1) **Description:** Bronze body and bonnet and bronze stem.
 a) Standards: UL 262 and FMG approved.
 b) Minimum Pressure Rating: 175 psig (1207 kPa).
 c) End Connections: Threaded.

b. **Nonrising-Stem Gate Valves:**
 1) **Description:** Class 125, Type 1, bronze with solid wedge, threaded ends, and malleable-iron handwheel.
 a) Standard: MSS SP-80.

K. **Gate Valve Accessories And Specialties**
 1. **Tapping-Sleeve Assemblies:**
 a. **Description:** Sleeve and valve compatible with drilling machine.
 1) Standard: MSS SP-60.
 2) **Tapping Sleeve:** Cast- or ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
 3) **Valve:** AWWA, cast-iron, nonrising-stem, metal OR resilient, as directed, seated gate valve with one raised face flange mating tapping-sleeve flange.

 2. **Valve Boxes:** Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches (125 mm) in diameter.
 a. **Operating Wrenches:** Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.
 3. **Indicator Posts:** UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.

L. **Check Valves**
 1. **AWWA Check Valves:**
 a. **Description:** Swing-check type with resilient seat. Include interior coating according to AWWA C550 and ends to match piping.
 1) Standard: AWWA C508.
 2) Pressure Rating: 175 psig (1207 kPa).
 2. **UL/FMG, Check Valves:**
 a. **Description:** Swing-check type with pressure rating; rubber-face checks, unless otherwise indicated; and ends matching piping.
 1) Standards: UL 312 and FMG approved.
 2) Pressure Rating: 175 psig (1207 kPa) OR 250 psig (1725 kPa), as directed.

M. **Detector Check Valves**
 1. **Detector Check Valves:**
 a. **Description (with water meter):** Galvanized cast-iron body, bolted cover with air-bleed device for access to internal parts, and flanged ends. Include one-piece bronze disc with bronze bushings, pivot, and replaceable seat. Include threaded bypass taps in inlet and outlet for bypass meter connection. Set valve to allow minimal water flow through bypass meter when major water flow is required.
 1) Standards: UL 312 and FMG approved.
 2) Pressure Rating: 175 psig (1207 kPa).
 3) **Water Meter:** AWWA C700, disc type, at least one-fourth size of detector check valve. Include meter, bypass piping, gate valves, check valve, and connections to detector check valve.
 b. **Description (without water meter):** Iron body, corrosion-resistant clapper ring and seat ring material, flanged ends, with connections for bypass and installation of water meter.
 1) Standards: UL 312 and FMG approved.
2) Pressure Rating: 175 psig (1207 kPa).

N. Butterfly Valves
1. AWWA Butterfly Valves:
 a. Description: Rubber seated.
 1) Standard: AWWA C504.
 2) Body: Cast or ductile iron.
 3) Body Type: Wafer OR Flanged, as directed.
 4) Pressure Rating: 150 psig (1035 kPa).
2. UL Butterfly Valves:
 a. Description: Metal on resilient material seating.
 1) Standards: UL 1091 and FMG approved.
 2) Body: Cast or ductile iron.
 3) Body Type: Wafer OR Flanged, as directed.
 4) Pressure Rating: 175 psig (1207 kPa).

O. Plug Valves
1. Plug Valves:
 a. Description: Resilient-seated eccentric.
 1) Standard: MSS SP-108.
 2) Body: Cast iron.
 3) Pressure Rating: 175-psig (1207-kPa) minimum CWP.
 4) Seat Material: Suitable for potable-water service.

P. Corporation Valves And Curb Valves
1. Service-Saddle Assemblies: Comply with AWWA C800. Include saddle and valve compatible with tapping machine.
 a. Service Saddle: Copper alloy with seal and AWWA C800, threaded outlet for corporation valve.
 b. Corporation Valve: Bronze body and ground-key plug, with AWWA C800, threaded inlet and outlet matching service piping material.
 c. Manifold (if utility company requires multiple connections): Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.
2. Curb Valves: Comply with AWWA C800. Include bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.
3. Service Boxes for Curb Valves: Similar to AWWA M44 requirements for cast-iron valve boxes. Include cast-iron telescoping top section of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over curb valve and with a barrel approximately 3 inches (75 mm) in diameter.
 a. Shutoff Rods: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and slotted end matching curb valve.

Q. Water Meters
1. Water meters will be furnished by utility company.
 NOTE: If water meters are specified in this Section, delete paragraph above and retain and edit paragraphs and subparagraphs below.
2. Displacement-Type Water Meters:
 a. Description: With bronze main case.
 1) Standard: AWWA C700.
 2) Registration: Flow in gallons (liters) OR cubic feet (cubic meters), as directed.
3. Turbine-Type Water Meters:
 a. Description:
 1) Standard: AWWA C701.
3. Data-Acquisition Units: Comply with utility company requirements for type and quantity.

OR
Visible Display Units: Comply with utility company requirements for type and quantity.

S. Pressure-Reducing Valves
1. Water Regulators:
b. Pressure Rating: Initial pressure of 150 psig (1035 kPa).
c. Size: As directed by the manufacturer or as directed by the Owner.
d. Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
e. Design Inlet Pressure: As directed by the manufacturer or as directed by the Owner.
f. Design Outlet Pressure Setting: As directed by the manufacturer or as directed by the Owner.
g. Body: Bronze with chrome-plated finish, as directed, for NPS 2 (DN 50) and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved, as directed, for NPS 2-1/2 and NPS 3 (DN 65 and DN 80).
i. End Connections: Threaded for NPS 2 (DN 50) and smaller; flanged for NPS 2-1/2 and NPS 3 (DN 65 and DN 80).

2. Water Control Valves:
 a. Description: Pilot-operation, diaphragm-type, single-seated main water control valve with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot control valve, restrictor device, specialty fittings, and sensor piping.
 1) Pressure Rating: Initial pressure of 150 psig (1035 kPa) minimum.
 2) Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
 a) Size: As directed by the manufacturer or as directed by the Owner.
 b) Pattern: Angle OR Globe, as directed, valve design.
 c) Trim: Stainless steel.
 3) Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
 4) Design Inlet Pressure: As directed by the manufacturer or as directed by the Owner.
 5) Design Outlet Pressure Setting: As directed by the manufacturer or as directed by the Owner.
 6) End Connections: Threaded for NPS 2 (DN 50) and smaller; flanged, as directed, for NPS 2-1/2 (DN 65) and larger.

T. Relief Valves
1. Air-Release Valves:
 a. Description: Hydromechanical device to automatically release accumulated air.
 1) Standard: AWWA C512.
 2) Pressure Rating: 300 psig (2070 kPa), as directed.
 3) Body Material: Cast iron, as directed.
 4) Trim Material: Stainless steel, brass, or bronze, as directed.
 5) Water Inlet Size: As directed by the manufacturer or as directed by the Owner.
 6) Air Outlet Size: As directed by the manufacturer or as directed by the Owner.
 7) Orifice Size: As directed by the manufacturer or as directed by the Owner.
 8) Design Air-Release Capacity: As directed by the manufacturer or as directed by the Owner.

2. Air/Vacuum Valves:
 a. Description: Direct-acting, float-operated, hydromechanical device with large orifice to automatically release accumulated air or to admit air during filling of piping.
 1) Standard: AWWA C512.
 2) Pressure Rating: 300 psig (2070 kPa), as directed.
 3) Body Material: Cast iron, as directed.
 4) Trim Material: Stainless steel, brass, or bronze, as directed.
 5) Inlet and Outlet Size: As directed by the manufacturer or as directed by the Owner.
 6) Orifice Size: As directed by the manufacturer or as directed by the Owner.
 7) Design Air Capacity: As directed by the manufacturer or as directed by the Owner.

3. Combination Air Valves:
 a. Description: Float-operated, hydromechanical device to automatically release accumulated air or to admit air.
1) Standard: AWWA C512.
2) Pressure Rating: 300 psig (2070 kPa), as directed.
3) Body Material: Cast iron, as directed.
4) Trim Material: Stainless steel, brass, or bronze, as directed.
5) Inlet and Outlet Size: As directed by the manufacturer or as directed by the Owner.
6) Orifice Size: As directed by the manufacturer or as directed by the Owner.
7) Design Air Capacity: As directed by the manufacturer or as directed by the Owner.

U. Vacuum Breakers
1. Pressure Vacuum Breaker Assembly:
 b. Operation: Continuous-pressure applications.
 c. Pressure Loss: 5 psig (35 kPa), as directed, maximum, through middle 1/3 of flow range.
 d. Size: As directed by the manufacturer or as directed by the Owner.
 e. Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
 f. Selected Unit Flow Range Limits: As directed by the manufacturer or as directed by the Owner.
 g. Pressure Loss at Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
 h. Accessories: Ball valves on inlet and outlet.

V. Backflow Preventers
1. Reduced-Pressure-Principle Backflow Preventers:
 a. Standard: ASSE 1013 OR AWWA C511, as directed.
 b. Operation: Continuous-pressure applications.
 c. Pressure Loss: 12 psig (83 kPa), as directed, maximum, through middle 1/3 of flow range.
 d. Size: As directed by the manufacturer or as directed by the Owner.
 e. Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
 f. Selected Unit Flow Range Limits: As directed by the manufacturer or as directed by the Owner.
 g. Pressure Loss at Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
 h. Body: Bronze for NPS 2 (DN 50) and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved OR stainless steel, as directed, for NPS 2-1/2 (DN 65) and larger.
 i. End Connections: Threaded for NPS 2 (DN 50) and smaller; flanged, as directed, for NPS 2-1/2 (DN 65) and larger.
 j. Configuration: Designed for horizontal, straight through OR vertical inlet, horizontal center section, and vertical outlet OR vertical, as directed, flow.
 k. Accessories:
 1) Valves: Ball type with threaded ends on inlet and outlet of NPS 2 (DN 50) and smaller; OS&Y gate type with flanged ends on inlet and outlet of NPS 2-1/2 (DN 65) and larger.
 2) Air-Gap Fitting: ASME A112.1.2, matching backflow preventer connection.

2. Double-Check, Backflow-Prevention Assemblies:
 a. Standard: ASSE 1015 OR AWWA C510, as directed.
 b. Operation: Continuous-pressure applications, unless otherwise indicated.
 c. Pressure Loss: 5 psig (35 kPa), as directed, maximum, through middle 1/3 of flow range.
 d. Size: As directed by the manufacturer or as directed by the Owner.
 e. Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
 f. Selected Unit Flow Range Limits: As directed by the manufacturer or as directed by the Owner.
3. Reduced-Pressure-Detector, Fire-Protection Backflow Preventer Assemblies:
 a. Standards: ASSE 1047 and UL listed or FMG approved.
 b. Operation: Continuous-pressure applications.
 c. Pressure Loss: 12 psig (83 kPa), as directed, maximum, through middle 1/3 of flow range.
 d. Size: As directed by the manufacturer or as directed by the Owner. Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
 e. Selected Unit Flow Range Limits: As directed by the manufacturer or as directed by the Owner.
 f. Pressure Loss at Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
 g. Body: Cast iron with interior lining complying with AWWA C550 or that is FDA approved OR Stainless steel, as directed.
 h. End Connections: Flanged.
 i. Configuration: Designed for horizontal, straight through OR vertical inlet, horizontal center section, and vertical outlet OR vertical, as directed, flow.

4. Double-Check, Detector-Assembly Backflow Preventers:
 a. Standards: ASSE 1048 and UL listed or FMG approved.
 b. Operation: Continuous-pressure applications.
 c. Pressure Loss: 5 psig (35 kPa), as directed, maximum, through middle 1/3 of flow range.
 d. Size: As directed by the manufacturer or as directed by the Owner.
 e. Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
 f. Selected Unit Flow Range Limits: As directed by the manufacturer or as directed by the Owner.
 g. Pressure Loss at Design Flow Rate: As directed by the manufacturer or as directed by the Owner.
 h. Body: Cast iron with interior lining complying with AWWA C550 or that is FDA approved OR Stainless steel, as directed.
 i. End Connections: Flanged.
 j. Configuration: Designed for horizontal, straight through OR vertical inlet, horizontal center section, and vertical outlet OR vertical, as directed, flow.
 k. Accessories:
33 - Utilities

1) Valves: UL 262, FMG-approved, OS&Y gate type with flanged ends on inlet and outlet.
2) Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.

5. Backflow Preventer Test Kits:
 a. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

W. Water Meter Boxes
1. Description: Cast-iron body and cover for disc-type water meter, with lettering "WATER METER" in cover; and with slotted, open-bottom base section of length to fit over service piping.
 a. Option: Base section may be cast-iron, PVC, clay, or other pipe.
2. Description: Cast-iron body and double cover for disc-type water meter, with lettering "WATER METER" in top cover; and with separate inner cover; air space between covers; and slotted, open-bottom base section of length to fit over service piping.
3. Description: Polymer-concrete body and cover for disc-type water meter, with lettering "WATER" in cover; and with slotted, open-bottom base section of length to fit over service piping. Include vertical and lateral design loadings of 15,000 lb minimum over 10 by 10 inches (6800 kg minimum over 254 by 254 mm) square.
 a. Use of this meter box is permitted in walks or unpaved areas away from traffic; do not use in roadways.

X. Concrete Vaults
1. Description: Precast, reinforced-concrete vault, designed for A-16 load designation according to ASTM C 857 and made according to ASTM C 858.
 a. Ladder: ASTM A 36/A 36M, steel or polyethylene-encased steel steps.
 b. Manhole: ASTM A 48/A 48M Class No. 35A minimum tensile strength, gray-iron traffic frame and cover.
 1) Dimension: 24-inch (610-mm) minimum diameter, unless otherwise indicated.
 c. Manhole: ASTM A 536, Grade 60-40-18, ductile-iron traffic frame and cover.
 1) Dimension: 24-inch- (610-mm-) minimum diameter, unless otherwise indicated.
 d. Drain: ASME A112.6.3, cast-iron floor drain with outlet of size indicated. Include body anchor flange, light-duty cast-iron grate, bottom outlet, and integral or field-installed bronze ball or clapper-type backwater valve.

Y. Protective Enclosures
1. Freeze-Protection Enclosures:
 a. Description: Insulated enclosure designed to protect aboveground water piping, equipment, or specialties from freezing and damage, with heat source to maintain minimum internal temperature of 40 deg F (4 deg C) when external temperatures reach as low as minus 34 deg F (minus 36 deg C).
 1) Standard: ASSE 1060.
 2) Class I: For equipment or devices other than pressure or atmospheric vacuum breakers.
 3) Class I-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.
 a) Housing: Reinforced-aluminum OR -fiberglass, as directed, construction.
 i. Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 ii. Drain opening for units with drain connection.
 iii. Access doors with locking devices.
 iv. Insulation inside housing.
 v. Anchoring devices for attaching housing to concrete base.
 b) Electric heating cable or heater with self-limiting temperature control.
2. Weather-Resistant Enclosures:
a. Description: Uninsulated enclosure designed to protect aboveground water piping, equipment, or specialties from weather and damage.
 1) Standard: ASSE 1060.
 2) Class III: For equipment or devices other than pressure or atmospheric vacuum breakers.
 3) Class III-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.
 i. Housing: Reinforced-aluminum OR -fiberglass, as directed, construction.
 ii. Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 iii. Drain opening for units with drain connection.
 v. Anchoring devices for attaching housing to concrete base.
3. Expanded-Metal Enclosures:
 a. Description: Enclosure designed to protect aboveground water piping, equipment, or specialties from damage.
 1) Material: ASTM F 1267, expanded metal side and top panels, of weight and with reinforcement of same metal at edges as required for rigidity.
 2) Type: Type I, expanded OR II, expanded and flattened, as directed.
 3) Class: Class 1, uncoated carbon steel OR 2, hot-dip, zinc-coated carbon steel OR 3, corrosion-resisting steel, as directed.
 4) Finish: Manufacturer's enamel paint.
 5) Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 6) Locking device.
 7) Lugs or devices for securing enclosure to base.
4. Enclosure Bases:
 a. Description: 4-inch- (100-mm-) OR 6-inch- (150-mm-), as directed, minimum thickness precast concrete, of dimensions required to extend at least 6 inches (150 mm) beyond edges of enclosure housings. Include openings for piping.
Z. Fire Hydrants
1. Dry-Barrel Fire Hydrants:
 a. Description (for AWWA dry-barrel fire hydrants): Freestanding, with one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, 5-1/4-inch (133-mm) main valve, drain valve, and NPS 6 (DN 150) mechanical-joint inlet. Include interior coating according to AWWA C550. Hydrant shall have cast-iron body, compression-type valve opening against pressure and closing with pressure.
 2) Pressure Rating: 150 psig (1035 kPa) minimum OR 250 psig (1725 kPa), as directed.
 3) Outlet Threads: NFPA 1963, with external hose thread used by local fire department. Include cast-iron caps with steel chains.
 4) Operating and Cap Nuts: Pentagon, 1-1/2 inches (38 mm) point to flat.
 5) Direction of Opening: Open hydrant valve by turning operating nut to left or counterclockwise.
 6) Exterior Finish: Red alkyd-gloss enamel paint, unless otherwise indicated.
 b. Description (for UL/FMG, dry-barrel fire hydrants): Freestanding, with one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, 5-1/4-inch (133-mm) main valve, drain valve, and NPS 6 (DN 150) mechanical-joint inlet. Hydrant shall have cast-iron body, compression-type valve opening against pressure and closing with pressure.
 1) Standards: UL 246, FMG approved.
2) **Pressure Rating:** 150 psig (1035 kPa) minimum OR 250 psig (1725 kPa), as directed.

3) **Outlet Threads:** NFPA 1963, with external hose thread used by local fire department. Include cast-iron caps with steel chains.

4) **Operating and Cap Nuts:** Pentagon, 1-1/2 inches (38 mm) point to flat.

5) **Direction of Opening:** Open hydrant valve by turning operating nut to left or counterclockwise.

6) **Exterior Finish:** Red alkyd-gloss enamel paint, unless otherwise indicated.

2. **Wet-Barrel Fire Hydrants:**

 a. **Description (for AWWA wet-barrel fire hydrants):** Freestanding, with one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, NPS 6 (DN 150) threaded or flanged inlet, and base section with NPS 6 (DN 150) mechanical-joint inlet. Include interior coating according to AWWA C550.

 1) **Standard:** AWWA C503.

 2) **Pressure Rating:** 150 psig (1035 kPa) minimum.

 3) **Outlet Threads:** NFPA 1963, with external hose thread used by local fire department. Include cast-iron caps with steel chains.

 4) **Operating and Cap Nuts:** Pentagon, 1-1/2 inches (38 mm) point to flat.

 5) **Direction of Opening:** Open hydrant valves by turning operating nut to left or counterclockwise.

 6) **Exterior Finish:** Red alkyd-gloss enamel paint, unless otherwise indicated.

 b. **Description (for UL/FMG, wet-barrel fire hydrants):** Freestanding, with one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, NPS 6 (DN 150) threaded or flanged inlet, and base section with NPS 6 (DN 150) mechanical-joint inlet.

 1) **Standards:** UL 246 and FMG approved.

 2) **Pressure Rating:** 150 psig (1035 kPa) minimum.

 3) **Outlet Threads:** NFPA 1963, with external hose thread used by local fire department. Include cast-iron caps with steel chains.

 4) **Operating and Cap Nuts:** Pentagon, 1-1/2 inches (38 mm) point to flat.

 5) **Direction of Opening:** Open hydrant valves by turning operating nut to left or counterclockwise.

 6) **Exterior Finish:** Red alkyd-gloss enamel paint, unless otherwise indicated.

AA. **Flushing Hydrants**

1. **Post-Type Flushing Hydrants:**

 a. **Description:** Nonfreeze and drainable, of length required for shutoff valve installation below frost line.

 1) **Pressure Rating:** 150 psig (1035 kPa) minimum.

 2) **Outlet:** One, with horizontal discharge.

 3) **Hose Thread:** NPS 2-1/2 (DN 65), with NFPA 1963 external hose thread for use by local fire department, and with cast-iron cap with brass chain.

 4) **Barrel:** Cast-iron or steel pipe with breakaway feature.

 5) **Valve:** Bronze body with bronze-ball or plunger closure, and automatic draining.

 6) **Security:** Locking device for padlock.

 7) **Exterior Finish:** Red alkyd-gloss enamel paint, unless otherwise indicated.

 8) **Inlet:** NPS 2 (DN 50) minimum.

 9) **Operating Wrench:** One for each unit.

2. **Ground-Type Flushing Hydrants:**

 a. **Description:** Nonfreeze and drainable, of length required for shutoff valve installation below frost line.

 1) **Pressure Rating:** 150 psig (1035 kPa) minimum.

 2) **Outlet:** One, with vertical OR angle, as directed, discharge.

 3) **Hose Thread:** NPS 2-1/2 (DN 65), with NFPA 1963 external hose thread for use by local fire department, and with cast-iron cap with brass chain.

 4) **Barrel:** Cast-iron or steel pipe.
33 - Utilities

5) Valve: Bronze body with bronze-ball or plunger closure, and automatic draining.
6) Inlet: NPS 2 (DN 50) minimum.
7) Hydrant Box: Cast iron with cover, for ground mounting.
8) Operating Wrench: One for each unit.

3. Post-Type Sampling Station:
 a. Description: Nonfreeze and drainable, of length required for shutoff valve installation below frost line.
 1) Pressure Rating: 100 psig (690 kPa) minimum.
 2) Sampling Outlet: One unthreaded nozzle with handle.
 3) Valve: Bronze body with bronze-ball or plunger closure. Include operating handle.
 4) Drain: Tubing with separate manual vacuum pump.
 5) Inlet: NPS 3/4 (DN 20) minimum.
 6) Housing: Weatherproof material with locking device. Include anchor device.
 7) Operating Wrench: One for each unit.

BB. Fire Department Connections
1. Fire Department Connections:
 a. Description: Freestanding, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, and threaded bottom outlet. Include lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18-inch- (460-mm-) high brass sleeve; and round escutcheon plate.
 1) Standard: UL 405.
 2) Connections: Two NPS 2-1/2 (DN 65) inlets and one NPS 4 (DN 100) OR NPS 6 (DN 150), as directed, outlet.
 3) Connections: Three OR Four, as directed, NPS 2-1/2 (DN 65) inlets and one NPS 6 (DN 150) outlet.
 4) Connections: Six NPS 2-1/2 (DN 65) inlets and one NPS 6 (DN 150) OR NPS 8 (DN 200), as directed, outlet.
 5) Inlet Alignment: Inline, horizontal OR Square, as directed.
 6) Finish Including Sleeve: Polished chrome-plated OR Rough chrome-plated OR Polished bronze, as directed.
 7) Escutcheon Plate Marking: “AUTO SPKR” OR “STANDPIPE” OR “AUTO SPKR & STANDPIPE.”

CC. Alarm Devices
1. Alarm Devices, General: UL 753 and FMG approved, of types and sizes to mate and match piping and equipment.
2. Water-Flow Indicators (can be used with wet-barrel fire hydrants): Vane-type water-flow detector, rated for 250-psig (1725-kPa) working pressure; designed for horizontal or vertical installation; with 2 single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.
3. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position. Mount on stem of OS&Y gate valves and on indicator posts.
4. Pressure Switches: Single pole, double throw; designed to signal increase in pressure. Mount on barrel of dry-barrel fire hydrants.

1.3 EXECUTION

A. Earthwork
1. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

B. Piping Applications
1. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.

2. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.

3. Do not use flanges or unions for underground piping.

4. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.

5. Underground water-service piping NPS 3/4 to NPS 3 (DN 20 to DN 80), as directed, shall be selected from the following, as directed:
 a. Soft copper tube, ASTM B 88, Type K (ASTM B 88M, Type A) OR ASTM B 88, Type L (ASTM B 88M, Type B), as directed; wrought-copper, solder-joint fittings; and brazed OR copper, pressure-seal fittings; and pressure-sealed, as directed, joints.
 b. PE, ASTM pipe; insert fittings for PE pipe; and clamped OR molded PE fittings; and heat-fusion, as directed, joints.
 c. PVC, Schedule 40 pipe; PVC, Schedule 40 OR Schedule 80 pipe; PVC, Schedule 80, as directed, socket fittings; and solvent-cemented joints.
 d. NPS 1 to NPS 3 (DN 25 to DN 80) fiberglass, AWWA RTRP, Class 150 OR 200 OR 250, as directed; RTRF; and bonded joints.
 e. Fiberglass, AWWA RTRP, Class 150 OR 200 OR 250, as directed; RTRF; and bonded joints.

6. Underground water-service piping NPS 4 to NPS 8 (DN 100 to DN 200), as directed, shall be selected from the following, as directed:
 a. Soft copper tube, ASTM B 88, Type K (ASTM B 88M, Type A) OR ASTM B 88, Type L (ASTM B 88M, Type B), as directed; wrought-copper, solder-joint fittings; and brazed or copper, pressure-seal fittings; and pressure-sealed, as directed, joints.
 b. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed OR mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical OR grooved-end pipe; ductile-iron-pipe appurtenances; and grooved, as directed, joints.
 c. PE, AWWA pipe; PE, AWWA fittings; and heat-fusion joints.
 d. PVC, Schedule 40 pipe; PVC, Schedule 40 OR Schedule 80 pipe; PVC, Schedule 80, as directed, socket fittings; and solvent-cemented joints.
 e. NPS 4 and NPS 6 (DN 100 and DN 150): NPS 4 (DN 150) PVC, AWWA Class 150 pipe; PVC, AWWA Class 150 fabricated OR molded, as directed; fittings; and gasketed joints.
 f. NPS 8 (DN 200): PVC, AWWA Class 200 pipe; PVC, AWWA Class 200 fabricated OR push-on-joint, ductile-iron OR mechanical-joint, ductile-iron, as directed, fittings; and gasketed joints.
 g. Fiberglass, AWWA RTRP, Class 150 OR 200 OR 250, as directed; RTRF; and bonded joints.

7. Water Meter Box Water-Service Piping NPS 3/4 to NPS 2 (DN 20 to DN 50), as directed, shall be the same as underground water-service piping.

8. Aboveground and Vault, as directed, Water-Service Piping NPS 3/4 to NPS 3 (DN 20 to DN 80), as directed, shall be selected from the following:

 NOTE: Water-service piping materials listed in subparagraphs below are for potable-water service. They may not be suitable for fire-service mains.
 a. Hard copper tube, ASTM B 88, Type K (ASTM B 88M, Type A) OR ASTM B 88, Type L (ASTM B 88M, Type B), as directed; wrought-copper, solder-joint fittings; and brazed OR copper, pressure-seal fittings; and pressure-sealed, as directed, joints.
 b. PVC, Schedule 80 pipe; PVC, Schedule 80 socket fittings; and solvent-cemented OR threaded fittings; and threaded, as directed, joints.
 c. NPS 1 to NPS 2 (DN 25 to DN 50) fiberglass, AWWA RTRP, Class 150 OR 200 OR 250, as directed; RTRF; and bonded joints.

9. Aboveground and vault, as directed, water-service piping NPS 4 to NPS 8 (DN 100 to DN 200), as directed, shall be selected from the following:
a. Hard copper tube, ASTM B 88, Type K (ASTM B 88M, Type A) OR ASTM B 88, Type L (ASTM B 88M, Type B), as directed; wrought-copper, solder-joint fittings; and brazed joints.

b. Ductile-iron, grooved-end pipe; ductile-iron, grooved-end appurtenances; and grooved joints.

c. PVC, Schedule 80 pipe; PVC, Schedule 80 socket fittings; and solvent-cemented OR threaded fittings; and threaded, as directed, joints.

d. Fiberglass, AWWA RTRP, Class 150 OR 200 OR 250, as directed; RTRF; and bonded joints.

10. Underground Fire-Service-Main Piping NPS 4 to NPS 12 (DN 100 to DN 300), as directed, shall be selected from the following:

NOTE: Fire-service-main piping materials listed in subparagraphs below are for fire-protection water service. They may not be suitable for potable-water service.

a. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed OR mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical OR grooved-end pipe; ductile-iron-pipe appurtenances; and grooved, as directed, joints.

b. PE, Class 150 OR 200, as directed, fire-service pipe; molded PE fittings; and heat-fusion joints.

c. PVC, AWWA Class 150 pipe listed for fire-protection service; PVC Class 150 fabricated or molded fittings; and gasketed joints.

d. PVC, AWWA Class 200 pipe listed for fire-protection service; PVC Class 200 fabricated fittings; and gasketed joints.

e. Fiberglass, AWWA, FMG-approved RTRP, Class 150 OR 200, as directed; RTRF; and gasketed joints.

f. Fiberglass, UL RTRP, Class 150 OR 200 OR 250, as directed; RTRF; and gasketed joints.

11. Aboveground and Vault, as directed, Fire-Service-Main Piping NPS 4 to NPS 12 (DN 100 to DN 300), as directed, shall be ductile-iron, grooved-end pipe; ductile-iron-pipe appurtenances; and grooved joints.

12. Underground Combined Water-Service and Fire-Service-Main Piping NPS 6 to NPS 12 (DN 150 to DN 300), as directed, shall be selected from the following:

a. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed OR mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical OR grooved-end pipe; ductile-iron-pipe appurtenances; and grooved, as directed, joints.

b. PVC, AWWA Class 150 OR 200, as directed, pipe listed for fire-protection service; PVC fabricated or molded fittings of same class as pipe; and gasketed joints.

c. Fiberglass, AWWA, FMG-approved RTRP, Class 150 OR 200, as directed; RTRF; and gasketed joints.

13. Aboveground and Vault, as directed, Combined Water Service and Fire-Service-Main Piping NPS 6 to NPS 12 (DN 150 to DN 300), as directed, shall be ductile-iron, grooved-end pipe; ductile-iron-pipe appurtenances; and grooved joints.

C. Valve Applications

1. General Application: Use mechanical-joint-end valves for NPS 3 (DN 80) and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, nonrising-stem gate valves for installation with indicator posts. Use corporation valves and curb valves with ends compatible with piping, for NPS 2 (DN 50) and smaller installation.

2. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

a. Underground Valves, NPS 3 (DN 80) and Larger: AWWA, cast-iron, nonrising-stem, metal OR resilient OR high-pressure, resilient, as directed, seated gate valves with valve box.

b. Underground Valves, NPS 4 (DN 100) and Larger, for Indicator Posts: UL/FMG, cast-iron, nonrising-stem gate valves with indicator post.

c. Use the following for valves in vaults and aboveground:
1) Gate Valves, NPS 2 (DN 50) and Smaller: Bronze, nonrising OR rising, as directed, stem.
2) Gate Valves, NPS 3 (DN 80) and Larger: AWWA, cast iron, OS&Y rising stem, metal seated OR AWWA, cast iron, OS&Y rising stem, resilient seated OR UL/FMG, cast iron, OS&Y rising stem, as directed.
3) Check Valves: AWWA C508 OR UL/FMG, as directed, swing type.

d. Relief Valves: Use for water-service piping in vaults and aboveground to control water pressure.
e. Detector Check Valves: Use for water-service piping in vaults and aboveground.

d. Pressure-Reducing Valves: Use for water-service piping in vaults and aboveground.
1) Air-Release Valves: To release accumulated air.
2) Air/Vacuum Valves: To release or admit large volume of air during filling of piping.
3) Combination Air Valves: To release or admit air.
f. Detector Check Valves: Use for water-service piping in vaults and aboveground to detect unauthorized use of water.

D. Piping Systems - Common Requirements
1. See Division 22 Section "Common Work Results For Plumbing" for piping-system common requirements.

E. Piping Installation
1. Water-Main Connection (if tap is made by utility company): Arrange with utility company for tap of size and in location indicated in water main.
2. Water-Main Connection (if tap is made by Contractor): Tap water main according to requirements of water utility company and of size and in location indicated.
3. Make connections larger than NPS 2 (DN 50) with tapping machine according to the following:
a. Install tapping sleeve and tapping valve according to MSS SP-60.
b. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
c. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
d. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.
4. Make connections NPS 2 (DN 50) and smaller with drilling machine according to the following:
a. Install service-saddle assemblies and corporation valves in size, quantity, and arrangement required by utility company standards.
b. Install service-saddle assemblies on water-service pipe to be tapped. Position outlets for corporation valves.
c. Use drilling machine compatible with service-saddle assemblies and corporation valves. Drill hole in main. Remove drilling machine and connect water-service piping.
d. Install corporation valves into service-saddle assemblies.
e. Install manifold for multiple taps in water main.
f. Install curb valve in water-service piping with head pointing up and with service box.
5. Comply with NFPA 24 for fire-service-main piping materials and installation.
a. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.
b. Install copper tube and fittings according to CDA's "Copper Tube Handbook."
6. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
a. If required, install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.
7. Install PE pipe according to ASTM D 2774 and ASTM F 645.
8. Install PVC, AWWA pipe according to ASTM F 645 and AWWA M23.
9. Install fiberglass AWWA pipe according to AWWA M45.
10. Bury piping with depth of cover over top at least 30 inches (750 mm), as directed, with top at least 12 inches (300 mm), as directed, below level of maximum frost penetration, and according to the following:
a. Under Driveways: With at least 36 inches (910 mm), as directed, cover over top.
b. Under Railroad Tracks: With at least 48 inches (1220 mm), as directed, cover over top.
c. In Loose Gravelly Soil and Rock: With at least 12 inches (300 mm), as directed, additional cover.

11. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.

12. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
 a. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.

13. Sleeves are specified in Division 22 Section "Common Work Results For Plumbing".

14. Mechanical sleeve seals are specified in Division 22 Section "Common Work Results For Plumbing".

15. For piping with gasketed joints: Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

16. See Division 21 Section "Common Work Results For Fire Suppression" for fire-suppression-water piping inside the building.

17. See Division 22 Section "Common Work Results For Plumbing" for potable-water piping inside the building.

F. Joint Construction
1. See Division 22 Section "Common Work Results For Plumbing" for basic piping joint construction.
2. Make pipe joints according to the following:
 a. Copper-Tubing, Pressure-Sealed Joints: Use proprietary crimping tool and procedure recommended by copper, pressure-seal-fitting manufacturer.
 b. Ductile-Iron Piping, Gasketed Joints for Water-Service Piping: AWWA C600 and AWWA M41.
 d. Ductile-Iron Piping, Grooved Joints: Cut-groove pipe. Assemble joints with grooved-end, ductile-iron-piping couplings, gaskets, lubricant, and bolts according to coupling manufacturer's written instructions.
 e. PE Piping Insert-Fitting Joints: Use plastic insert fittings and fasteners according to fitting manufacturer's written instructions.
 f. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139 and pipe manufacturer's written instructions.
 g. Fiberglass Piping Bonded Joints: Use adhesive and procedure recommended by piping manufacturer.
 h. Dissimilar Materials Piping Joints: Use adapters compatible with both piping materials, with OD, and with system working pressure. Refer to Division 22 Section "Common Work Results For Plumbing" for joining piping of dissimilar metals.

G. Anchorage Installation
1. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:
 a. Concrete thrust blocks.
 b. Locking mechanical joints.
 c. Set-screw mechanical retainer glands.
 d. Bolted flanged joints.
 e. Heat-fused joints.
 f. Pipe clamps and tie rods.
2. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:
b. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.

3. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

H. Valve Installation
1. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.
2. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.
3. UL/FGM, Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.
4. UL/FGM, Valves Other Than Gate Valves: Comply with NFPA 24.
5. MSS Valves: Install as component of connected piping system.
6. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.
7. Pressure-Reducing Valves: Install in vault or aboveground between shutoff valves. Install full-size valved bypass, as directed.
8. Relief Valves: Comply with AWWA C512. Install aboveground with shutoff valve on inlet.

I. Detector-Check Valve Installation
1. Install in vault or aboveground.
2. Install for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.
3. Support detector check valves, meters, shutoff valves, and piping on brick or concrete piers.

J. Water Meter Installation
1. If water meters are provided by the Contractor: Install water meters, piping, and specialties according to utility company's written instructions.
2. Water Meters: Install displacement OR turbine, as directed.-type water meters, NPS 2 (DN 50) and smaller, in meter boxes with shutoff valves on water meter inlets. Include valves on water meter outlets and valved bypass around meters unless prohibited by authorities having jurisdiction.
3. Water Meters: Install compound OR turbine, as directed.-type water meters, NPS 3 (DN 80) and larger, in meter vaults. Include shutoff valves on water meter inlets and outlets and valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.
4. Water Meters: Install detector-type water meters in meter vault according to AWWA M6. Include shutoff valves on water meter inlets and outlets and full-size valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.

K. Roughing-In For Water Meters
1. If Contractor is to rough-in for water meters to be installed by utility company: Rough-in piping and specialties for water meter installation according to utility company's written instructions.

L. Vacuum Breaker Assembly Installation
1. Install pressure vacuum breaker assemblies of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
2. Do not install pressure vacuum breaker assemblies in vault or other space subject to flooding.

M. Backflow Preventer Installation
1. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
2. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.
3. Do not install bypass piping around backflow preventers.
4. Support NPS 2-1/2 (DN 65) and larger backflow preventers, valves, and piping near floor and on brick or concrete piers.

N. Water Meter Box Installation
1. Install water meter boxes in paved areas flush with surface.
2. Install water meter boxes in grass or earth areas with top 2 inches (50 mm), as directed, above surface.

O. Concrete Vault Installation
1. Install precast concrete vaults according to ASTM C 891.

P. Protective Enclosure Installation
1. Install concrete base level and with top approximately 2 inches (50 mm), as directed, above grade.
2. Install protective enclosure over valves and equipment.
3. Anchor protective enclosure to concrete base.

Q. Fire Hydrant Installation
1. General: Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.
3. AWWA Fire Hydrants: Comply with AWWA M17.
4. UL/FMG Fire Hydrants: Comply with NFPA 24.

R. Flushing Hydrant Installation
1. Install post-type flushing hydrants with valve below frost line and provide for drainage. Support in upright position. Include separate gate valve or curb valve and restrained joints in supply piping.
2. Install ground-type flushing hydrants with valve below frost line and provide for drainage. Install hydrant box flush with grade. Include separate gate valve or curb valve and restrained joints in supply piping.
3. Install sampling stations with valve below frost line and provide for drainage. Attach weather-resistant housing and support in upright position. Include separate curb valve in supply piping.

S. Fire Department Connection Installation
1. Install ball drip valves at each check valve for fire department connection to mains.
2. Install protective pipe bollards on two sides of OR on three sides of, as directed, each fire department connection. Pipe bollards are specified in Division 05 Section "Metal Fabrications".

T. Alarm Device Installation
2. Supervisory Switches: Supervise valves in open position.
 a. Valves: Grind away portion of exposed valve stem. Bolt switch, with plunger in stem depression, to OS&Y gate-valve yoke.
 b. Indicator Posts: Drill and thread hole in upper-barrel section at target plate. Install switch, with toggle against target plate, on barrel of indicator post.
3. Locking and Sealing: Secure unsupervised valves as follows:
 b. Post Indicators: Install padlock on wrench on indicator post.
4. Pressure Switches: Drill and thread hole in exposed barrel of fire hydrant. Install switch.
6. Connect alarm devices to building fire alarm system. Wiring and fire-alarm devices are specified in Division 28.

U. Connections
1. Piping installation requirements are specified in other Division 22. Drawings indicate general arrangement of piping, fittings, and specialties.
2. See Division 22 Section "Common Work Results For Plumbing" for piping connections to valves and equipment.
3. Connect water-distribution piping to utility water main OR existing water main, as directed. Use tapping sleeve and tapping valve OR service clamp and corporation valve, as directed.
4. Connect water-distribution piping to interior domestic water OR fire-suppression, as directed, piping.
5. Connect waste piping from concrete vault drains to sanitary sewerage system. See Division 22 for connection to sanitary-sewer OR storm-drainage system. See Division 23 for connection to storm-sewer, as directed, piping.
6. Connect water-distribution piping to interior domestic water OR fire-suppression, as directed, piping.
7. Ground equipment according to Division 26 Section "Grounding And Bonding For Electrical Systems".
8. Connect wiring according to Division 26 Section "Low-voltage Electrical Power Conductors And Cables".

V. Field Quality Control
1. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
2. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.
 a. Increase pressure in 50-psig (350-kPa) increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig (0 kPa). Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts (1.89 L) per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.
3. Prepare reports of testing activities.

W. Identification
1. Install continuous underground detectable, as directed, warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Division 31 Section "Earth Moving".
2. Permanently attach equipment nameplate or marker indicating plastic water-service piping, on main electrical meter panel. See Division 22 Section "Common Work Results For Plumbing" for identifying devices.

NOTE: Delete paragraph above if metallic water-service piping without electrically insulated fittings will be used.

X. Cleaning
1. Clean and disinfect water-distribution piping as follows:
 a. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
 b. If fire-protection-water piping is not connected to potable-water supply, use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
 c. If fire-protection-water piping is connected to potable-water supply, use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:

1) Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours OR Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours, as directed.

2) After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.

3) Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

2. Prepare reports of purging and disinfecting activities.

END OF SECTION 33 11 13 23a
SECTION 33 11 13 23b - MONITORING WELLS

1.1 GENERAL

A. Description Of Work
 1. This specification covers the furnishing and installation of materials for monitoring wells including drilling, casing, well screen, gravel packing, grouting, development, monitoring device, and incidental related work complete and ready for operation. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. General Requirements
 1. Each system, including equipment, materials, installation, and performance, shall be in accordance with local, State, and Federal regulations, ASTM D 5092, and EPA 600-4-89-034 except as modified herein. Consider the advisory or recommended provisions to be mandatory, as though the word "shall" has been substituted for the word "should" wherever it appears. Reference to the "Project Representative" and the "Owner" shall be interpreted to mean the Owner. Additional requirements are included under Division 01 Section "Temporary Facilities And Controls". Mark and secure monitoring wells to avoid unauthorized access and tampering.

C. Submittals:
 2. Product Data
 a. Well casing
 b. Well screen
 c. Filter pack
 d. Neat cement grout
 e. Bentonite seal
 3. Certificates
 a. Well Drilling/Development Material Handling Plan
 b. Health and Safety Plan
 c. Field Sampling and Laboratory Testing Plan
 d. Treatment facility permit
 e. Installation Survey Report
 f. Well Development Report
 g. Borehole Analysis Report
 4. Closeout Submittals
 a. Well Construction Permit
 b. Shipment manifests
 c. Delivery certificates
 d. Treatment and disposal certificates

D. Delivery, Storage, And Handling
 1. Deliver materials in an undamaged condition. Unload and store with minimal handling. Store materials in on-site enclosures or under protective coverings. Store plastic piping and jointing materials, and rubber gaskets under cover, out of direct sunlight. Store materials off the ground. Keep insides of pipes and fittings free of dirt and debris. Replace defective or damaged materials with new materials.

E. Quality Assurance
 1. Required Drawings: Submit well construction drawings showing components and details of well casing, well screen, filter pack, annular seal, and associated items. Drawings shall be prepared...
by a State certified professional geologist or hydrogeologist, or by a State registered professional civil engineer, hereafter referred to as the Contractor’s Professional Consultant (CPC). Drawings shall be sealed.

2. Well Drilling/Development Material Handling Plan: A material handling plan shall be furnished by the Contractor 15 days prior to initiation of the work that describes phases of dealing with the potentially contaminated soil and groundwater, including the following: a schedule to be employed in the well drilling and development stages, a sequence of operations, the method of drilling and development, material hauling, proposed equipment, handling of the contaminated materials, soil and water testing requirements, and safety precautions and requirements.

3. Health and Safety Plan (HASP): Describe safety precautions for each phase of the project as specifically related to handling of soil and water removed during well drilling and development operations. Identify appropriate requirements of 29 CFR 1910 and COE EM-385-1-1. Identify safety equipment and procedures to be available and used during the project. Furnish the name and qualifications based on education, training, and work experience of the proposed Health and Safety Officer (HASO) and the members of the drill crew. The CPC may perform the responsibilities of the HASO if properly qualified.

4. Field Sampling and Laboratory Testing Plan: Describe field sampling methods and quality control procedures. Identify laboratory and laboratory methods to be used for contamination testing. Sample reports shall show sample identification for location, date, time, sample method, contamination level, name of individual sampler, identification of laboratory, and quality control procedures.

5. Treatment Facility Permit: Verification that the proposed treatment facility is permitted to accept the contaminated materials specified, prior to the start of excavation.

6. Well Development Report: Provide report, containing the following data for each well: project name and location, well designation, date and time of well installation, date and time of well development, static water level from top of well casing before development and 24 hours after development, field measurements of pH, temperature, and specific conductivity, depth of well from top of casing to bottom of well, screen length, description of development methodology size/capacity of pump or bailer, pumping rate, and recharge rate.

7. Well Construction Permit: Submit a completed permit application and a proposed method of construction to the appropriate state agency prior to construction of the well. Construction of the wells will not be allowed until an approved Well Construction Permit has been submitted to the Owner.

8. Shipment Manifests: Copies of manifests and other documentation required for shipment of waste materials within 24 hours after removal of waste from the site. Shipment manifests shall be signed by the Owner.

9. Delivery Certificates: Verification that the wastes were actually delivered to the approved treatment facility, within 7 days of shipment.

10. Treatment and Disposal Certificates: Verification that the wastes were successfully treated and remediated to the levels specified herein.

1.2 PRODUCTS

A. Well Casing

1. Stainless Steel Piping: ASTM A 312/A 312M, Type 304, Schedule 40S, with flush threaded joint end fittings. Threaded joints shall be wrapped with fluoropolymer tape, and provided with nitrile O-ring gaskets.

2. PVC Piping: ASTM F 480, Type 1, Grade 1, PVC 12454, NSF wc or NSF pw, Schedule 40 OR 80, as directed, with flush threaded joint fittings. Threaded joints shall be wrapped with fluoropolymer tape, and provided with nitrile O-ring gaskets.

B. Well Screen: Well screens shall be located as directed. The length of each screen shall be as directed. Slot size shall be as required to meet project requirements. Slotted openings shall be distributed
uniformly around the circumference of the screen. Open area shall approach the formation's natural porosity.

1. Stainless Steel Screens: ASTM A 312/A 312M, Type 304, Schedule 40S, continuous slot construction, wire wound, with flush threaded joint ends.

2. PVC Screens: ASTM D 1785, PVC 1120, NSF wc or NSF pw, Schedule 40 OR 80, as directed, screen, Schedule 80, machine-slotted construction, flush threaded joint ends. Slots shall be even in width, length, and separation.

C. Primary Filter Pack: Provide clean, durable, well-rounded, and washed quartz or granite, with less than 5 percent non-siliceous material. The filter pack shall not contain organic matter or friable materials. The filter pack shall allow free flow of water in the well, and shall prevent the infiltration of aquifer materials. Filter pack shall have a 30 percent finer than (d-30) grain size size as required to meet project requirements, and a uniformity coefficient less than 2.5, in accordance with ASTM C 117 and ASTM C 136.

D. Secondary Filter Pack: Gradation in accordance with ASTM D 5092. Provide clean, durable, well-rounded, and washed quartz or granite. Pack shall not contain organic matter or friable materials.

E. Annular Sealants

1. Bentonite Seal: Provide powdered, granular, pelletized, or chipped sodium OR calcium, as directed, montmorillonite in sealed containers from a commercial source, free of impurities. Diameter of pellets shall be less than one fifth the diameter of the borehole annular space to prevent bridging. Bentonite base grout shall be in accordance with ASTM D 5092.

2. Neat Cement Grout: Provide neat cement grout in accordance with ASTM D 5092. Cement shall be in accordance with ASTM C 150. Quick setting admixtures shall not be allowed. Drilling mud or cuttings shall not be used as a sealing material.

F. Bottom Plugs: Provide flush threaded solid plug at the bottom of the well. Plug shall be the same material as the well casing OR screen to which it is attached, as directed. Joints shall be wrapped with fluoropolymer tape and provided with nitrile O-ring gaskets.

G. Locking Well Cap: Provide flush threaded, weatherproof, and non-removable locking well cap on the top of the well. Well cap shall be of the same material as the well casing to which it is attached. Well cap shall accommodate padlock. Provide a long shackled padlock in accordance with ASTM F 883. Provide two keys for the padlock, and turn them over to the Owner. Locks at the well site shall be keyed alike.

H. Well Head Completions: Clearly mark and secure the well to avoid unauthorized access and tampering. Cast the words "MONITORING WELL" on the well head cover. Provide a sign reading, "WELL IS FOR MONITORING AND IS NOT SAFE FOR DRINKING." Provide stamped metal identification tag as follows:

```
DO NOT DISTURB
ID #: Date:
Installed By:
Total Depth:
Screened Interval:
TOC Elevation:
Other:
For Information, Call:
```

1. Aboveground Completions: Provide protective outer casing around the well casing extending above grade. The diameter of the protective outer casing shall be a minimum of 4 in. (100 mm) larger than the well casing diameter. The top of the protective outer casing shall extend a minimum of 6 in. (150 mm) above the top of the well casing cap. The protective outer casing shall be set in cement grout and the bottom of the protective well casing shall extend below the depth of the frost line OR to the depth indicated, as directed. A 1/4 in. (6 mm) diameter weep
hole shall be drilled in the protective outer casing 3 in. (75 mm) above the ground surface. The annular space between the protective outer casing and the well casing shall be filled with pea gravel or coarse sand to just below the level of the cap on the well casing. The locking well cap shall be provided on top of the protective outer casing. Provide 6 in. (150 mm) diameter steel pipe bollards, filled with concrete as indicated to protect the exposed well head.

a. Protective Outer Casing and Bollards: ASTM A 53, Type E or S, Grade B.

b. Well Casing Cap: Provide cap on top of the protective outer casing. Cap shall be flush threaded and of the same material as the protective outer casing. Threaded joints shall be wrapped with fluoropolymer tape and provided with nitrile O-ring gaskets.

2. At-Grade Completions: Provide cast iron OR aluminum, as directed, vault box, 30 by 30 in. (750 by 750 mm) OR 12 in. (300 mm) diameter, as directed, with watertight frame and cover. Vault shall support H-20 loading for traffic areas OR a 100,000 lb. (45,360 kg) loading for airfield locations, as directed. The frame shall be 6 in. (150 mm) deep, and shall be set in a concrete collar a minimum of 8 in. (200 mm) thick, and extending 4 in. (100 mm) beyond the edge of the frame in all directions. Frame and concrete collar shall be set flush with the level of the existing pavement OR set 3 in. (75 mm) above the existing grade, as directed. Locking well cap shall be provided on top of the well casing, which will terminate inside the vault as indicated.

I. Polyethylene Sheeting: ASTM D 4397.

1.3 EXECUTION

A. General: Notify the Owner at least 15 days prior to commencement of work. Locations of wells shall be as indicated. Drilling, installation, and development of the monitoring wells shall be supervised, directed, and monitored by the CPC. Drilling, sampling, and well development equipment introduced to the well shall be decontaminated before and after each use in accordance with ASTM D 5088.

B. Drilling: Borehole shall be advanced using conventional 10 in. (250 mm) hollow-stem auger OR solid auger OR rotary wash, as directed, drilling methods. If it is the opinion of the CPC that an alternate drilling method is required, justification for a boring method change shall be submitted to the Owner, and approval for the change granted prior to drilling. Drill crew shall be experienced and trained in drilling and safety requirements for contaminated sites.

1. Sampling: Obtain samples in accordance with ASTM D 1586 or ASTM D 1587. Perform standard penetration tests at the following depths 0.0 to 1.5 ft (0 to 450 mm); 1.5 to 3.0 ft (450 to 900 mm); 3.0 to 4.5 ft (900 to 1350 mm); and 5 ft (1500 mm) centers or at changes in soil formation thereafter. Each soil sample shall be screened in the field with an organic vapor analyzer/flame ionization device (OVA/FID) capable of detecting vapors to a minimum of one ppm. Log boring in accordance with ASTM D 2487 and ASTM D 2488. Groundwater elevation shall be indicated.

2. Analysis: The CPC shall review the log data from each borehole and compare the data with the well design requirements. The CPC shall verify the adequacy of the well design, or shall offer a proposed modification to the design based on the geologic and hydrogeologic data obtained from the borehole. This review and analysis shall be conducted for each borehole OR for one borehole considered representative of the entire project, as directed. The CPC shall submit the borehole boring logs, the analysis of the well design, and any proposed design modifications to the Owner in a Borehole Analysis Report. Any modifications to the well design approved by the Owner shall be considered a change to the contract documents and shall be negotiated in accordance with the "CHANGES" clause.

3. Alignment: Verify that the well is straight by lowering a 10 ft (3 m) section of steel pipe 1/4 in. (6 mm) smaller in diameter than the inside diameter of the casing in to the well. For wells deeper than 200 ft (60 m), Contractor shall verify that the well is plumb.

C. Soil Removed From The Borehole
1. Temporary Containment of Soil Removed from the Borehole: Soil removed from the borehole shall be placed in a temporary containment area. Provide a temporary containment area near the well site. Cover containment area with 10 mil (0.25 mm) reinforced polyethylene sheeting. Place soil removed from the borehole(s) on the impervious barrier and cover with 6 mil (0.15 mm) reinforced polyethylene sheeting. Provide a straw bale berm around the outer limits of the containment area and cover with polyethylene sheets. Secure edges of sheets with weights to keep the polyethylene sheeting in place. Water runoff shall be diverted from the stockpiled material. As an option, soil may be stockpiled in trucks suitable for transporting contaminated soils as specified herein.

2. Testing Requirements for Stockpiled Soils
 a. Sampling: A minimum of one composite sample shall be developed and analyzed for each required test for every 100 cu. yds. (76.4 cu. m) or fraction thereof from a composite stockpile of soil removed from all well sites. To develop a composite sample of the size necessary to run the required tests, the Contractor shall take several samples from different areas along the surface and in the center of the stockpile. These samples shall be combined and thoroughly mixed to develop the composite sample.
 b. Testing
 1) The soil shall contain no free liquid as demonstrated by EPA SW-846, Method 9095, paint filter liquids test.
 2) The sum of benzene, toluene, ethyl benzene, and xylene (BTEX) concentrations shall be determined by using EPA SW-846, Method 5030/8020.
 3) TPH (total petroleum hydrocarbons) concentrations shall be determined by using EPA SW-846, Method 8015, which has been modified for use with soil.
 4) Material shall be tested for TOX (total organic halogens) in accordance with EPA SW-846, Method 9020.
 5) Material shall be analyzed for full TCLP in accordance with EPA SW-846, Method 1311 and for ignitability, corrosivity, and reactivity.
 6) Material shall be tested for polychlorinated biphenyls (PCB's) in accordance with EPA SW-846, Method 8080.
 7) Moisture content of the sample shall be determined in accordance with EPA Method 160.3.
 c. Disposal of Stockpiled Soils
 1) Soils exhibiting TPH less than 100 ppm, BTEX less than 10 ppm, TOX less than 100 ppm, passing TCLP tests, and testing negative for PCB's shall be considered clean as shall be disposed of on-site, as directed by the Owner.
 2) Soils failing the TCLP test or exhibiting TOX greater than 100 ppm shall be managed in accordance with applicable State and local regulations. Payment for disposal of materials failing the TCLP metals test or TOX test shall be made in accordance with the "CHANGES" clause of the General Conditions.
 3) If the concentration of total BTEX is greater than 10 ppm or TPH greater than 100 ppm, the soil shall be treated and disposed of at a permitted soil recycling facility.

D. Well Installation: Well installation shall be in accordance with ASTM D 5092 and EPA 600-4-89-034, and as indicated on the well construction drawings submitted by the CPC and approved by the Owner. Borehole shall be stable and shall be verified straight before beginning installation.

1. Casings and Screens: Well casings, screens, plugs, and caps shall be decontaminated prior to delivery by the manufacturer and shall be certified clean. Materials shall be delivered, stored, and handled in such manner as to ensure that grease, oil, or other contaminants do not contact any portion of the well screen and casing assembly prior to installation. If directed by the Owner, the well screen and casing assembly shall be cleaned with high pressure water prior to installation. Personnel shall wear clean cotton or surgical gloves while handling the assembly. Centralizers shall be used to ensure that the well screen and casing assembly is installed concentrically in the borehole. When the assembly has been installed at the appropriate elevation, it shall be adequately secured to preclude movement during placement of the filter packs and annular seals. The top of the well casing shall be capped during filter pack placement.
2. Primary and Secondary Filter Packs: Primary and secondary filter packs shall be placed as indicated on the approved well construction drawings to fill the entire annular space between the screen and casing assembly and the outside wall of the borehole. Place both the primary and secondary filters with a tremie pipe in accordance with EPA 600-4-89-034 and ASTM D 5092. Placement of the primary and secondary filters by gravity or free fall methods is not allowed. Control speed of filter placement to prevent bridging and to allow for settlement. Prior to commencement of work, equipment and methods required to place filters shall be approved by the Owner.

3. Bentonite Seal: Bentonite shall be placed as a slurry through a tremie pipe. Control speed of bentonite placement to prevent bridging or segregation of slurry. Additional water shall be added to the annular space as directed by the CPC to ensure complete hydration of the bentonite. Bentonite shall cure a minimum of 48 hours before the placement of cement grout to ensure complete hydration and expansion of the bentonite.

4. Neat Cement Grout: Cement grout shall be placed in the annular space above the bentonite seal as indicated on the well construction drawings. Cement grout shall be placed as a slurry through a tremie pipe, and injected under pressure to reduce chance of voids. Grout shall be injected in one continuous operation until full strength grout flows out at the ground surface without evidence of drilling cuttings or fluid. Cement grout shall cure a minimum of 48 hours before beginning well development operations.

5. Well Head Completions: Well head completions shall be as indicated and as specified herein.

E. Well Development: Well development shall be in accordance with EPA 600-4-89-034 and ASTM D 5092 except as modified herein. Bailing, surging, and pumping/overpumping/backwashing are acceptable development methods. Air surging and jetting are prohibited. Method of development shall be chosen by the CPC and approved by the Owner. Well development shall not begin until the well installation is complete and accepted by the Owner. Well development operations shall be conducted continuously until development water flows clear and free of drilling fluids, cuttings, or other materials. At such time representative water samples shall be tested for pH, temperature, and specific conductivity in accordance with EPA 600-4-79-20. Samples shall be taken every 3 hours. When stabilized readings of these parameters, as accepted by the Owner, have been achieved for 12 consecutive hours, well development operations shall cease.

F. Water From Well Development Operations: Water from the well development operations shall be containerized in accordance with State and local regulations. One sample shall be taken and analyzed for each required test for every 1000 gallons (3780 liters) of stored water from well development operations.

1. Testing
 a. The sum of benzene, toluene, ethyl benzene, and xylene (BTEX) concentrations shall be determined by using EPA SW-846, Method 8020.
 b. TPH (total petroleum hydrocarbons) concentrations shall be determined by using EPA SW-846, Method 8015.

2. Disposal of Containerized Water
 a. Water exhibiting TPH less than 0.5 ppm and BTEX less than 1 ppb shall be considered clean and shall be disposed of on-site as directed by the Owner.
 b. If the concentration of total BTEX is greater than 1 ppb or TPH greater than 0.5 ppm, the water shall be treated and disposed of at a permitted facility.

G. Transportation Of Contaminated Soil And Water: The Contractor shall be solely responsible for complying with Federal, State, and local requirements for transporting contaminated materials through the applicable jurisdictions and shall bear responsibility and cost for any noncompliance. In addition to those requirements, the Contractor shall do the following:

1. Inspect and document vehicles and containers for proper operation and covering.
2. Inspect vehicles and containers for proper markings, manifest documents, and other requirements for waste shipment.
3. Perform and document decontamination procedures prior to leaving the worksite and again before leaving the disposal site.

H. Disposal Of Contaminated Soil And Water: Contaminated materials removed from the site shall be disposed of in a treatment/disposal facility permitted to accept such materials.

I. Installation Survey: Upon completion of well installation and development and acceptance by the Owner therefor, the Contractor vertical and horizontal position of each well shall be determined by a registered land surveyor licensed in the State where the work is located. The survey shall document the vertical elevations of the top of the casing pipe and the ground surface elevation adjacent to each well. Survey shall be accurate to the nearest 0.01 ft (3 mm). This data shall be submitted with a well location map as the Installation Survey Report.

J. Cleanup: Upon completion of the well construction, remove debris and surplus materials from the jobsite.

END OF SECTION 33 11 13 23b
SECTION 33 11 13 23c - WATER SUPPLY WELLS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for water supply wells. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes the following:
 a. Cable-tool, Rotary drilled, Reverse-rotary drilled, and Driven water supply wells.

C. Definitions
2. PA: Polyamide (nylon) plastic.
3. PE: Polyethylene plastic.
4. PP: Polypropylene plastic.
5. PVC: Polyvinyl chloride plastic.

D. Submittals
1. Product Data: Submit certified performance curves and rated capacities of selected well pumps and furnished specialties for each type and size of well pump indicated.
2. Shop Drawings: Show layout and connections for well pumps.
3. Field quality-control reports.
4. Operation and maintenance data.

E. Quality Assurance
1. Well Driller Qualifications: An experienced water supply well driller licensed in the jurisdiction where Project is located.
2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
3. Comply with AWWA A100 for water supply wells.

F. Project Conditions
1. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 a. Notify Owner no fewer than seven days in advance of proposed interruption of water service.
 b. Do not proceed with interruption of water service without Owner's written permission.
2. Well Drilling Water: Provide temporary water and piping for drilling purposes. Provide necessary piping for water supply.

1.2 PRODUCTS

A. Well Casings
1. Steel Casing: AWWA C200, single ply, steel pipe with threaded ends and threaded couplings for threaded joints.
2. ABS Casing: ASTM F 480, ABS, Schedule 40 OR 80, as directed, bell-and-spigot pipe and couplings for solvent-cemented joints.
3. PVC Casing: ASTM F 480 and NSF 14, as directed, PVC, Schedule 40 OR 80, as directed, bell-and-spigot pipe and couplings for solvent-cemented joints. Include NSF listing mark "NSF wc," as directed.
4. Pitless Adapter: Fitting, of shape required to fit onto casing, with waterproof seals.
5. Pitless Unit: Factory-assembled equipment that includes pitless adapter.
6. Well Seals: Casing cap, with holes for piping and cables, that fits into top of casing and is removable, waterproof, and vermin proof.

B. Grout
1. Cement: ASTM C 150, Type II.
2. Aggregates: ASTM C 33, fine and coarse grades.

C. Water Well Screens
1. Screen Material: Fabricated of ASTM A 666, Type 304 stainless steel, welded; with continuous-slot, V-shaped openings that widen inwardly OR tube; with slotted or perforated surface and designed for well-screen applications, as directed.
 a. Screen Couplings: Butt-type, stainless-steel coupling rings.
 b. Screen Fittings: Screen, with necessary fittings, closes bottom and makes tight seal between top of screen and well casing.
 c. Maximum Entering Velocity: 0.1 fps (0.03 m/s).

D. Pack Materials
1. Coarse, uniformly graded filter sand, maximum 1/8 inch (3 mm) in diameter.
2. Fine gravel, maximum 1/4 inch (6 mm) in diameter.

E. Jet-Type Well Pumps
1. Description: Shallow OR Deep, as directed -well-design, jet well pump; self-priming; centrifugal pump capable of continuous operation; with the following features:
 a. Housing: Cast iron.
 b. Impeller: Single stage OR Multistage, as directed, centrifugal; fabricated of corrosion-resistant materials.
 c. Seals: Mechanical.
 d. Shaft: Stainless steel.
 e. Motor: Manufacturer's standard, NEMA MG 1 motor, panel, and accessories.
 f. Motor Controls: Electronic; variable speed.
 g. Check valve, ejector, and pressure-control valve.
2. Pump Accessories:
 a. Compression Tanks: Comply with requirements in Division 22 Section "Facility Indoor Potable-water Storage Tanks" OR Precharged butyl rubber diaphragm, steel shell, fused polymeric lining, and 100-psig (690-kPa) working pressure, as directed.
 b. Pressure Switches: For pump control; for installation in piping.
 d. Water Piping: ASTM D 2239, SDR Numbers 5.3, 7, or 9 PE pipe; made with PE compound number required to give pressure rating not less than 160 psig (1100 kPa) OR 200 psig (1380 kPa), as directed. Include NSF listing mark "NSF pw."
 1) Fittings for PE Pipe: ASTM D 2609, made of PA, PP, or PVC with serrated, male insert ends matching inside of pipe. Include bands or crimp rings.
F. Line-Shaft Well Pumps
1. Description: Line-shaft, water OR oil, as directed,-lubricated, vertical-turbine well pump complying with HI 2.1-2.2 and HI 2.3; with the following features:
 a. Impeller Material: Stainless steel OR Carbon steel OR Bronze, as directed.
 b. Motor: Full-voltage starting, vertical hollow- or solid-shaft, squirrel-cage induction type complying with ANSI C50.10.
 c. Pump Base: Cast iron or fabricated steel.
 d. Column Pipe: ASTM A 53/A 53M, Schedule 40, galvanized-steel pipe with threaded ends and cast-iron or steel threaded couplings.

G. Submersible Well Pumps
1. Description: Submersible, vertical-turbine well pump complying with HI 2.1-2.2 and HI 2.3; with the following features:
 a. Impeller Material: Stainless steel OR Silicon bronze, as directed.
 b. Motor: Capable of continuous operation under water, with protected submersible power cable.
 d. Discharge Piping: ASTM D 2239, SIDR Numbers 5.3, 7, or 9 PE pipe; made with PE compound number required to give pressure rating not less than 160 psig (1100 kPa) OR 200 psig (1380 kPa), as directed. Include NSF listing mark "NSF pw."
 1) Insert Fittings for PE Pipe: ASTM D 2609, made of PA, PP, or PVC with serrated, male insert ends matching inside of pipe. Include bands or crimp rings.

H. Motors
1. General requirements for motors are specified in Division 22 Section "Common Motor Requirements For Plumbing Equipment".
 a. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 b. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 22.
c. Cut bevel in ends of steel casing pipe and make threaded joints.
d. Clean and make solvent-cemented joints for ABS and PVC casings.

7. If rotary drilled or reverse-rotary drilled well, mix grout in proportions of 1 cu. ft. (0.03 cu. m) or a 94-lb (42.6-kg) sack of cement with 5 to 6 gal. (19 to 23 L) of water. Bentonite clay may be added in amounts of 3 to 5 lb/cu. ft. (1.4 to 2.3 kg/0.03 cu. m) for a 94-lb (42.6-kg) sack of cement. If bentonite clay is added, water may be increased to 6.5 gal./cu. ft. (25 L/0.03 cu. m) of cement.

8. If rotary drilled or reverse-rotary drilled well, place grout continuously, from bottom to top surface, to ensure filling of annular space in one operation. Do not perform other operations in well within 72 hours after grouting of casing. When quick-setting cement is used, this period may be reduced to 24 hours.

9. Provide permanent casing with temporary well cap. Install with top of casing 36 inches (910 mm) above finished grade, as directed.

10. Develop wells to maximum yield per foot (meter) of drawdown.
 a. Extract maximum practical quantity of sand, drill fluid, and other fine materials from water-bearing formation.
 b. Avoid settlement and disturbance of strata above water-bearing formation.
 c. Do not disturb sealing around well casings.
 d. Continue developing wells until water contains no more than 2 ppm of sand by weight when pumped at maximum testing rate.

11. Install jet well pumps with ejector in or attached to pump housing. Place check valve on suction line to prevent drainage of compression tank.

12. Install jet well pumps and pressure and suction lines. Install ejector where pressure and suction lines connect above well screen. Install check valve in suction line, or install foot valve below ejector, to prevent drainage of compression tank.

13. Install line-shaft OR submersible, as directed, well pumps according to HI 2.1-2.4 and provide access for periodic maintenance.
 a. Before lowering permanent pump into well, lower a dummy pump that is slightly longer and wider than permanent pump to determine that permanent pump can be installed. Correct alignment problems.
 b. Before lowering permanent pump into well, start pump to verify correct rotation.
 c. Securely tighten discharge piping joints.
 d. Locate line-shaft well pump near well bottom; locate motor above grade. Install driver plate to correctly align motor and pump.
 e. Connect motor to submersible pump and locate near well bottom.
 1) Connect power cable while connection points are dry and undamaged.
 2) Do not damage power cable during installation; use cable clamps that do not have sharp edges.
 3) Install water-sealed surface plate that will support pump and piping.

C. Connections
1. Piping installation requirements are specified in Division 22 Section "Facility Water Distribution Piping". Drawings indicate general arrangement of piping, fittings, and specialties.
 a. Connect piping between well pump and water piping.
 b. Connect water distribution system in trench to well pipe at pitless adapter OR unit, as directed.
 c. Connect building water distribution to well pipe inside well house.

2. Ground equipment according to Division 26 Section "Grounding And Bonding For Electrical Systems".

3. Connect wiring according to Division 26 Section "Low-voltage Electrical Power Conductors And Cables".

D. Well Abandonment
1. Comply with AWWA A100 when abandoning water supply wells. Fill and seal holes and casings and restore ground surface to finished grade.
OR
Follow well-abandonment procedures of authorities having jurisdiction. Restore ground surface to finished grade.

E. Field Quality Control
1. Plumbness and Alignment Testing: Comply with AWWA A100.
2. Furnish samples of water-bearing formation to testing laboratory and well-screen manufacturer for mechanical sieve analysis.
3. Prepare reports on static level of ground water, level of water for various pumping rates, and depth to water-bearing strata.
4. Performance Testing: Conduct final pumping tests after wells have been constructed, cleaned, and tested for plumbness and alignment.
 a. Provide discharge piping to conduct water to locations where disposal will not create a nuisance or endanger adjacent property. Comply with requirements of authorities having jurisdiction.
 b. Measure elevation to water level in wells.
 c. Perform two bailer or air-ejection tests to determine expected yield. Test at depths with sufficient quantity of water to satisfy desired yields.
 d. Test Pump: Variable capacity test pump with capacity equal to maximum expected yields at pressure equal to drawdown in wells, plus losses in pump columns and discharge pipes.
 e. Start and adjust test pumps and equipment to required pumping rates.
 f. Record readings of water levels in wells and pumping rates at 30-minute maximum intervals throughout 24-hour minimum period.
 g. Record maximum yields when drawdown is 60 inches (1500 mm) above top of suction screens after designated times.
 h. Operate pumping units continuously for eight hours after maximum drawdown is reached.
 i. Record returning water levels in wells and plot curves of well recovery rates.
 j. Remove sand, stones, and other foreign materials that may become deposited in wells after completing final tests.
5. Water Analysis Testing:
 a. Engage a qualified testing agency to make bacteriological, physical, and chemical analyses of water from each finished well and report the results. Make analyses according to requirements of authorities having jurisdiction.
 OR
 Analyze water sample from each finished well for bacteriological, physical, and chemical quality and report the results. Make analyses according to requirements of authorities having jurisdiction.

F. Cleaning
1. Disinfect water supply wells according to AWWA A100 and AWWA C654 before testing well pumps.
 OR
 Follow water supply well disinfection procedures required by authorities having jurisdiction before testing well pumps.

G. Protection
1. Water Quality Protection: Prevent well contamination, including undesirable physical and chemical characteristics.
2. Ensure that mud pit will not leak or overflow into streams or wetlands. When well is accepted, remove mud and solids in mud pit from Project site and restore site to finished grade.
3. Provide casings, seals, sterilizing agents, and other materials to eliminate contamination; shut off contaminated water.
4. Exercise care to prevent breakdown or collapse of strata overlaying that from which water is to be drawn.
5. Protect water supply wells to prevent tampering and introducing foreign matter. Retain temporary well cap until installation is complete.

END OF SECTION 33 11 13 23c
SECTION 33 11 13 23d - SEPTIC TANK SYSTEMS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for septic tank systems. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes the following:
 a. Septic tanks.
 b. Distribution boxes.
 c. Pipe and fittings.
 d. Absorption systems

C. Submittals
1. Product Data: For each type of product indicated.
 a. Include construction details, material descriptions, dimensions of individual components, and profiles.
 b. Include manhole openings, covers, and pipe connections.
2. Shop Drawings: For trench absorption systems] [bed absorption systems].
 a. Include manhole openings, covers, pipe connections, and accessories.
 b. Include piping with sizes and invert elevations.
 c. Include underground structures.
 d. Include other utilities.

1.2 PRODUCTS

A. Septic Tanks
1. Precast Concrete Septic Tanks: ASTM C 1227, single-chamber OR two-chamber, as directed, precast, reinforced-concrete tank with internal baffle, as directed, and covers.
 a. Design: For A-8 (H10-44) OR A-12 (HS15-44) OR A-16 (HS20-44), as directed, traffic loading according to ASTM C 890.
 b. Manholes: 20-inch- (508-mm-) OR 22-inch- (559-mm-) OR 24-inch- (610-mm-), as directed, minimum diameter opening with reinforced-concrete risers to grade and access lid with steel lift rings. Include manhole in center of each septic tank compartment top.
 c. Filter Access: Reinforced-concrete access hole, large enough to remove filter, over filter position.
 d. Inlet and Outlet Access: 12-inch- (300-mm-) minimum diameter, reinforced-concrete access lids with steel lift rings. Include access centered over inlet and outlet.
 e. Resilient Connectors: ASTM C 923 (ASTM C 923M), of size required for piping, fitted into inlet and outlet openings.
2. Fiberglass Septic Tanks: UL 1316, single-chamber, FRP construction; fabricated for septic tank application with at least one access riser and manhole.
 a. Manholes: 22-inch- (559-mm-) OR 24-inch- (610-mm-), as directed, minimum diameter opening with FRP access risers to grade and cover.
 b. Filter Access: Include access hole, large enough to remove filter, over filter position.
 c. Resilient Connectors: ASTM C 923 (ASTM C 923M) or other watertight seal, of size required for piping, fitted into inlet and outlet openings.
3. Polyethylene Septic Tanks: Single-chamber, molded, HDPE or PE construction; fabricated for septic tank application, with baffle, as directed, and at least one access riser and manhole.
4. Polyethylene Septic Tanks: Two-chamber, molded, HDPE or PE construction; fabricated for septic tank application, with access risers and manholes.
 a. Manholes: 18-inch- (457-mm-) OR 20-inch- (508-mm-) OR 22-inch- (559-mm-), as directed, minimum diameter opening with HDPE or PE access risers to grade and cover.
 b. Filter Access: Include access hole, large enough to remove filter, over filter position.
 c. Resilient Connectors: ASTM C 923 (ASTM C 923M) or other watertight seal, of size required for piping, fitted into inlet and outlet openings.

B. Filters
1. Description: Removable, septic-tank-outlet filter that restricts discharge solids to 1/8 inch (3.2 mm).
 a. Housing: HDPE or PVC.
 b. Outlet Size: NPS 4 (DN 100) OR NPS 6 (DN 150), as directed.

C. Dosing Tanks
1. Dosing Tanks: Comply with ASTM C 913 for precast, reinforced-concrete tank and cover; designed for structural loading according to ASTM C 890.
 a. Design: For effluent pump, OR automatic siphon, as directed, installation and A-8 (H10-44) OR A-12 (HS15-44) OR A-16 (HS20-44), as directed, traffic loading according to ASTM C 890.
 b. Manholes: 20-inch- (508-mm-) OR 22-inch- (559-mm-) OR 24-inch- (610-mm-), as directed, minimum diameter opening with reinforced-concrete risers to grade and access lid with steel lift rings. Include manhole in center of each septic tank compartment top.
 c. Resilient Connectors: ASTM C 923 (ASTM C 923M), of size required for piping, fitted into inlet and outlet openings.

D. Automatic Siphons
1. Description: Manufactured siphon assembly of molded-HDPE trap, pipe, and bell, with PVC vent piping and stainless-steel bolts.

E. Distribution Boxes
1. Description: Precast concrete, single-chamber box and cover.
 a. Design: Made according to ASTM C 913, and for A-8 (H10-44) OR A-12 (HS15-44) OR A-16 (HS20-44), as directed, traffic loading according to ASTM C 890. Include baffle opposite inlet.
 b. Manholes: 20-inch- (508-mm-) OR 22-inch- (559-mm-) OR 24-inch- (610-mm-), as directed, minimum diameter opening with reinforced-concrete risers to grade and cover with steel lift rings in center of distribution box cover.
 c. Pipe Connections: ASTM C 923 (ASTM C 923M) resilient connectors, of size required for piping, fitted into inlet and outlet openings. Include watertight plugs in outlets not required.

2. Description: Molded-HDPE or -PE, single-chamber box and cover.
 a. Manholes: 18-inch- (457-mm-) OR 20-inch- (508-mm-) OR 22-inch- (559-mm-), as directed, minimum diameter opening with HDPE or PE access risers to grade and cover. Access for PE distribution boxes may be a removable plastic cover and is usually small.
 OR Manufacturer’s standard cover or other access opening of size that permits access to distribution-box inlet and outlets.
 b. Pipe Connections: With seal that prevents leakage. Include watertight plugs in outlets not required.

F. Leaching Pipes And Fittings
1. Pipe: PE, complying with ASTM F 810, perforated.
33 - Utilities

July 2012

County of Santa Clara Roads and Airports Department
RAD-2012-01

G. Nonpressure-Type Pipe Couplings
1. Description: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.
a. Sleeve Materials:
 1) For Concrete Pipes: ASTM C 443 (ASTM C 443M), rubber.
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 4) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

H. Leaching Chambers
1. Description: Arched, molded-PE structures with solid top, perforated sides, open ends, and open bottom.
a. End Pieces: Solid and solid with pipe opening types.
b. Effluent Distribution Piping: PE or PVC pipe, with holes or slots along pipe, attached to underside of top of chambers.

I. Trench OR Bed, as directed, Absorption-System Materials
1. Filtering Material: ASTM D 448, Size No. 24, 3/4 to 2-1/2 inches (19 to 63 mm), washed, crushed stone or gravel; or broken, hard-burned clay brick.
2. Filter Mat: Geotextile woven or spun filter fabric, in 1 or more layers, for minimum total unit weight of 3 oz./sq. yd. (101 g/sq. m) OR Untreated building paper or similar porous material, as directed.
3. Cover for Distribution Pipe: Geotextile woven filter fabric, in 1 or more layers, for minimum total unit weight of 3 oz./sq. yd. (101 g/sq. m).

J. Mound Absorption-System Materials
1. Sand Filtering Material: 25 percent or more of very coarse, coarse, or medium sand or combination; maximum of 50 percent fine or very fine sand or combination; and silt and clay combination not to exceed 25 percent. If clay exceeds 60 percent in combination with silt, mixture cannot exceed 15 percent of sand filtering material.
2. Aggregate Filtering Material: Coarse, 1/2 to 2-1/2 inches (13 to 63 mm).
3. Cap: Clay, silt, or combination of clay and silt.
4. Topsoil: Good quality, free of stones, metal, and glass.
5. Vegetation Cover: Grass compatible with adjacent ground cover. No shrubs or trees.
6. Filter Mat: Geotextile woven or spun filter fabric, in 1 or more layers, for minimum total unit weight of 3 oz./sq. yd. (101 g/sq. m) OR Untreated building paper or similar porous material, as directed.
7. Cover for Distribution Pipe: Geotextile woven filter fabric, in 1 or more layers, for minimum total unit weight of 3 oz./sq. yd. (101 g/sq. m).

K. Chamber Absorption-System Materials
1. Chamber: Arched, molded-PE structures with solid top, perforated sides, open ends, and open bottom.
2. End Pieces: Blank without opening for distribution pipe at end of last chamber in row, and with opening for distribution pipe where pipe penetrates chamber.
3. Retain first paragraph below to run piping through chambers to improve distribution.
4. Effluent Distribution Piping: PE or PVC pipe, with holes or slots along pipe, attached to underside of top of chambers.

L. Seepage Pit Absorption-System Materials
 1. Constructed-in-Place-Type Seepage Pit: Include the following materials.
 a. Pit Lining: ASTM C 62, Type SW, clay bricks; ASTM C 55, concrete bricks; ASTM C 90, hollow, concrete masonry units; or precast concrete rings with notches or weep holes.
 b. Filtering Material: ASTM D 448, Size No. 24, 3/4 to 2-1/2 inches (19 to 63 mm), washed, crushed stone or gravel; or broken, hard-burned clay brick.
 c. Cover: Precast concrete slab; designed for A-8 (H10-44) OR A-12 (HS15-44) OR A-16 (HS20-44), as directed, traffic loading according to ASTM C 890 and made according to ASTM C 913. Include slab dimensions that will extend minimum of 12 inches (300 mm) beyond edge of excavation. Cast cover with opening for manhole in center.
 d. Manholes: 20-inch- (508-mm-) OR 22-inch- (559-mm-) OR 24-inch- (610-mm-), as directed, minimum diameter opening with reinforced-concrete risers to grade and access lid with steel lift rings.

1.3 EXECUTION

A. Earthwork
 1. Excavating, trenching, and backfilling for piping and seepage pits are specified in Division 31 Section "Earth Moving".
 a. Stockpile topsoil for reuse in finish grading without intermixing with other excavated material. Stockpile materials away from edge of excavation and do not store within drip line of remaining trees.
 b. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 2. Excavating and Backfilling for Septic and Dosing Tanks:
 a. Excavate sufficient width and length for tanks to depth determined by tank inlet elevation. Provide level bottom.
 b. Backfill with excavated soil, mounding soil above original grade without compacting.
 3. Excavating and Backfilling for Trench OR Bed, as directed, Absorption Fields:
 a. Excavate for trench absorption fields 30 inches (760 mm) wide and 24 inches (600 mm) deep, minimum.
 b. Backfill trench absorption fields with excavated soil, mounding soil above original grade without compacting.
 c. Excavate for bed absorption fields of width indicated and 24 inches (600 mm) deep, minimum.
 d. Backfill bed absorption fields with excavated soil, mounding soil above original grade without compacting.

B. Excavating and Backfilling for Chamber Absorption Systems:
 1. Excavate for trench-type chamber absorption systems 30 inches (762 mm) wide and 24 inches (610 mm) deep, minimum.
 2. Excavate for bed-type chamber absorption systems of width indicated and 24 inches (610 mm) deep, minimum.
 3. Backfill chamber absorption systems with excavated soil, mounding soil above original grade without compacting.
C. Excavating and Backfilling for Seepage-Pit Absorption Systems:
 1. Excavate sufficient hole diameter for pits to depth determined by tank inlet and bottom elevations. Provide level bottom.
 2. Backfill with excavated soil, mounding soil above original grade without compacting.

D. Septic Tank Installation
 1. Install precast concrete septic tanks level according to ASTM C 891.
 2. Install septic tanks level.
 3. Connect septic tank to concrete ballast pad.
 5. Install insulation on exterior sides and top of septic tank.
 6. Fill septic tank with water.

E. Dosing Tank Installation
 1. Install dosing tanks level and according to ASTM C 891.
 2. Install automatic siphons embedded in precast concrete dosing tank. Make direct connections to distribution piping.
 3. Set submersible effluent pumps on dosing tank floor. Make direct connections to distribution piping.
 4. Fill dosing tanks with water.

F. Distribution Box Installation
 1. Install precast concrete distribution boxes according to ASTM C 891 and at invert elevations indicated. Set level and plumb.
 2. Install PE distribution boxes at invert elevations indicated and according to manufacturer's written instructions. Set level and plumb.

G. Piping Installation
 1. Install leaching piping according to the following:
 a. Use perforated pipe and fittings for trench OR bed OR mound, as directed, absorption fields with perforations at bottom.
 b. PE Tube and Fittings: ASTM F 481.
 c. PVC Sewer Pipe and Fittings: ASTM F 481.

H. Pipe Joint Construction
 1. Basic piping joint construction is specified in Division 33 Section “Common Work Results For Utilities”. Where specific joint construction is not indicated, follow piping manufacturer's written instructions.
 2. Join distribution piping with or according to the following:
 a. Install leaching pipe and fittings for trench OR bed OR mound, as directed, absorption fields with closed joints, unless otherwise indicated.
 b. PE Tube and Fittings: With PE band couplings.
 c. PVC Sewer Pipe and Fittings: With solvent-cemented joints according to ASTM F 402 and ASTM D 2321.
 3. Join dissimilar pipe materials according to ASTM D 5926, with couplings and gaskets compatible with pipe materials being joined.

I. Cleanout Installation
 1. Install cleanouts according to the following:
 a. Inlet and Outlet of Septic Tanks: Cast-iron cleanouts.
 b. Inlet and Outlet of Dosing Tanks: Cast-iron cleanouts.
 c. Inlet and Outlet of Distribution Boxes: Cast-iron OR PVC cleanouts.
 d. At Each Change in Direction of Sewer Piping: Cast-iron OR PVC cleanouts.
33 - Utilities

At Ends of Each Row and at Each Change in Direction of Distribution Piping: Cast-iron OR PVC cleanouts.

2. Cast-Iron Cleanouts: Install with PVC fitting riser from distribution and leaching piping to cast-iron cleanout housing at grade. Use NPS 4 (DN 100) PVC sewer pipe and fittings with solvent-cemented joints for risers. Attach riser to cleanout housing with rubber gasket or coupling.

3. PVC Cleanouts: Install with PVC riser from distribution and leaching piping to PVC cleanout at grade. Use NPS 4 (DN 100) PVC sewer pipe and fittings with solvent-cemented joints for risers and cleanout fitting.

4. Cleanout Support: Set cleanouts in concrete blocks 18 by 18 by 12 inches (457 by 457 by 305 mm) deep, unless location is in concrete pavement. Formwork, reinforcement, and concrete are specified in Division 03 Section "Cast-in-place Concrete".

5. Set top of cleanout 1 inch (25 mm) OR 2 inches (50 mm), as directed, above surrounding rough grade, or set flush with grade if installed in pavement.

J. Trench OR Bed OR Absorption-Field, as directed, Installation

1. Filtering Material: Place supporting layer of filtering material over the compacted trench OR bed, as directed, base to a compacted depth not less than 6 inches (150 mm) below bottom of pipe.

2. Refer to Part 1.3 "Piping Installation" and "Pipe Joint Construction" articles for specific piping material installation.

3. Install distribution piping at minimum slope of 1 percent and maximum slope of 2 percent.

4. Install leaching piping solidly bedded in filtering material, with full bearing for each pipe section throughout its length. Maintain pipe alignment with no slope.
 a. Install perforated pipe with perforations down and joints tightly closed. Install collars and couplings as required.
 b. Install open-joint pipe with 1/2-inch (13-mm) space, maximum, between ends, unless otherwise indicated. Cover top two-thirds of joint opening with joint cover, and tie with corrosion-resistant wire. Commercial joint-cover assemblies may be provided.
 c. Install elbow fittings with tight joints.
 d. Place additional filtering material around sides to a minimum compacted depth of 8 inches (200 mm) above the top of leaching piping.

5. Install filter mat over filter material before backfilling.

6. Install leaching chambers with no slope in bottom of trench OR bed, as directed.
 a. Install leaching chamber distribution piping with tight joints throughout chambers.

7. Backfill according to Part 1.3 "Earthwork" Article.

K. Mound Absorption-Field Installation

1. Plow top 6 inches (150 mm) of surface.

2. Place layers of sand, aggregate, as directed, cap, and topsoil above plowed area. Provide grass topping to match adjacent vegetation. Provide side slope not steeper than 3:1. Tie slope toe smoothly into existing grade.

3. Refer to Part 1.3 "Piping Installation" and "Pipe Joint Construction" articles for specific piping material installation.

4. Provide solid vent pipe with vent cap extending 12 inches (300 mm) above top of mounds.

5. Install distribution piping with no slope for pressurized effluent system.

6. Install distribution piping at a minimum slope of 1 percent and a maximum slope of 2 percent for gravity effluent system.

7. Install leaching piping solidly bedded in filtering material, with full bearing for each pipe section throughout its length. Maintain pipe alignment with no slope.
 a. Install perforated pipe with perforations down and joints tightly closed. Install collars and couplings as required.
 b. Install open-joint pipe with 1/2-inch (13-mm) space, maximum, between ends, unless otherwise indicated. Cover top two-thirds of joint opening with joint cover, and tie with corrosion-resistant wire. Commercial joint-cover assemblies may be provided.
 c. Install elbow fittings with tight joints.
8. Install leaching chambers with no slope above plowed area.
 a. Install leaching chamber distribution piping with tight joints throughout chambers.

9. Provide adequate grading around mound absorption field to prevent storm runoff from washing away a portion of mound absorption field and to prevent exposing pipes.

L. Seepage Pit Installation
1. Excavate hole to minimum diameter of 6 inches (150 mm) greater than outside of pit lining.
2. Do not extend pit depth into ground-water table.
3. Install constructed-in-place seepage pits according to the following procedure if no requirements of authorities having jurisdiction apply:
 a. Install brick pit lining material dry and laid flat with staggered joints for seepage.
 b. Install block pit lining material dry with staggered joints and a minimum of 20 percent of blocks on side for seepage. Install precast concrete rings with notches or weep holes for seepage.
 c. Extend pit lining material so top of manhole will be approximately 8 inches (200 mm) below finished grade.
 d. Backfill bottom of inside of pit with filtering material at least 12 inches (300 mm) above bottom of lining material.
 e. Extend effluent inlet pipe 12 inches (300 mm) into seepage pit and terminate into side of tee fitting.
 f. Backfill around outside of pit lining with filtering material to top of lining.
 g. Install manhole risers from top of pit to grade. Support cover on undisturbed soil. Do not support cover on pit lining.

M. Identification
1. Identification materials and their installation are specified in Division 31 Section "Earth Moving". Arrange for installation of green warning tape directly over piping (including absorption-field piping), at outside edges of underground structures, and at outside edges of absorption fields.
2. Use detectable warning tape over piping, over edges of underground structures, and over edges of absorption fields.

N. Field Quality Control
1. System Tests: Perform testing of completed septic tank system piping and structures according to authorities having jurisdiction.
2. Additional Tests: Fill underground structures with water and let stand overnight. If water level recedes, locate and repair leaks and retest. Repeat tests and repairs until no leaks exist.

O. Cleaning
1. Clear interior of piping and structures of dirt and other superfluous material as work progresses.
2. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plugs in ends of uncompleted pipe at end of workday or when work stops.

END OF SECTION 33 11 13 23d
SECTION 33 11 13 23e - HYDRONIC DISTRIBUTION

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for hydronic distribution. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes underground piping outside the building for distribution of heating hot and chilled water.

C. Performance Requirements
1. Provide components and installation capable of producing hydronic piping systems with the following minimum working-pressure ratings:
 a. Hot-Water Piping: 100 psig (690 kPa) OR 150 psig (1035 kPa), as directed.
 b. Chilled-Water Piping: 100 psig (690 kPa) OR 150 psig (1035 kPa), as directed.
 c. Condenser-Water Piping: 100 psig (690 kPa) OR 150 psig (1035 kPa), as directed.

D. Submittals
1. Product Data
2. Shop Drawings
3. Welding certificates.
4. Source quality-control test reports.
5. Field quality-control test reports.

E. Quality Assurance
1. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.

F. Project Conditions
1. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 a. Notify the Owner no fewer than two days in advance of proposed utility interruptions.
 b. Do not proceed with utility interruptions without the Owner's written permission.

1.2 PRODUCTS

A. Piping Materials
1. Refer to Part 1.3 "Piping Application" Article for applications of pipes, tubes, fittings, and joining methods.
2. Refer to Division 33 Section "Common Work Results For Utilities" for commonly used joining materials.

B. Steel Pipes And Fittings
1. Steel Pipe: ASTM A 53/A 53M, Type E, Grade B, Standard Weight; with plain ends.
4. Cast-Iron, Threaded Fittings: ASME B16.4, Classes 125 OR 250, as directed, standard pattern, with threads according to ASME B1.20.1.
5. Steel Welding Fittings: ASME B16.9 OR ASTM A 234/A 234M, as directed, seamless or welded.
7. Steel-Pipe, Keyed Couplings: AWWA C606 for steel-pipe dimensions. Include ferrous housing sections, gasket suitable for hot water, and bolts and nuts.

C. Conduit Piping
1. Description: Factory-fabricated and -assembled, airtight and watertight, drainable, pressure-tested piping with conduit, inner pipe supports, and insulated carrier piping. Fabricate so insulation can be dried in place by forcing dry air through conduit.
2. Carrier Pipe: Steel pipe complying with ASTM A 53/A 53M, Type E, Grade B with beveled OR socket, as directed, ends for welded joints.
3. Carrier Pipe Insulation:
 1) Apparent Thermal Conductivity (k-Value): 0.31 at 200 deg F (0.044 at 93 deg C) mean temperature.
 2) Density: Maximum 10 lb/cu. ft. (160 kg/cu. m) average.
 3) Compressive Strength: 10 psig (69 kPa) minimum at 5 percent deformation.
 4) Bands: ASTM A 666, Type 304, stainless steel, 3/4 inch (19 mm) wide, 0.020 inch (0.5 mm) thick.
 b. Calcium Silicate Pipe Insulation: ASTM C 533, Type I; preformed, incombustible, inorganic, with non-asbestos fibrous reinforcement.
 1) Thermal Conductivity (k-Value): 0.60 at 500 deg F (0.087 at 260 deg C).
 2) Dry Density: 15 lb/cu. ft. (240 kg/cu. m) maximum.
 3) Compressive Strength: 60 psig (414 kPa) minimum at 5 percent deformation.
 4) Bands: ASTM A 666, Type 304, stainless steel, 3/4 inch (19 mm) wide, 0.020 inch (0.5 mm) thick.
 1) Thermal Conductivity (k-Value): 0.14 at 75 deg F (0.020 at 24 deg C).
 2) Service Temperature: Minus 250 to plus 400 deg F (Minus 156 to plus 204 deg C).
 3) Moisture Absorption: ASTM D 2842, maximum 0.054 percent by volume.
 4) Minimum 90 percent closed cell.
 5) Dry Density: 2 lb/cu. ft. (32 kg/cu. m) maximum.
 6) Compressive Strength: 35 psig (242 kPa) minimum at 5 percent deformation.
 7) Water-Vapor Transmission: 1.26 perm inches (1.83 ng/Pa x s x m) according to ASTM E 96.
 1) Thermal Conductivity (k-Value): 0.13 at 75 deg F (0.019 at 24 deg C).
 2) Service Temperature: Minus 250 to plus 200 deg F (Minus 156 to plus 93 deg C).
 3) Moisture Absorption: ASTM D 2842, maximum 0.054 percent by volume.
 4) Minimum 90 percent closed cell.
 5) Dry Density: 2 lb/cu. ft. (32 kg/cu. m) maximum.
 6) Compressive Strength: 35 psig (242 kPa) minimum at 5 percent deformation.
 7) Water-Vapor Transmission: 1.26 perm inches (1.83 ng/Pa x s x m) according to ASTM E 96.
4. Minimum Clearance:
 a. Between Carrier Pipe Insulation and Conduit: 1 inch (25 mm).
 b. Between Insulation of Multiple Carrier Pipes: 3/16 inch (4.75 mm).
c. Between Bottom of Carrier Pipe Insulation and Conduit: 1 inch (25 mm).
d. Between Bottom of Bare, Carrier Pipe and Casing: 1-3/8 inches (35 mm).

5. Conduit: Spiral wound, steel. Finish conduit with 2 coats of fusion-bonded epoxy, minimum 20 mils (0.50 mm) thick. Cover with polyurethane foam insulation with a high-density polyethylene jacket; thickness indicated in Part 1.3 “Piping Application” Article, as directed.
OR
Conduit: Spiral wound, bare steel. Cover with polyurethane foam insulation with a high-density polyethylene jacket; thickness indicated in Part 1.3 "Piping Application" Article.

6. Carrier Piping Supports within Conduit: Corrugated galvanized steel with a maximum spacing of 10 feet (3 m).

7. Fittings: Factory-fabricated and -insulated elbows and tees. Elbows may be bent pipe equal to carrier pipe. Tees shall be factory fabricated and insulated, and shall be compatible with the carrier pipe.

8. Expansion Offsets and Loops: Size casing to contain piping expansion.

9. Conduit accessories include the following:
 a. Water Shed: Terminal end protector for carrier pipes entering building through floor, 3 inches (75 mm) deep and 2 inches (50 mm) larger than casing; terminate casing 20 inches (500 mm) above the floor level.
 b. Guides and Anchors: Steel plate welded to carrier pipes and to casing, complete with vent and drainage openings inside casing.
 c. End Seals: Steel plate welded to carrier pipes and to casing, complete with drain and vent openings on vertical centerline.
 d. Gland Seals: Packed stuffing box and gland follower mounted on steel plate, welded to end of casing, permitting axial movement of carrier piping, with drain and vent connections on vertical centerline.
 e. Joint Kit: Half-shell, pourable or split insulation and shrink-wrap sleeve.

10. Source Quality Control: Factory test the conduit to 15 psig (105 kPa) for a minimum of 2 minutes with no change in pressure. Factory test the carrier pipe to 150 percent of the operating pressure of system. Furnish test certificates.

D. Cased Piping

1. Description: Factory-fabricated piping with carrier pipe, insulation, and casing.

2. Carrier Pipe: Steel pipe complying with ASTM A 53/A 53M, Type E, Grade B with beveled OR socket, as directed, ends for welded joints.

3. Carrier Pipe Insulation:
 1) Thermal Conductivity (k-Value): 0.13 at 75 deg F (0.019 at 24 deg C).
 2) Service Temperature: Minus 250 to plus 200 deg F (Minus 156 to plus 93 deg C).
 3) Moisture Absorption: ASTM D 2842, maximum 0.054 percent by volume.
 4) Minimum 90 percent closed cell.
 5) Dry Density: 2 lb/cu. ft. (32 kg/cu. m) maximum.
 6) Compressive Strength: 35 psig (242 kPa) minimum at 5 percent deformation.
 7) Water-Vapor Transmission: 1.26 perm inches (1.83 ng/Pa x s x m) according to ASTM E 96.

4. Casing: High-density polyethylene OR Filament-wound, fiberglass-reinforced polyester resin OR PVC, as directed.

5. Casing accessories include the following:
 a. Joint Kit: Half-shell, pourable or split insulation, casing sleeve, and shrink-wrap sleeve.
 b. Expansion Blanket: Elastomeric foam, formed to fit over piping.
 c. End Seals: Shrink wrap the casing material to seal watertight around casing and carrier pipe.

6. Source Quality Control: Factory test the carrier pipe to 150 percent of the operating pressure of system. Furnish test certificates.

E. Loose-Fill Insulation
 a. Thermal Conductivity (k-Value): 0.60 at 175 deg F (0.087 at 79 deg C) and 0.65 at 300 deg F (0.094 at 149 deg C).
 b. Application Temperature Range: 35 to 800 deg F (2 to 426 deg C).
 c. Dry Density: 40 to 42 lb/cu. ft. (640 to 672 kg/cu. m).
 d. Strength: 12,000 lb/sq. ft. (58 600 kg/sq. m).
 a. Thermal Conductivity (k-Value): ASTM C 177, 0.58 at 100 deg F (0.084 at 37 deg C) and 0.68 at 300 deg F (0.098 at 149 deg C).
 b. Application Temperature Range: Minus 273 to plus 480 deg F (Minus 169 to plus 250 deg C).
 c. Dry Density: Approximately 60 lb/cu. ft. (960 kg/cu. m).
 d. Strength: 12,000 lb/sq. ft. (58 600 kg/sq. m).

1.3 EXECUTION

A. Earthwork: Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

B. Piping Application
 1. Hot-Water Piping: Schedule 40 OR Schedule 80, as directed, steel pipe with cast-iron, threaded fittings and threaded OR steel fittings and welded OR ductile-iron, grooved-end fittings and mechanical, as directed, joints; granular OR powder, loose-fill insulation.

 ORM
 Hot-Water Piping: Conduit piping with mineral-wool OR calcium silicate OR polyisocyanurate OR polyurethane, as directed, carrier-pipe insulation and with coated OR coated and insulated, as directed, conduit.

 OR
 a. Insulation Thickness: 1 inch (25 mm) OR 2 inches (50 mm), as directed.

 OR
 Hot-Water Piping: Cased piping with polyurethane carrier-pipe insulation.

 2. Chilled-Water Piping: Schedule 40 OR Schedule 80, as directed, steel pipe with cast-iron, threaded fittings and threaded OR steel welding fittings and welded OR ductile-iron, grooved-end fittings and mechanical, as directed, joints; granular OR powder, as directed, loose-fill insulation.

 OR
 Chilled-Water Piping: Conduit piping with mineral-wool OR calcium silicate OR polyisocyanurate OR polyurethane, as directed, carrier-pipe insulation and with coated OR coated and insulated, as directed, conduit.

 OR
 a. Insulation Thickness: 1 inch (25 mm) OR 2 inches (50 mm), as directed.

 OR
 Chilled-Water Piping: Cased piping with polyurethane carrier-pipe insulation.

 3. Condenser-Water Piping: Schedule 40 OR Schedule 80, as directed, steel pipe with cast-iron, threaded fittings and threaded OR steel welding fittings and welded OR ductile-iron, grooved-end fittings and mechanical, as directed, joints; granular OR powder, as directed, loose-fill insulation.

 OR
 Condenser-Water Piping: Conduit piping with mineral-wool OR calcium silicate OR polyisocyanurate OR polyurethane, as directed, carrier-pipe insulation and with coated OR coated and insulated, as directed, conduit.

 OR
 a. Insulation Thickness: 1 inch (25 mm) OR 2 inches (50 mm), as directed.
Condenser-Water Piping: Cased piping with polyurethane carrier-pipe insulation.

C. Piping Installation
1. General Locations and Arrangements: Drawings indicate general location and arrangement of piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated, unless deviations to layout are approved.
2. Remove any standing water in the bottom of trench.
3. Bed the pipe on a minimum 6-inch (150-mm) layer of granular fill material with a minimum 6-inch (150-mm) clearance between the pipes.
4. Do not insulate piping or backfill piping trench until field quality-control testing has been completed and results approved.
5. Install piping at uniform grade of 0.2 percent upward in direction of flow or as indicated.
6. Install components with pressure rating equal to or greater than system operating pressure.
7. Install piping free of sags and bends.
8. Install fittings for changes in direction and branch connections.
9. Refer to Division 23 Section "Common Work Results For Hvac" for sleeves and mechanical sleeve seals through exterior building walls.
10. Secure anchors with concrete thrust blocks. Concrete is specified in Division 03 Section "Cast-in-place Concrete".
11. Connect to hydronic piping where it passes through the building wall. Hydronic piping inside the building is specified in Division 23 Section "Hydronic Piping".

D. Loose-Fill Insulation Installation
1. Do not disturb the bottom of trench, or compact and stabilize it to ensure proper support.
2. Remove any standing water in the bottom of trench.
3. Form insulation trench by excavation or by installing drywall side forms to establish required height and width of the insulation.
4. Support piping with proper pitch, separation, and clearance to backfill or side forms using temporary supporting devices that can be removed after back filling with insulation.
5. Place insulation and backfill after field quality-control testing has been completed and results approved.
6. Apply bitumastic coating to carbon-steel anchors and guides. Pour concrete thrust blocks and anchors. Refer to Division 03 Section "Cast-in-place Concrete" for concrete and reinforcement.
7. Wrap piping at expansion loops and offsets with mineral-wool insulation of thickness appropriate for calculated expansion amount.
8. Pour loose-fill insulation to required dimension agitating insulation to eliminate voids around piping.
9. Remove temporary hangers and supports.
10. Cover loose-fill insulation with polyethylene sheet a minimum of 4 mils (0.10 mm) thick, and empty loose-fill insulation bags on top.
11. Manually backfill 6 inches (150 mm) of clean backfill. If mechanical compaction is required, manually backfill to 12 inches (300 mm) before using mechanical-compaction equipment.

E. Joint Construction
1. Refer to Division 33 Section "Common Work Results For Utilities" for basic piping joint construction.
3. Conduit and Cased Piping Joints: Assemble sections and finish joints with pourable or split insulation, exterior jacket sleeve, and apply shrink-wrap seals as required by manufacturer's written installation instructions.

F. Identification: Install continuous plastic underground warning tapes during back filling of trenches for underground hydronic distribution piping. Locate 6 to 8 inches (150 to 200 mm) below finished grade,
directly over piping. Refer to Division 31 Section "Earth Moving" for warning-tape materials and devices and their installation.

G. Field Quality Control
1. Prepare hydronic piping for testing according to ASME B31.9 and as follows:
 a. Leave joints, including welds, uninsulated and exposed for examination during test.
 b. Isolate equipment. Do not subject equipment to test pressure.
 c. Install relief valve set at pressure no more than one-third higher than test pressure.
 d. Fill system with water. Where there is risk of freezing, air or a safe, compatible liquid may be used.
 e. Use vents installed at high points to release trapped air while filling system.
2. Test hydronic piping as follows:
 a. Subject hydronic piping to hydrostatic test pressure that is not less than 1.5 times the design pressure.
 b. After hydrostatic test pressure has been applied for 10 minutes, examine joints for leakage. Remake leaking joints using new materials and repeat hydrostatic test until no leaks exist.
3. Test conduit as follows:
 a. Seal vents and drains and subject conduit to 15 psig (105 kPa) for 4 hours with no loss of pressure. Repair leaks and retest as required.
4. Prepare a written report of testing.

END OF SECTION 33 11 13 23e
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 11 13 23</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>33 11 13 23</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 11 13 23</td>
<td>33 01 30 73</td>
<td>Sanitary Sewerage</td>
</tr>
<tr>
<td>33 11 13 23</td>
<td>33 01 13 00a</td>
<td>Subdrainage</td>
</tr>
<tr>
<td>33 11 13 23</td>
<td>33 01 30 73d</td>
<td>Storm Drainage</td>
</tr>
<tr>
<td>33 11 13 43</td>
<td>33 01 30 73</td>
<td>Sanitary Sewerage</td>
</tr>
<tr>
<td>33 11 13 53</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>33 11 13 53</td>
<td>31 62 23 13</td>
<td>Concrete-Filled Steel Piles</td>
</tr>
<tr>
<td>33 11 13 53</td>
<td>33 11 13 23a</td>
<td>Water Distribution</td>
</tr>
<tr>
<td>33 12 16 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>33 12 16 00</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 12 16 00</td>
<td>33 11 13 23a</td>
<td>Water Distribution</td>
</tr>
<tr>
<td>33 12 19 00</td>
<td>33 11 13 23a</td>
<td>Water Distribution</td>
</tr>
<tr>
<td>33 26 00 00</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 26 00 00</td>
<td>33 11 13 23</td>
<td>Sand Drains</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>33 11 13 23</td>
<td>Sand Drains</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>33 11 13 23a</td>
<td>Water Distribution</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>33 11 13 23b</td>
<td>Monitoring Wells</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>33 11 13 23c</td>
<td>Water Supply Wells</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>33 01 30 73</td>
<td>Sanitary Sewerage</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>33 11 13 23d</td>
<td>Septic Tank Systems</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>33 11 13 23e</td>
<td>Hydronic Distribution</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>31 05 13 00a</td>
<td>Subdrainage</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>33 01 30 73d</td>
<td>Storm Drainage</td>
</tr>
<tr>
<td>33 39 13 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>33 39 13 00</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 39 13 00</td>
<td>33 01 30 73</td>
<td>Sanitary Sewerage</td>
</tr>
<tr>
<td>33 39 13 00</td>
<td>33 01 30 73c</td>
<td>Underground Ducts And Utility Structures</td>
</tr>
<tr>
<td>33 39 13 00</td>
<td>33 01 30 73d</td>
<td>Storm Drainage</td>
</tr>
<tr>
<td>33 39 13 00</td>
<td>31 32 19 16</td>
<td>Sewage Treatment Lagoons</td>
</tr>
</tbody>
</table>
SECTION 33 41 13 00 - GROUND-LOOP HEAT-PUMP PIPING

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for ground-loop, heat-pump piping. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Summary
1. This Section includes piping for horizontal or vertical, direct-buried, ground-loop, heat-pump systems that operate between 23 and 104 deg F (minus 5 and plus 40 deg C).

C. Performance Requirements
1. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:
 a. Ground-Loop, Heat-Pump Piping: 160 psig (1100 kPa) OR 200 psig (1380 kPa), as directed

D. Submittals
1. Product Data: For the following:
 a. Pipe and fittings.
 b. Joining method and equipment.
 c. Propylene glycol solution.
2. Field quality-control test reports.

1.2 PRODUCTS

A. Pipes And Fittings
1. PE Pipe: ASTM D 2239, SIDR Numbers 5.3, 7, 9, or 11.5; with PE compound number required to achieve required system working pressure.
 a. Molded PE Fittings: ASTM D 2683 or ASTM D 3261, PE resin, socket- or butt-fusion type, made to match PE pipe dimensions and class.
2. U-Bend Assembly: Factory fabricated with embossed depth stamp every 24 inches (600 mm) OR 36 inches (900 mm), as directed from U-bend.

B. Borehole Backfill
1. Surface Seal: Bentonite OR Cement, as directed, with thermal conductivity greater than 1.2 Btu/h x sq. ft. x deg F (0.7 W/sq. m x K).
2. Backfill below Surface Seal: Natural or manufactured sand specified in Division 31 Section “Earth Moving”.

C. Antifreeze Solution
1. Propylene Glycol: Minimum 99 percent propylene glycol with corrosion inhibitors and environmental stabilizer additives to be mixed with water to protect the piping circuit and connected equipment from physical damage from freezing or corrosion.
2. Quantity: Sufficient solution for initial system startup and for preventive maintenance for one year from date of Substantial Completion.
3. Dilution Water: Chloride content shall be less than 25 ppm, sulfate less than 25 ppm, and hardness less than 100 ppm.
1.3 EXECUTION

A. Earthwork
1. Excavating, trenching, warning tape, and backfilling are specified in Division 31 Section “Earth Moving”.

B. Horizontal Piping Installation
1. Separate trenches by 10 feet (3 m) minimum, unless otherwise indicated. Remove rocks in trenches that could contact pipe.
2. Backfill to 24 inches (600 mm) above pipe with mud developed from excavated rock-free soil or with sand, pea gravel, or fly ash. Backfill from slurry level to grade with excavated soil, compacting as specified for pipe burial in Division 31 Section “Earth Moving”.
3. Extend pipe from trench onto the bottom of the body of water at an elevation that is at least 12 inches (300 mm) below frost line. Seal membrane or impervious liner under the body of water after installing piping.
4. Install PE piping in trenches according to ASTM D 2774 or ASTM F 645.
 a. Clean PE pipe and fittings and make heat-fusion joints according to ASTM D 2657. Minimize number of joints.
5. Purge, flush, and pressure test piping before backfilling trenches.
6. Install continuous detectable warning tape for underground piping. Locate tape a minimum of 24 inches (600 mm) below finished grade, directly over piping. Underground warning tapes are specified in Division 31 Section “Earth Moving”.
7. Common piping installation requirements are specified in Division 23 Section “Common Work Results For Hvac”.

C. Vertical Piping Installation
1. Install PE piping in boreholes according to ASTM D 2774 or ASTM F 645.
 a. Clean PE pipe and fittings and make heat-fusion joints according to ASTM D 2657. Minimize number of joints.
2. Purge, flush, and pressure test piping before backfilling boreholes.
3. After installation of loop pipe in borehole, fill piping loop with water or antifreeze solution, and pump backfill into borehole to discharge at base of borehole.
4. Fill borehole with backfill to a point at least 60 inches (1524 mm) below grade and backfill remainder with surface seal material.
5. Extend piping and connect to water-source, ground-loop, heat-pump piping systems at outside face of building wall in locations and pipe sizes indicated.
 a. Terminate water-service piping at building wall until building water-source, ground-loop, heat-pump piping systems are installed. Terminate piping with caps. Make connections to building water-source, ground-loop, heat-pump piping systems when those systems are installed.
6. Wall sleeves are specified in Division 23 Section “Common Work Results For Hvac”.
7. Mechanical sleeve seals are specified in Division 22 Section “Common Work Results For Plumbing”.

D. Antifreeze Solution Fill
1. Fill system with required quantity of propylene glycol and water to provide minus 10 deg F (minus 23 deg C) freezing temperature.
2. Test the dilute solution using gas chromatography to verify concentration of propylene glycol, and forward report to the Owner.

E. Connections
1. Drawings indicate general arrangement of piping, fittings, and specialties.

F. Field Quality Control
1. Piping Tests: Fill piping 24 hours before testing and apply test pressure to stabilize piping. Use potable water only.

2. Hydrostatic Tests: Test at not less than 1-1/2 times the pipe working-pressure rating allowing for static pressure of borehole depth.
 a. Increase pressure in 50-psig (345-kPa) increments and inspect each joint between increments. Hold at test pressure for 30 minutes. Slowly increase to next test pressure increment and hold for 30 minutes. After testing at maximum test pressure, reduce pressure to 30 psig (207 kPa). Hold for 90 minutes, and measure pressure at 30-minute intervals. Repair leaks and retest until no leaks exist.

3. Prepare reports of testing activity.

END OF SECTION 33 41 13 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 41 13 00</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 41 13 00</td>
<td>33 11 13 23</td>
<td>Sand Drains</td>
</tr>
<tr>
<td>33 41 13 00</td>
<td>33 11 13 23a</td>
<td>Water Distribution</td>
</tr>
<tr>
<td>33 41 13 00</td>
<td>33 01 30 73</td>
<td>Sanitary Sewerage</td>
</tr>
<tr>
<td>33 41 13 00</td>
<td>31 05 13 00a</td>
<td>Subdrainage</td>
</tr>
<tr>
<td>33 41 13 00</td>
<td>33 01 30 73d</td>
<td>Storm Drainage</td>
</tr>
</tbody>
</table>
SECTION 33 42 16 13 - CULVERTS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for culverts. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.

C. Delivery, Storage, And Handling
1. Delivery and Storage: Materials delivered to site shall be inspected for damage, unloaded, and stored with a minimum of handling. Materials shall not be stored directly on the ground. The inside of pipes and fittings shall be kept free of dirt and debris. Before, during, and after installation, plastic pipe and fittings shall be protected from any environment that would result in damage or deterioration to the material. The Contractor shall have a copy of the manufacturer's instructions available at the construction site at all times and shall follow these instructions unless directed otherwise by the Owner. Solvents, solvent compounds, lubricants, elastomeric gaskets, and any similar materials required to install plastic pipe shall be stored in accordance with the manufacturer's recommendations and shall be discarded if the storage period exceeds the recommended shelf life. Solvents in use shall be discarded when the recommended pot life is exceeded.
2. Handling: Materials shall be handled in a manner that ensures delivery to the trench in sound, undamaged condition. Pipe shall be carried to the trench, not dragged.

1.2 PRODUCTS

A. Pipe For Culverts
1. Pipe for culverts and storm drains shall be of the sizes indicated and shall conform to the requirements specified.
2. Concrete Pipe
 a. ASTM C76/ASTM C76M, Class I OR II OR III OR IV OR V, as directed, or ASTM C655 D-Load. Note: D-load is defined as the minimum required three-edge test load on a pipe to produce a 0.01 inch crack and/or ultimate failure in pounds per linear foot per foot (no metric definition) of inside diameter.
 c. Reinforced Elliptical Culvert and Storm Drainpipe: ASTM C507/ASTM C507M. Horizontal elliptical pipe shall be Class HE-A OR HE-I OR HE-II OR HE-III OR HE-IV, as directed. Vertical elliptical pipe shall be Class VE-II OR VE-III OR VE-IV OR VE-V OR VE-VI, as directed.
 d. Nonreinforced Pipe: ASTM C14/ASTM C14M, Class 1 OR 2 OR 3, as directed.
 1) Cast-In-Place Nonreinforced Conduit: ACI 346, except that testing shall be the responsibility of and at the expense of the Contractor. In the case of other conflicts between ACI 346 and project specifications, requirements of ACI 346 shall govern. NOTE: This type conduit should not be used beneath structures, for drain crossings, adjacent to paved areas, or under high fills.
3. Clay Pipe: Standard or extra strength, as indicated, conforming to ASTM C700.
NOTE: “Bell-and-spigot piping only” in areas where corrosion problems may be anticipated with the stainless steel parts of the couplings used for plain-end piping.

4. Corrugated Steel Pipe
 a. ASTM A760/A760M, zinc or aluminum (Type 2) coated pipe of either:
 1) Type I OR II, as directed, pipe with annular OR helical, as directed, 2-2/3 by 1/2 inch (68 by 13 mm) corrugations.
 2) Type IR OR IIR, as directed, pipe with helical 3/4 by 3/4 by 7-1/2 inch (19 by 19 by 190 mm) corrugations.
 b. Fully Bituminous Coated
 1) AASHTO M190 Type A and ASTM A760/A 760M zinc or aluminum (Type 2) coated pipe of either:
 a) Type I OR II, as directed, pipe with annular OR helical, as directed, 2-2/3 by 1/2 inch (68 by 13 mm) corrugations.
 b) Type IR OR IIR, as directed, pipe with helical 3/4 by 3/4 by 7-1/2 inch (19 by 19 by 190 mm) corrugations.
 c. Half Bituminous Coated, Part Paved: AASHTO M190 Type B and ASTM A760/A 760M zinc or aluminum (Type 2) coated pipe of either:
 a) Type I OR II, as directed, pipe with annular OR helical, as directed, 2-2/3 by 1/2 inch (68 by 13 mm) corrugations.
 d. Fully Bituminous Coated, Part Paved: AASHTO M190 Type C and ASTM A760/A 760M zinc or aluminum (Type 2) coated pipe of either:
 a) Type I OR II, as directed, pipe with annular OR helical, as directed, 2-2/3 by 1/2 inch (68 by 13 mm) corrugations.
 b) Type IR OR IIR, as directed, pipe with helical 3/4 by 3/4 by 7-1/2 inch (19 by 19 by 190 mm) corrugations.
 e. Fully Bituminous Coated, Fully Paved: AASHTO M190 Type D and ASTM A760/A 760M zinc or aluminum (Type 2) coated pipe of either:
 a) Type I OR II, as directed, pipe with annular OR helical, as directed, 2-2/3 by 1/2 inch (68 by 13 mm) corrugations.
 f. Concrete-Lined: ASTM A760/A760M zinc coated Type I corrugated steel pipe with annular OR helical, as directed, 2-2/3 by 1/2 inch (68 by 13 mm) corrugations and a concrete lining in accordance with ASTM A849.
 g. Polymer Precoated: ASTM A 762/A 762M corrugated steel pipe fabricated from ASTM A742/A742M Grade 250/250 10/10 polymer precoated sheet of either:
 1) Type I OR II, as directed, pipe with annular OR helical, as directed, 2-2/3 by 1/2 inch (68 by 13 mm) corrugations.
 2) Type IR OR IIR, as directed, pipe with helical 3/4 by 3/4 by 7-1/2 inch (19 by 19 by 190 mm) corrugations.
 h. Polymer Precoated, Part Paved: ASTM A742/A742M Type I OR II, as directed, corrugated steel pipe and AASHTO M190 Type B (modified) paved invert only, fabricated from ASTM A742/A742M Grade 250/250 10/10 polymer precoated sheet with annular OR helical, as directed, 2-2/3 by 1/2 inch (68 by 13 mm) corrugations.
 i. Polymer Precoated, Fully Paved: ASTM A742/A742M Type I OR II, as directed, corrugated steel pipe and AASHTO M190 Type D (modified), fully paved only, fabricated from ASTM A 742/A 742M Grade 250/250 10/10 polymer precoated sheet with annular OR helical, as directed, 2-2/3 by 1/2 inch (68 by 13 mm) corrugations.

5. Corrugated Aluminum Alloy Pipe: ASTM B745/B745M corrugated aluminum alloy pipe of either:
 a. Type I OR II, as directed, pipe with annular OR helical, as directed, corrugations.
 b. Type IA OR IR OR IIA OR IIR, as directed, pipe with helical corrugations.
 c. Aluminum Fully Bituminous Coated: Bituminous coating shall conform to ASTM A849. Piping shall conform to AASHTO M190 Type A and ASTM B745/B745M corrugated aluminum alloy pipe of either:
 1) Type I OR II, as directed, pipe with annular OR helical, as directed, corrugations.
 2) Type IA OR IR OR IIA OR IIR, as directed, pipe with helical corrugations.
 d. Aluminum Fully Bituminous Coated, Part Paved: Bituminous coating shall conform to ASTM A849. Piping shall conform to AASHTO M190 Type C and ASTM B 745/B 745M corrugated aluminum alloy pipe of either:
 1) Type I OR II, as directed, pipe with annular OR helical, as directed, corrugations.
 2) Type IR OR IIR, as directed, pipe with helical corrugations.
6. Structural Plate, Steel Pipe, Pipe Arches and Arches
 a. Assembled with galvanized steel nuts and bolts, from galvanized corrugated steel plates conforming to AASHTO M167. Pipe coating, when required, shall conform to the requirements of AASHTO M190 Type A OR AASHTO M243, as directed.
 b. Thickness of plates shall be as indicated.

7. Structural Plate, Aluminum Pipe, Pipe Arches and Arches
 a. Assembled with either aluminum alloy, aluminum coated steel, stainless steel or zinc coated steel nuts and bolts. Nuts and bolts, and aluminum alloy plates shall conform to AASHTO M219. Pipe coating, when required, shall conform to the requirements of AASHTO M190, Type A OR AASHTO M243, as directed.
 b. Thickness of plates shall be as indicated.

9. Cast-Iron Soil Piping: Cast-Iron Soil Pipe shall conform to ASTM A74, service-weight; gaskets shall be compression-type rubber conforming to ASTM C564.

10. PVC Pipe
 a. The pipe manufacturer’s resin certification, indicating the cell classification of PVC used to manufacture the pipe, shall be submitted prior to installation of the pipe.
 b. Type PSM PVC Pipe: ASTM D3034, Type PSM, maximum SDR 35, produced from PVC certified by the compoudner as meeting the requirements of ASTM D1784, minimum cell class 12454-B.
 c. Profile PVC Pipe: ASTM F794, Series 46, produced from PVC certified by the compoudner as meeting the requirements of ASTM D1784, minimum cell class 12454-B.
 d. Smooth Wall PVC Pipe: ASTM F679 produced from PVC certified by the compoudner as meeting the requirements of ASTM D1784, minimum cell class 12454-B.
 e. Corrugated PVC Pipe: ASTM F949 produced from PVC certified by the compoudner as meeting the requirements of ASTMD 1784, minimum cell class 12454-B.

11. PE Pipe
 a. The pipe manufacturer’s resin certification indicating the cell classification of PE used to manufacture the pipe shall be submitted prior to installation of the pipe. The minimum cell classification for polyethylene plastic shall apply to each of the seven primary properties of the cell classification limits in accordance with ASTM D3350.
 b. Smooth Wall PE Pipe: ASTM F714, maximum DR of 21 for pipes 3 to 24 inches (80 to 600 mm) in diameter and maximum DR of 26 for pipes 26 to 48 inches (650 to 1200 mm) in diameter. Pipe shall be produced from PE certified by the resin producer as meeting the requirements of ASTM D3350, minimum cell class 335434C.
 c. Corrugated PE Pipe: AASHTO M294, Type S or D, for pipes 12 to 48 inches (300 to 1200 mm) and AASHTO MP 7, Type S or D, for pipes 54 to 60 inches (1350 to 1500 mm) produced from PE certified by the resin producer as meeting the requirements of ASTM D3350, minimum cell class in accordance with AASHTO M294. Pipe walls shall have the following properties:
 NOTE: Corrugated PE pipe culverts and storm drains shall not be installed beneath airfield pavements, Class A, B, or C roads, or road pavements with a design index of 6 or greater. Type S pipe has a full circular cross-section, with an outer corrugated pipe wall and a smooth inner liner. Type C pipe has a full circular cross-section, with a corrugated surface both inside and outside. Corrugations may be either annular or helical.

<table>
<thead>
<tr>
<th>Nominal Size (in.)</th>
<th>Minimum Wall Area (square in/ft)</th>
<th>Minimum Moment of Inertia of Wall Section (in to the 4th/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.50</td>
<td>0.024</td>
</tr>
<tr>
<td>15</td>
<td>1.91</td>
<td>0.053</td>
</tr>
<tr>
<td>18</td>
<td>2.34</td>
<td>0.062</td>
</tr>
<tr>
<td>24</td>
<td>3.14</td>
<td>0.116</td>
</tr>
<tr>
<td>30</td>
<td>3.92</td>
<td>0.163</td>
</tr>
</tbody>
</table>
Culverts

36 4.50 0.222
42 4.69 0.543
48 5.15 0.543
54 5.67 0.800
60 6.45 0.800

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Minimum Wall Area (square mm/m)</th>
<th>Minimum Moment of Inertia of Wall Section (mm to the 4th/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>3200</td>
<td>390</td>
</tr>
<tr>
<td>375</td>
<td>4000</td>
<td>870</td>
</tr>
<tr>
<td>450</td>
<td>4900</td>
<td>1020</td>
</tr>
<tr>
<td>600</td>
<td>6600</td>
<td>1900</td>
</tr>
<tr>
<td>750</td>
<td>8300</td>
<td>2670</td>
</tr>
<tr>
<td>900</td>
<td>9500</td>
<td>3640</td>
</tr>
<tr>
<td>1050</td>
<td>9900</td>
<td>8900</td>
</tr>
<tr>
<td>1200</td>
<td>10900</td>
<td>8900</td>
</tr>
<tr>
<td>1350</td>
<td>12000</td>
<td>13110</td>
</tr>
<tr>
<td>1500</td>
<td>13650</td>
<td>13110</td>
</tr>
</tbody>
</table>

d. Profile Wall PE Pipe: ASTM F894, RSC 160, produced from PE certified by the resin producer as meeting the requirements of ASTM D3350, minimum cell class 334433C. Pipe walls shall have the following properties:

<table>
<thead>
<tr>
<th>Nominal Size (in.)</th>
<th>Minimum Wall Area (square in/ft)</th>
<th>Minimum Moment Of Inertia of Wall Section (in to the 4th/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>2.96</td>
<td>0.052</td>
</tr>
<tr>
<td>21</td>
<td>4.15</td>
<td>0.070</td>
</tr>
<tr>
<td>24</td>
<td>4.66</td>
<td>0.081</td>
</tr>
<tr>
<td>27</td>
<td>5.91</td>
<td>0.125</td>
</tr>
<tr>
<td>30</td>
<td>5.91</td>
<td>0.125</td>
</tr>
<tr>
<td>33</td>
<td>6.99</td>
<td>0.161</td>
</tr>
<tr>
<td>36</td>
<td>8.08</td>
<td>0.202</td>
</tr>
<tr>
<td>42</td>
<td>7.81</td>
<td>0.277</td>
</tr>
<tr>
<td>48</td>
<td>8.82</td>
<td>0.338</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Minimum Wall Area (square mm/m)</th>
<th>Minimum Moment of Inertia of Wall Section (mm to the 4th/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>6300</td>
<td>850</td>
</tr>
<tr>
<td>525</td>
<td>8800</td>
<td>1150</td>
</tr>
</tbody>
</table>
B. Drainage Structures
1. Flared End Sections: Sections shall be of a standard design fabricated from zinc coated steel sheets meeting requirements of ASTM A929/A929M.
2. Precast Reinforced Concrete Box: Four-sided box section with open ends to be monolithically cast of reinforced concrete, smooth inside surfaces. Each box section shall be manufactured with chamfered inside corners. Design and manufacture shall conform to ASTM C890.
 1) Boxes subjected to highway loadings shall conform to requirements of AASHTO M259 or M273, as applicable, and ASTM C789, C850, C1433, and PS62.
 2) Boxes subjected to aircraft loadings shall conform to requirements of FAA specifications.
 3) Boxes subjected to railway loadings shall conform to requirements of AREMA specifications.
 b. Concrete: 5,000 psi @ 30 days, unless otherwise directed.
 c. Entrained Air: 5 to 9 percent.
 d. Steel Reinforcing: ASTM A185, A615, A616, Grade 60, 60 ksi.
 e. Design Loading: AASHTO HS-20-44 or HS-25-44 with 30 percent impact and equivalent soil pressure of 130 psf. Floatation forces not accounted for.
 f. Joints: Each section shall have a male and female end with no less than 1-1/2-inch of concrete overlap and shall include a 1-inch square neoprene gasket, cemented to male surface of section during manufacture.
 g. End Sections: As required for the individual installation, provide:
 1) Doweled end for 1-inch diameter x 12-inch deep steel dowels, keyway slot.
 2) Keyway slot, a shear connection between the precast and field cast sections.
 3) Plain end, for use where wing and end walls act independently of precast box.
 h. Lifting Pins: Each section shall be equipped with 4 OSHA approved lifting pins.
 i. For multi-cell installations, fill 1-inch spacing between cells with granular material to assume proper load distribution.
3. Three-Sided Structures for Culverts or Short Span Bridge System
 a. Structures shall conform to requirements of ASTM C1504 and ACI 318. For structures subjected to roadway loadings, conform to requirements of AASHTO specifications.

C. Miscellaneous Materials
1. Concrete
 a. Unless otherwise specified, concrete and reinforced concrete shall conform to the requirements concrete under Division 03 Section "Cast-in-place Concrete". The concrete mixture shall have air content by volume of concrete, based on measurements made immediately after discharge from the mixer, of 5 to 7 percent when maximum size of coarse aggregate exceeds 1-1/2 inches (37.5 mm).
 b. Air content shall be determined in accordance with ASTM C231. The concrete covering over steel reinforcing shall not be less than 1 inch (25 mm) thick for covers and not less than 1-1/2 inches (40 mm) thick for walls and flooring. Concrete covering deposited directly against the ground shall have a thickness of at least 3 inches (75 mm) between steel and ground.
 c. Expansion-joint filler material shall conform to ASTM D1751, or ASTM D1752, or shall be resin-impregnated fiberboard conforming to the physical requirements of ASTM D1752.
2. **Mortar:** Mortar for pipe joints, connections to other drainage structures, and brick or block construction shall conform to ASTM C270, Type M, except that the maximum placement time shall be 1 hour. The quantity of water in the mixture shall be sufficient to produce a stiff workable mortar. Water shall be clean and free of harmful acids, alkalies, and organic impurities. The mortar shall be used within 30 minutes after the ingredients are mixed with water. The inside of the joint shall be wiped clean and finished smooth. The mortar head on the outside shall be protected from air and sun with a proper covering until satisfactorily cured.

3. **Precast Concrete Segmental Blocks:** Precast concrete segmental block shall conform to ASTM C139, not more than 8 inches (200 mm) thick, not less than 8 inches (200 mm) long, and of such shape that joints can be sealed effectively and bonded with cement mortar.

4. **Brick**
 a. Brick shall conform to ASTM C62, Grade SW; ASTM C55, Grade S-I or S-II; or ASTM C32, Grade MS. Mortar for jointing and plastering shall consist of one part portland cement and two parts fine sand. Lime may be added to the mortar in a quantity not more than 25 percent of the volume of cement.
 b. The joints shall be filled completely and shall be smooth and free from surplus mortar on the inside of the structure. Brick structures shall be plastered with 1/2 inch (10 mm) of mortar over the entire outside surface of the walls. For square or rectangular structures, brick shall be laid in stretcher courses with a header course every sixth course. For round structures, brick shall be laid radially with every sixth course a stretcher course.

5. **Precast Reinforced Concrete Manholes**
 a. Precast reinforced concrete manholes shall conform to ASTM C478/ASTM C478M.
 b. Joints between precast concrete risers and tops shall be full-bedded in cement mortar and shall be smoothed to a uniform surface on both interior and exterior of the structure OR made with flexible watertight, rubber-type gaskets meeting the requirements of paragraph JOINTS, as directed.

6. **Prefabricated Corrugated Metal Manholes**
 a. Manholes shall be of the type and design recommended by the manufacturer.
 b. Manholes shall be complete with frames and cover, or frames and gratings.

7. **Frame and Cover for Gratings**
 a. Frame and cover for gratings shall be cast gray iron, ASTM A48/A48M, Class 35B; cast ductile iron, ASTM A536, Grade 65-45-12; or cast aluminum, ASTM B26M/B26, Alloy 356.OT6. Weight, shape, size, and waterway openings for grates and curb inlets shall be as indicated on the plans.

8. **Joints**
 a. **Flexible Watertight Joints**
 1) **Materials:** Flexible watertight joints shall be made with plastic or rubber-type gaskets for concrete pipe and with factory-fabricated resilient materials for clay pipe. The design of joints and the physical requirements for plastic gaskets shall conform to AASHTO M198, and rubber-type gaskets shall conform to ASTM C443/ASTM C443M. Factory-fabricated resilient joint materials shall conform to ASTM C425. Gaskets shall have not more than one factory-fabricated splice, except that two factory-fabricated splices of the rubber-type gasket are permitted if the nominal diameter of the pipe being gasketed exceeds 54 inches (1.35 m).
 2) **Test Requirements:** Watertight joints shall be tested and shall meet test requirements of paragraph HYDROSTATIC TEST ON WATERTIGHT JOINTS. Rubber gaskets shall comply with the oil resistant gasket requirements of ASTM C443/ASTM C443M. Certified copies of test results shall be delivered to the Owner before gaskets or jointing materials are installed. Alternate types of watertight joint may be furnished, if specifically approved.
 b. **External Sealing Bands:** Requirements for external sealing bands shall conform to ASTM C877/ASTM C877M.
 c. **Flexible Watertight, Gasketed Joints**
1) **Gaskets:** When infiltration or exfiltration is a concern for pipe lines, the couplings may be required to have gaskets. The closed-cell expanded rubber gaskets shall be a continuous band approximately 7 inches (178 mm) wide and approximately 3/8 inch (10 mm) thick, meeting the requirements of ASTM D1056, Type 2 A1 OR B3, as directed, and shall have a quality retention rating of not less than 70 percent when tested for weather resistance by ozone chamber exposure, Method B of ASTM D1171. Rubber O-ring gaskets shall be 13/16 inch (21 mm) in diameter for pipe diameters of 36 inches (914 mm) or smaller and 7/8 inch (22 mm) in diameter for larger pipe having 1/2 inch (13 mm) deep end corrugation. Rubber O-ring gaskets shall be 1-3/8 inches (35 mm) in diameter for pipe having 1 inch (25 mm) deep end corrugations. O-rings shall meet the requirements of AASHTO M198 or ASTM C443/ASTM C443M. Flexible plastic gaskets shall conform to requirements of AASHTO M198, Type B.

2) **Connecting Bands:** Connecting bands shall be of the type, size and sheet thickness of band, and the size of angles, bolts, rods and lugs as indicated or where not indicated as specified in the applicable standards or specifications for the pipe. Exterior rivet heads in the longitudinal seam under the connecting band shall be countersunk or the rivets shall be omitted and the seam welded. Watertight joints shall be tested and shall meet the test requirements of paragraph HYDROSTATIC TEST ON WATERTIGHT JOINTS.

d. **PVC Plastic Pipes:** Joints shall be solvent cement or elastomeric gasket type in accordance with the specification for the pipe and as recommended by the pipe manufacturer.

e. **Smooth Wall PE Plastic Pipe:** Pipe shall be joined using butt fusion method as recommended by the pipe manufacturer.

f. **Corrugated PE Plastic Pipe:** Water tight joints shall be made using a PVC or PE coupling and rubber gaskets as recommended by the pipe manufacturer. Rubber gaskets shall conform to ASTM F477. Soil tight joints shall conform to the requirements in AASHTO HB-17, Division II, Section 26.4.2.4.(e) for soil tightness and shall be as recommended by the pipe manufacturer.

g. **Profile Wall PE Plastic Pipe:** Joints shall be gasketed or thermal weld type with integral bell in accordance with ASTM F894.

h. **Ductile Iron Pipe:** Couplings and fittings shall be as recommended by the pipe manufacturer.

D. **Steel Ladder**

1. Steel ladder shall be provided where the depth of the manhole exceeds 12 feet (3.66 m). These ladders shall be not less than 16 inches (406 mm) in width, with 3/4 inch (19 mm) diameter rungs spaced 12 inches (305 mm) apart. The two stringers shall be a minimum 3/8 inch (10 mm) thick and 2-1/2 inches (63 mm) wide. Ladders and inserts shall be galvanized after fabrication in conformance with ASTM A123/A123M.

E. **Resilient Connectors**

1. Flexible, watertight connectors used for connecting pipe to manholes and inlets shall conform to ASTM C923/ASTM C923M.

F. **Hydrostatic Test On Watertight Joints**

1. **Concrete, Clay, PVC and PE Pipe:** A hydrostatic test shall be made on the watertight joint types as proposed. Only one sample joint of each type needs testing; however, if the sample joint fails because of faulty design or workmanship, an additional sample joint may be tested. During the test period, gaskets or other jointing material shall be protected from extreme temperatures which might adversely affect the performance of such materials. Performance requirements for joints in reinforced and nonreinforced concrete pipe shall conform to AASHTO M198 or ASTM C443M ASTM C443. Test requirements for joints in clay pipe shall conform to ASTM C425. Test requirements for joints in PVC and PE plastic pipe shall conform to ASTM D3212.
2. Corrugated Steel and Aluminum Pipe: A hydrostatic test shall be made on the watertight joint system or coupling band type proposed. The moment strength required of the joint is expressed as 15 percent of the calculated moment capacity of the pipe on a transverse section remote from the joint by the AASHTO HB-17 (Division II, Section 26). The pipe shall be supported for the hydrostatic test with the joint located at the point which develops 15 percent of the moment capacity of the pipe based on the allowable span in meters feet for the pipe flowing full or 40,000 foot-pounds (54,233 Newton meters), whichever is less. Performance requirements shall be met at an internal hydrostatic pressure of 10 psi (69 kPa) for a 10 minute period for both annular corrugated metal pipe and helical corrugated metal pipe with factory reformed ends.

G. Erosion Control Riprap
1. Provide nonerodible rock not exceeding 15 inches (375 mm) in its greatest dimension and choked with sufficient small rocks to provide a dense mass with a minimum thickness of 8 inches (200 mm) or as indicated.

1.3 EXECUTION

A. Excavation for Pipe Culverts and Drainage Structures
1. Excavation of trenches, and for appurtenances and backfilling for culverts and storm drains, shall be in accordance with the applicable portions of Division 31 Section “Earth Moving” and the requirements specified below.
2. Trenching: The width of trenches at any point below the top of the pipe shall be not greater than the outside diameter of the pipe plus 12-inches (300 mm) each side of pipe to permit satisfactory jointing and thorough tamping of the bedding material under and around the pipe. Sheeting and bracing, where required, shall be placed within the trench width as specified. Contractor shall not overexcavate. Where trench widths are exceeded, redesign with a resultant increase in cost of stronger pipe or special installation procedures will be necessary. Cost of this redesign and increased cost of pipe or installation shall be borne by the Contractor without additional cost to the Owner.
3. Removal of Rock: Rock in either ledge or boulder formation shall be replaced with suitable materials to provide a compacted earth cushion having a thickness between unremoved rock and the pipe of at least 8 inches (200 mm) or 1/2 inch (13 mm) for each meter foot of fill over the top of the pipe, whichever is greater, but not more than three-fourths the nominal diameter of the pipe. Where bell-and-spigot pipe is used, the cushion shall be maintained under the bell as well as under the straight portion of the pipe. Rock excavation shall be as specified and defined in Division 31 Section “Earth Moving”.
4. Removal of Unstable Material: Where wet or otherwise unstable soil incapable of properly supporting the pipe, as determined by the the Owner, is unexpectedly encountered in the bottom of a trench, such material shall be removed to the depth required and replaced to the proper grade with select granular material, compacted as provided in paragraph BACKFILLING. When removal of unstable material is due to the fault or neglect of the Contractor while performing shoring and sheeting, water removal, or other specified requirements, such removal and replacement shall be performed at no additional cost to the Owner.

B. Bedding
1. The bedding surface for the pipe shall provide a firm foundation of uniform density throughout the entire length of the pipe.
2. Concrete Pipe Requirements: When no bedding class is specified or detailed on the drawings, concrete pipe shall be bedded in a soil foundation accurately shaped and rounded to conform to the lowest one-fourth of the outside portion of circular pipe or to the lower curved portion of pipe arch for the entire length of the pipe or pipe arch. When necessary, the bedding shall be tamped. Bell holes and depressions for joints shall be not more than the length, depth, and width required for properly making the particular type of joint.
3. Clay Pipe Requirements: Bedding for clay pipe shall be as specified by ASTM C12.

4. Corrugated Metal Pipe: Bedding for corrugated metal pipe and pipe arch shall be in accordance with ASTM A798/A798M. It is not required to shape the bedding to the pipe geometry. However, for pipe arches, the Contractor shall either shape the bedding to the relatively flat bottom arc or fine grade the foundation to a shallow v-shape. Bedding for corrugated structural plate pipe shall meet requirements of ASTM A807/A807M.

5. Ductile Iron and Cast-Iron Pipe: Bedding for ductile iron and cast-iron pipe shall be as shown on the drawings.

6. Plastic Pipe: Bedding for PVC and PE pipe shall meet the requirements of ASTM D2321. Bedding, haunching, and initial backfill shall be either Class IB or II material.

C. Placing Pipe

1. Each pipe shall be thoroughly examined before being laid; defective or damaged pipe shall not be used. Plastic pipe shall be protected from exposure to direct sunlight prior to laying, if necessary to maintain adequate pipe stiffness and meet installation deflection requirements. Pipelines shall be laid to the grades and alignment indicated. Proper facilities shall be provided for lowering sections of pipe into trenches. Lifting lugs in vertically elongated metal pipe shall be placed in the same vertical plane as the major axis of the pipe. Pipe shall not be laid in water, and pipe shall not be laid when trench conditions or weather are unsuitable for such work. Diversion of drainage or dewatering of trenches during construction shall be provided as necessary. Deflection of installed flexible pipe shall not exceed the following limits:

<table>
<thead>
<tr>
<th>TYPE OF PIPE</th>
<th>MAXIMUM ALLOWABLE DEFLECTION (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugated Steel and Aluminum Alloy</td>
<td>5</td>
</tr>
<tr>
<td>Concrete-Lined Corrugated Steel</td>
<td>3</td>
</tr>
<tr>
<td>Ductile Iron Culvert</td>
<td>3</td>
</tr>
<tr>
<td>Plastic</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Not less than 30 days after the completion of backfilling, the Owner may perform a deflection test on the entire length of installed flexible pipe using a mandrel or other suitable device. Installed flexible pipe showing deflections greater than those indicated above shall be retested by a run from the opposite direction. If the retest also fails, the suspect pipe shall be replaced.

3. Elliptical and Elliptical Reinforced Concrete Pipe: The manufacturer's reference lines, designating the top of the pipe, shall be within 5 degrees of a vertical plane through the longitudinal axis of the pipe, during placement. Damage to or misalignment of the pipe shall be prevented in all backfilling operations.

4. Corrugated PE Pipe: Laying shall be with the separate sections joined firmly on a bed shaped to line and grade and shall follow manufacturer's recommendations.

5. Corrugated Metal Pipe and Pipe Arch: Laying shall be with the separate sections joined firmly together, with the outside laps of circumferential joints pointing upstream, and with longitudinal laps on the sides. Part paved pipe shall be installed so that the centerline of bituminous pavement in the pipe, indicated by suitable markings on the top at each end of the pipe sections, coincides with the specified alignment of pipe. Fully paved steel pipe or pipe arch shall have a painted or otherwise applied label inside the pipe or pipe arch indicating sheet thickness of pipe or pipe arch. Any unprotected metal in the joints shall be coated with bituminous material as specified in AASHTO M190 or AASHTO M243. Interior coating shall be protected against damage from insertion or removal of struts or tie wires. Lifting lugs shall be used to facilitate moving pipe without damage to exterior or interior coatings. During transportation and installation, pipe or pipe arch and coupling bands shall be handled with care to preclude damage to the coating, paving or lining. Damaged coatings, pavings and linings shall be repaired in accordance with the manufacturer's recommendations prior to placing backfill. Pipe on which coating, paving or lining has been damaged to such an extent that satisfactory field repairs cannot be made shall be removed and replaced. Vertical elongation, where indicated, shall be
accomplished by factory elongation. Suitable markings or properly placed lifting lugs shall be provided to ensure placement of factory elongated pipe in a vertical plane.

6. Structural-Plate Steel: Structural plate shall be installed in accordance with ASTM A807/A807M. Structural plate shall be assembled in accordance with instructions furnished by the manufacturer. Instructions shall show the position of each plate and the order of assembly. Bolts shall be tightened progressively and uniformly, starting at one end of the structure after all plates are in place. The operation shall be repeated to ensure that all bolts are tightened to meet the torque requirements of 200 foot-pounds (270 Newton meters) plus or minus 50 foot-pounds (68 Newton meters). Any power wrenches used shall be checked by the use of hand torque wrenches or long-handled socket or structural wrenches for amount of torque produced. Power wrenches shall be checked and adjusted frequently as needed, according to type or condition, to ensure proper adjustment to supply the required torque.

7. Structural-Plate Aluminum: Structural plate shall be assembled in accordance with instructions furnished by the manufacturer. Instructions shall show the position of each plate and the order of assembly. Bolts shall be tightened progressively and uniformly, starting at one end of the structure after all plates are in place. The operation shall be repeated to ensure that all bolts are torqued to a minimum of 100 foot-pounds (136 Newton meters) on aluminum alloy bolts and a minimum of 150 foot-pounds (203 Newton meters) on galvanized steel bolts. Any power wrenches used shall be checked by the use of hand torque wrenches or long-handled socket or structural wrenches for the amount of torque produced. Power wrenches shall be checked and adjusted as frequently as needed, according to type or condition, to ensure that they are in proper adjustment to supply the required torque.

8. Multiple Culverts: Where multiple lines of pipe are installed, adjacent sides of pipe shall be at least half the nominal pipe diameter or 1 meter 3 feet apart, whichever is less.

9. Jacking Pipe Through Fills: Methods of operation and installation for jacking pipe through fills shall conform to requirements specified in Volume 1, Chapter 1, Part 4 of AREMA Manual.

D. Jointing

1. Concrete and Clay Pipe
 a. Cement-Mortar Bell-and-Spigot Joint: The first pipe shall be bedded to the established gradeline, with the bell end placed upstream. The interior surface of the bell shall be thoroughly cleaned with a wet brush and the lower portion of the bell filled with mortar as required to bring inner surfaces of abutting pipes flush and even. The spigot end of each subsequent pipe shall be cleaned with a wet brush and uniformly matched into a bell so that sections are closely fitted. After each section is laid, the remainder of the joint shall be filled with mortar, and a bead shall be formed around the outside of the joint with sufficient additional mortar. If mortar is not sufficiently stiff to prevent appreciable slump before setting, the outside of the joint shall be wrapped or bandaged with cheesecloth to hold mortar in place.
 b. Cement-Mortar Oakum Joint for Bell-and-Spigot Pipe: A closely twisted gasket shall be made of jute or oakum of the diameter required to support the spigot end of the pipe at the proper grade and to make the joint concentric. Joint packing shall be in one piece of sufficient length to pass around the pipe and lap at top. This gasket shall be thoroughly saturated with neat cement grout. The bell of the pipe shall be thoroughly cleaned with a wet brush, and the gasket shall be laid in the bell for the lower third of the circumference and covered with mortar. The spigot of the pipe shall be thoroughly cleaned with a wet brush, inserted in the bell, and carefully driven home. A small amount of mortar shall be inserted in the annular space for the upper two-thirds of the circumference. The gasket shall be lapped at the top of the pipe and driven home in the annular space with a caulking tool. The remainder of the annular space shall be filled completely with mortar and beveled at an angle of approximately 45 degrees with the outside of the bell. If mortar is not sufficiently stiff to prevent appreciable slump before setting, the outside of the joint thus made shall be wrapped with cheesecloth. Placing of this type of joint shall be kept at least five joints behind laying operations.
c. Cement-Mortar Diaper Joint for Bell-and-Spigot Pipe: The pipe shall be centered so that the annular space is uniform. The annular space shall be caulked with jute or oakum. Before caulk ing, the inside of the bell and the outside of the spigot shall be cleaned.

1) Diaper Bands: Diaper bands shall consist of heavy cloth fabric to hold grout in place at joints and shall be cut in lengths that extend one-eighth of the circumference of pipe above the spring line on one side of the pipe and up to the spring line on the other side of the pipe. Longitudinal edges of fabric bands shall be rolled and stitched around two pieces of wire. Width of fabric bands shall be such that after fabric has been securely stitched around both edges on wires, the wires will be uniformly spaced not less than 200 mm 8 inches apart. Wires shall be cut into lengths to pass around pipe with sufficient extra length for the ends to be twisted at top of pipe to hold the band securely in place; bands shall be accurately centered around lower portion of joint.

2) Grout: Grout shall be poured between band and pipe from the high side of band only, until grout rises to the top of band at the spring line of pipe, or as nearly so as possible, on the opposite side of pipe, to ensure a thorough sealing of joint around the portion of pipe covered by the band. Silt, slush, water, or polluted mortar grout forced up on the lower side shall be forced out by pouring, and removed.

3) Remainder of Joint: The remaining unfilled upper portion of the joint shall be filled with mortar and a bead formed around the outside of this upper portion of the joint with a sufficient amount of additional mortar. The diaper shall be left in place. Placing of this type of joint shall be kept at least five joints behind actual laying of pipe. No backfilling around joints shall be done until joints have been fully inspected and approved.

d. Cement-Mortar Tongue-and-Groove Joint: The first pipe shall be bedded carefully to the established gradeline with the groove upstream. A shallow excavation shall be made underneath the pipe at the joint and filled with mortar to provide a bed for the pipe. The grooved end of the first pipe shall be thoroughly cleaned with a wet brush, and a layer of soft mortar applied to the lower half of the groove. The tongue of the second pipe shall be cleaned with a wet brush; while in horizontal position, a layer of soft mortar shall be applied to the upper half of the tongue. The tongue end of the second pipe shall be inserted in the grooved end of the first pipe until mortar is squeezed out on interior and exterior surfaces. Sufficient mortar shall be used to fill the joint completely and to form a bead on the outside.

e. Cement-Mortar Diaper Joint for Tongue-and-Groove Pipe: The joint shall be of the type described for cement-mortar tongue-and-groove joint in this paragraph, except that the shallow excavation directly beneath the joint shall not be filled with mortar until after a gauze or cheesecloth band dipped in cement mortar has been wrapped around the outside of the joint. The cement-mortar bead at the joint shall be at least 1/2 inch (15 mm), thick and the width of the diaper band shall be at least 8 inches (200 mm). The diaper shall be left in place. Placing of this type of joint shall be kept at least five joints behind the actual laying of the pipe. Backfilling around the joints shall not be done until the joints have been fully inspected and approved.

f. Plastic Sealing Compound Joints for Tongue-and-Grooved Pipe: Sealing compounds shall follow the recommendation of the particular manufacturer in regard to special installation requirements. Surfaces to receive lubricants, primers, or adhesives shall be dry and clean. Sealing compounds shall be affixed to the pipe not more than 3 hours prior to installation of the pipe, and shall be protected from the sun, blowing dust, and other deleterious agents at all times. Sealing compounds shall be inspected before installation of the pipe, and any loose or improperly affixed sealing compound shall be removed and replaced. The pipe shall be aligned with the previously installed pipe, and the joint pulled together. If, while making the joint with mastic-type sealant, a slight protrusion of the material is not visible along the entire inner and outer circumference of the joint when the joint is pulled up, the pipe shall be removed and the joint remade. After the joint is made, all inner protrusions shall be cut off flush with the inner surface of the pipe. If nonmastic-type sealant material is used, the “Squeeze-Out” requirement above will be waived.
g. Flexible Watertight Joints: Gaskets and jointing materials shall be as recommended by the particular manufacturer in regard to use of lubricants, cements, adhesives, and other special installation requirements. Surfaces to receive lubricants, cements, or adhesives shall be clean and dry. Gaskets and jointing materials shall be affixed to the pipe not more than 24 hours prior to the installation of the pipe, and shall be protected from the sun, blowing dust, and other deleterious agents at all times. Gaskets and jointing materials shall be inspected before installing the pipe; any loose or improperly affixed gaskets and jointing materials shall be removed and replaced. The pipe shall be aligned with the previously installed pipe, and the joint pushed home. If, while the joint is being made the gasket becomes visibly dislocated the pipe shall be removed and the joint remade.

h. External Sealing Band Joint for Noncircular Pipe: Surfaces to receive sealing bands shall be dry and clean. Bands shall be installed in accordance with manufacturer's recommendations.

2. Corrugated Metal Pipe
 a. Field Joints: Transverse field joints shall be designed so that the successive connection of pipe sections will form a continuous line free of appreciable irregularities in the flow line. In addition, the joints shall meet the general performance requirements described in ASTM A798/A798M. Suitable transverse field joints which satisfy the requirements for one or more of the joint performance categories can be obtained with the following types of connecting bands furnished with suitable band-end fastening devices: corrugated bands, bands with projections, flat bands, and bands of special design that engage factory reformed ends of corrugated pipe. The space between the pipe and connecting bands shall be kept free from dirt and grit so that corrugations fit snugly. The connecting band, while being tightened, shall be tapped with a soft-head mallet of wood, rubber or plastic, to take up slack and ensure a tight joint. The annular space between abutting sections of part paved, and fully paved pipe and pipe arch, in sizes 30 inches (750 mm) or larger, shall be filled with a bituminous material after jointing. Field joints for each type of corrugated metal pipe shall maintain pipe alignment during construction and prevent infiltration of fill material during the life of the installations. The type, size, and sheet thickness of the band and the size of angles or lugs and bolts shall be as indicated or where not indicated, shall be as specified in the applicable standards or specifications for the pipe.
 b. Flexible Watertight, Gasketed Joints: Installation shall be as recommended by the gasket manufacturer for use of lubricants and cements and other special installation requirements. The gasket shall be placed over one end of a section of pipe for half the width of the gasket. The other half shall be doubled over the end of the same pipe. When the adjoining section of pipe is in place, the doubled-over half of the gasket shall then be rolled over the adjoining section. Any unevenness in overlap shall be corrected so that the gasket covers the end of pipe sections equally. Connecting bands shall be centered over adjoining sections of pipe, and rods or bolts placed in position and nuts tightened. Band Tightening: The band shall be tightened evenly, even tension being kept on the rods or bolts, and the gasket; the gasket shall seat properly in the corrugations. Watertight joints shall remain uncovered for a period of time designated, and before being covered, tightness of the nuts shall be measured with a torque wrench. If the nut has tended to loosen its grip on the bolts or rods, the nut shall be retightened with a torque wrench and remain uncovered until a tight, permanent joint is assured.

E. Concrete Placement
 1. Place cast-in-place concrete according to ACI 318/318R.

F. Drainage Structures
 1. Manholes and Inlets: Construction shall be of reinforced concrete, plain concrete, brick, precast reinforced concrete, precast concrete segmental blocks, prefabricated corrugated metal, or bituminous coated corrugated metal; complete with frames and covers or gratings; and with fixed galvanized steel ladders where indicated. Pipe studs and junction chambers of prefabricated
corrugated metal manholes shall be fully bituminous-coated and paved when the connecting branch lines are so treated. Pipe connections to concrete manholes and inlets shall be made with flexible, watertight connectors.

2. Walls and Headwalls: Construction shall be as indicated.

G. Steel Ladder Installation
1. Ladder shall be adequately anchored to the wall by means of steel inserts spaced not more than 6 feet (1.83 m) vertically, and shall be installed to provide at least 6 inches (152 mm) of space between the wall and the rungs. The wall along the line of the ladder shall be vertical for its entire length.

H. Backfilling
1. Backfilling Pipe in Trenches: After the pipe has been properly bedded, selected material from excavation or borrow, at a moisture content that will facilitate compaction, shall be placed along both sides of pipe in layers not exceeding 6 inches (150 mm) in compacted depth. The backfill shall be brought up evenly on both sides of pipe for the full length of pipe. The fill shall be thoroughly compacted under the haunches of the pipe. Each layer shall be thoroughly compacted with mechanical tampers or rammers. This method of filling and compacting shall continue until the fill has reached an elevation of at least 12 inches (300 mm) above the top of the pipe. The remainder of the trench shall be backfilled and compacted by spreading and rolling or compacted by mechanical rammers or tampers in layers not exceeding 8 inches (200 mm). Tests for density shall be made as necessary to ensure conformance to the compaction requirements specified below. Where it is necessary, in the opinion of the Owner, that sheeting or portions of bracing used be left in place, the contract will be adjusted accordingly. Untreated sheeting shall not be left in place beneath structures or pavements.

2. Backfilling Pipe in Fill Sections: For pipe placed in fill sections, backfill material and the placement and compaction procedures shall be as specified below. The fill material shall be uniformly spread in layers longitudinally on both sides of the pipe, not exceeding 6 inches (150 mm) in compacted depth, and shall be compacted by rolling parallel with pipe or by mechanical tamping or ramming. Prior to commencing normal filling operations, the crown width of the fill at a height of 12 inches (300 mm) above the top of the pipe shall extend a distance of not less than twice the outside pipe diameter on each side of the pipe or 12 feet (4 m), whichever is less. After the backfill has reached at least 12 inches (300 mm) above the top of the pipe, the remainder of the fill shall be placed and thoroughly compacted in layers not exceeding 8 inches (200 mm).

3. Movement of Construction Machinery: When compacting by rolling or operating heavy equipment parallel with the pipe, displacement of or injury to the pipe shall be avoided. Movement of construction machinery over a culvert or storm drain at any stage of construction shall be at the Contractor's risk. Any damaged pipe shall be repaired or replaced.

4. Compaction
 a. General Requirements: Cohesionless materials include gravels, gravel-sand mixtures, sands, and gravelly sands. Cohesive materials include clayey and silty gravels, gravel-silt mixtures, clayey and silty sands, sand-clay mixtures, clays, silts, and very fine sands. When results of compaction tests for moisture-density relations are recorded on graphs, cohesionless soils will show straight lines or reverse-shaped moisture-density curves, and cohesive soils will show normal moisture-density curves.
 b. Minimum Density: Backfill over and around the pipe and backfill around and adjacent to drainage structures shall be compacted at the approved moisture content to the following applicable minimum density, which will be determined as specified below.
 1) Under airfield and heliport pavements, paved roads, streets, parking areas, and similar-use pavements including adjacent shoulder areas, the density shall be not less than 90 percent of maximum density for cohesive material and 95 percent of maximum density for cohesionless material, up to the elevation where requirements for pavement subgrade materials and compaction shall control.
2) Under unpaved or turfed traffic areas, density shall not be less than 90 percent of maximum density for cohesive material and 95 percent of maximum density for cohesionless material.

3) Under nontraffic areas, density shall be not less than that of the surrounding material.

5. Determination of Density: Testing shall be the responsibility of the Contractor and performed at no additional cost to the Owner. Testing shall be performed by an approved commercial testing laboratory or by the Contractor subject to approval. Tests shall be performed in sufficient number to ensure that specified density is being obtained. Laboratory tests for moisture-density relations shall be made in accordance with ASTM D1557 except that mechanical tampers may be used provided the results are correlated with those obtained with the specified hand tamper. Field density tests shall be determined in accordance with ASTM D2167 or ASTM D2922. When ASTM D2922 is used, the calibration curves shall be checked and adjusted, if necessary, using the sand cone method as described in paragraph Calibration of the referenced publications. ASTM D2922 results in a wet unit weight of soil and when using this method ASTM D3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall be checked along with density calibration checks as described in ASTM D3017 or ASTM D2922. Test results shall be furnished the Owner. The calibration checks of both the density and moisture gauges shall be made at the beginning of a job on each different type of material encountered and at intervals as directed.

I. Pipeline Testing

1. Leakage Tests: Lines shall be tested for leakage by low pressure air or water testing or exfiltration tests, as appropriate. Low pressure air testing for vitrified clay pipes shall conform to ASTM C828. Low pressure air testing for concrete pipes shall conform to ASTM C924/ASTM C924M. Low pressure air testing for plastic pipe shall conform to ASTM F1417. Low pressure air testing procedures for other pipe materials shall use the pressures and testing times prescribed in ASTM C828 or ASTM C924/ASTM C924M, after consultation with the pipe manufacturer. Testing of individual joints for leakage by low pressure air or water shall conform to ASTM C1103/ASTM C1103M. Prior to exfiltration tests, the trench shall be backfilled up to at least the lower half of the pipe. If required, sufficient additional backfill shall be placed to prevent pipe movement during testing, leaving the joints uncovered to permit inspection. Visible leaks encountered shall be corrected regardless of leakage test results. When the water table is 600 mm 2 feet or more above the top of the pipe at the upper end of the pipeline section to be tested, infiltration shall be measured using a suitable weir or other device acceptable to the Owner. An exfiltration test shall be made by filling the line to be tested with water so that a head of at least 2 feet (600 mm) is provided above both the water table and the top of the pipe at the upper end of the pipeline to be tested. The filled line shall be allowed to stand until the pipe has reached its maximum absorption, but not less than 4 hours. After absorption, the head shall be reestablished. The amount of water required to maintain this water level during a 2-hour test period shall be measured. Leakage as measured by the exfiltration test shall not exceed 250 gallons per inch in diameter per mile (60 liters per mm in diameter per kilometer) of pipeline per day OR 0.2 gallons per inch in diameter per 100 feet (9 mL per mm in diameter per 100 meters), as directed, of pipeline per hour. When leakage exceeds the maximum amount specified, satisfactory correction shall be made and retesting accomplished.

2. Deflection Testing: Perform a deflection test on entire length of installed plastic pipeline on completion of work adjacent to and over the pipeline, including leakage tests, backfilling, placement of fill, grading, paving, concreting, and any other superimposed loads. Deflection of pipe in the installed pipeline under external loads shall not exceed 4.5 percent of the average inside diameter of pipe. Determine whether the allowable deflection has been exceeded by use of a pull-through device or a deflection measuring device.

a. Pull-through device: This device shall be a spherical, spheroidal, or elliptical ball, a cylinder, or circular sections fused to a common shaft. Circular sections shall be so spaced on the shaft that distance from external faces of front and back sections will equal
or exceed diameter of the circular section. Pull-through device may also be of a design promulgated by the Uni-Bell Plastic Pipe Association, provided that the device meets the applicable requirements specified in this paragraph, including those for diameter of the device. Ball, cylinder, or circular sections shall conform to the following:

1) A diameter, or minor diameter as applicable, of 95 percent of the average inside diameter of the pipe; tolerance of plus 0.5 percent will be permitted.

2) A homogeneous material throughout, with a density greater than 1.0 as related to water at 39.2 degrees F (4 degrees C), and a surface Brinell hardness of not less than 150.

3) Center bored and through bolted with a 1/4 inch (6 mm) minimum diameter steel shaft having a yield strength of not less than 70,000 psi (483 MPa), with eyes or loops at each end for attaching pulling cables.

4) Each eye or loop shall be suitably backed with a flange or heavy washer such that a pull exerted on opposite end of shaft will produce compression throughout remote end.

b. Deflection measuring device: Sensitive to 1.0 percent of the diameter of the pipe being tested and accurate to 1.0 percent of the indicated dimension. Deflection measuring device shall be approved by the owner prior to use.

c. Pull-through device: Pass the pull-through device through each run of pipe, either by pulling it through or flushing it through with water. If the device fails to pass freely through a pipe run, replace pipe which has the excessive deflection and completely retest in same manner and under same conditions as specified.

d. Deflection measuring device procedure: Measure deflections through each run of installed pipe. If deflection readings in excess of 4.5 percent of average inside diameter of pipe are obtained, retest pipe by a run from the opposite direction. If retest continues to show a deflection in excess of 4.5 percent of average inside diameter of pipe, remove pipe which has excessive deflection, replace with new pipe, and completely retest in same manner and under same conditions.

e. Warranty period test: Pipe found to have a deflection of greater than 5 percent of average inside diameter when deflection test is performed just prior to end of one-year warranty period shall be replaced with new pipe and tested as specified for leakage and deflection.

J. Field Painting

1. After installation, clean cast-iron frames, covers, gratings, and steps not buried in masonry or concrete to bare metal of mortar, rust, grease, dirt, and other deleterious materials and apply a coat of bituminous paint OR After installation, clean steel covers and steel or concrete frames not buried in masonry or concrete to bare metal of mortar, dirt, grease, and other deleterious materials. Apply a coat of primer and apply a top coat as specified in Division 09 Section "Exterior Painting", as directed. Do not paint surfaces subject to abrasion.

END OF SECTION 33 42 16 13
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 42 16 13</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>33 42 16 13</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 42 16 13</td>
<td>33 01 30 73</td>
<td>Sanitary Sewerage</td>
</tr>
<tr>
<td>33 42 16 13</td>
<td>33 01 30 73d</td>
<td>Storm Drainage</td>
</tr>
<tr>
<td>33 44 13 13</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 44 13 13</td>
<td>33 01 30 73d</td>
<td>Storm Drainage</td>
</tr>
<tr>
<td>33 44 13 13</td>
<td>31 32 19 16</td>
<td>Sewage Treatment Lagoons</td>
</tr>
<tr>
<td>33 44 16 00</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 44 16 00</td>
<td>33 01 30 73d</td>
<td>Storm Drainage</td>
</tr>
<tr>
<td>33 44 16 00</td>
<td>31 32 19 16</td>
<td>Sewage Treatment Lagoons</td>
</tr>
<tr>
<td>33 46 16 00</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 51 13 00</td>
<td>31 23 19 00</td>
<td>Piped Utilities Basic Materials And Methods</td>
</tr>
<tr>
<td>33 51 13 00</td>
<td>33 11 13 23a</td>
<td>Water Distribution</td>
</tr>
<tr>
<td>33 51 13 00</td>
<td>33 01 30 73</td>
<td>Sanitary Sewerage</td>
</tr>
<tr>
<td>33 51 13 00</td>
<td>33 41 13 00</td>
<td>Ground-Loop Heat-Pump Piping</td>
</tr>
<tr>
<td>33 51 13 00</td>
<td>31 05 13 00a</td>
<td>Subdrainage</td>
</tr>
<tr>
<td>33 51 13 00</td>
<td>33 01 30 73d</td>
<td>Storm Drainage</td>
</tr>
</tbody>
</table>
SECTION 34 11 93 00 - BALLASTED TRACK

1.1 GENERAL

A. Description
 1. This specification covers the furnishing and installation of timber ties, tie plates, rail fasteners, and tiescrews for other than special trackwork; loading, transporting, unloading. Products shall match existing materials and/or shall be as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Definitions: Surfacing track: Raising and aligning track.

C. Quality Control
 1. Source quality control: If ballast appearance changes, visually inspect production site immediately before shipping first batch of ballast having that changed appearance.
 2. Construction equipment: Subject to inspection and acceptance by the Owner.
 a. Ballast roller: Self-propelled, pneumatic-tired, and not lighter than nine tons.
 b. Ballast compactor: Vibratory, be not lighter than 2-1/2 tons, and be capable of applying a dynamic load of nine tons. Ensure that control of compactor's tamping cycle will induce maximum uniform compaction.
 c. Ballast tamper: Production type having not fewer than 16 squeeze-type vibrating tamping heads, and have construction buggy and automatic liner.
 d. Ballast equalizer: Have rubber broom brushes; Tamper (Div. Camron Corp.) Model BEB-17, or accepted equivalent.
 e. Vibrator/compactor for shoulder and crib: Acceptable to the Owner.

1.2 PRODUCTS

A. Ballast: Crushed granite or granite gneiss satisfying AREA specification for size No. 4, except percentage of wear of processed ballast, tested in the Los Angeles machine, shall be not more than 45 percent.

B. Timber Ties: New; preserved; either oak, Lophira Alota, or Lophira Procera; and conform to AREA MRE Chapter 3, Part 1. Ties shall be seven inches thick by nine inches wide, plus one inch, minus 1/4 inch, both between points 12 inches from each end of tie. Ties shall be Boulton-treated or air-dried to an oven dry moisture content of not more than 50 percent before being preserved, unless ties are released for treatment by the Owner before ties have attained specified moisture content.
 1. Anti-splitting device: 18 gauge, six-inch by eight-inch; either Portec Inc.'s, Railway Products Division Gang-Nail Protection End Plate or fluted spiral-threaded steel dowel 1/2 inch diameter by 7-3/4 inches long, or accepted equivalent.
 2. Preservative: 60/40 creosote-coal tar solution (Grade C) conforming to AREA MRE Chapter 3, Part 7.
 3. Fabrication
 a. Saw top, bottom, sides, and ends of ties.
 c. Anti-splitting device: Applied before tie is seasoned.
 1) If device will be a plate, install plate at each end of each tie.
 2) If device will be a dowel, install two dowels between four and six inches from each end of each tie, one dowel two inches from top surface, and one dowel two inches from bottom surface.
 a. Preserve fabricated tie only after tie has been inspected and released for treatment by the Owner, only after preservatives have been tested by an accepted independent testing laboratory, and in the presence of the Owner if the Owner so elects.
 b. Preserve fabricated ties either to refusal or until ties retain not less than eight pounds of solution per cubic foot.
 c. Record treatment as specified in AREA Records of Treatment and Reports of Inspection.
 d. Ties will be inspected by the Owner before ties are loaded for shipment. Tie will either be released for shipment or rejected at that time.

C. Rail Fastener And Anchorage Assembly
 1. Rail fastener: L. B. Foster Co.’s Transit Div.’s Type H-10, or accepted equivalent.
 2. Anchorage assembly: Timber screws; steel, 7-1/2 inches long with 0.875 inch diameter shoulder and square head; Camcar Div. of Textron Industries, Inc.’s 3/4-4 Interior Torx Truss Square Head, or accepted equivalent.

D. Tie Plate And Anchorage Assembly
 1. Tie plate: Seven-inch wide by 14-inch, rubber-impregnated fiber, double-shoulder type; The Johnson Rubber Co., or accepted equivalent.
 2. Track spike: Arthur Railroad Spikelock Corp.’s Spikelock, or accepted equivalent.
 3. Track spike insulator: Nylon conforming to ASTM D789, Type 1, Grade 2, and resistant to ultraviolet rays.

1.3 EXECUTION

A. Examination
 1. Examine exposed conduit, conduit stub-ups, and drainage fittings for conformance to vertical and horizontal positioning and interface with surface mounted electrical appurtenances.
 2. Examine alignment and elevation of existing work for interface with work of this Section. Use bench marks and horizontal control points established by the Owner. Report adjustments at interfaces with existing work, to produce alignment and elevations indicated for work of this Section, to the Owner for resolution before work of this Section is started.

B. Preparation: Stake out centerlines of track and curvature points. Set top of rail elevation markers at 31-foot intervals along centerline of track.

C. Installation
 1. Uniformly distribute a 1-1/2-inch layer of ballast on approach slabs and on ballasted deck aerial structures. Roll ballast to the extent that ballast will be seated in asphaltic concrete approximately 1/2 inch.
 2. Initial ballast
 a. Uniformly distribute ballast to the extent that thickness of each layer of compacted ballast will be four inches. Arrange top of initial layer of ballast to be not less than four inches below surface of final ballast.
 b. Uniformly spread each lift of ballast with not less than four passes of either a roller or compactor.
 3. Concrete ties: Place ties on 30-inch centers in primary track and at crosswalks, on 33-inch centers in secondary and yard tracks, and on 20-inch centers at insulated joints.
 a. Place ties in a manner which will ensure that bottom of each tie will bear fully on initial layer of ballast and be normal to track centerline.
 b. Arrange ends of concrete ties containing contact rail bracket anchor inserts to be on contact rail side and ends of ties on line side of track to be equidistant from rail.
c. Place tie pads on concrete tie between rail shoulders.

4. Timber ties: Place ties on 18-inch centers at hi-rail access and on 19-3/16-inch centers at grade crossing.
 a. Place ties normal to centerline of track, with wider heartwood facing downward, and with ends on line side of track equidistant from centerline of track.
 b. Place tie plate square with CWR and centered on timber ties to final rail line and gauge within limits of grade crossing. Place rail fasteners square with CWR and centered on timber ties to final rail line and gauge within limits of hi-rail access.
 c. Drill 1/4 inch diameter holes through installed timber ties for track spikes and timber screws, and coat surfaces of drilled holes with pentachlorophenol. Anchor rail fasteners and tie plates with timber screws to ties. Tighten timber screws to torque specified by screw manufacturer.

D. Surfacing: Place ballast in cribs and at shoulders of track, and in quantities which will fill tie cribs, be sufficient for initial track raise, and hold track after initial track raise.
 1. Surface track by methods which will neither bend rail, strain joints, nor damage rail fastenings. Tamp ballast on both sides of tie simultaneously, from points 15 inches inside both rail centers to ends of tie. Limit each track lift to not more than four inches. Initially raise track to an elevation which will ensure that a final raise of neither less than one inch nor more than three inches will bring track to final surface.
 2. Remove ties and fastenings made unserviceable, in the opinion of the Owner, during surfacing operation and install new ties and clips.
 3. Dress ballast to the extent that ballast between ties will be level and one inch below base of rail, and that ballast at shoulder will be compacted and sloped as indicated.
 4. Place plugs in holes in which contact rail assembly inserts have not been placed.

END OF SECTION 34 11 93 00
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 34 11 93 00a - TRACK APPURTENANCES

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of buffers. Products shall match existing materials and/or shall be as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Quality Control
1. Field quality control
a. Before installing insulated joints, have each joint installing crew prepare two samples of that joint.
b. Have an independent testing laboratory test each insulated joint sample for resistance to longitudinal pull-apart.
c. Record and certify that rail has been re-anchored within the zero stress temperature range.

2. Testing: In lieu of qualification testing of insulated joints, Contractor may submit certification by an independent testing laboratory that insulated joints have passed either the tests specified in this Article or equivalent tests. Test two samples for resistance to longitudinal pull apart, and test one sample for electrical resistance.

a. Longitudinal pull apart test
 1) Preparation
 a) Assemble bonded insulated joint complete, on two pieces of 115-pound RE rail each two feet long.
 b) Saw joint assembly in half where rails are butted together and at right angles to centroid of rail.
 c) Ensure that sawing does not overheat and damage prebonding adhesive.
 d) Affix a device which will confine the reaction at the sawn end to the face of the joint bar when a load is applied at the centroid of the rail at the opposite end.

 2) Testing
 a) Apply test longitudinally in increments of 25,000 pounds maintaining each increment until longitudinal deflection of rail ceases before increasing load to next increment.
 b) Increase load in increments until a total load of 650,000 pounds is attained or failure occurs.
 c) At each increment of loading, measure and record load, and differential movement of rail and joint bars, to nearest 0.001 inch.

 3) Acceptance criteria
 a) Stability: No indication of slippage of rail joint before total test load reaches 650,000 pounds.
 b) Differential movement in all directions: not more than 1/8 inch.
 c) Difference between original position of joint bar and rail and final position thereof after final test load has been released: not more than 1/32 inch.
 d) Basis of rejection: Failure of joint to satisfy above requirements.

b. Stroke rolling loading test
 1) Preparation: Mount bonded joint on a 33-inch stroke rolling load test machine and support on 36-inch centers; center joint.
 2) Testing: Apply 44,400 pound load on rail for 2,000,000 cycles. Measure and record deflection at rail centerline to nearest 0.001 inch when wheel load is over points A and B for every 500,000 cycles.
 3) Develop moment diagram.
 4) Acceptance criteria
a) Moment diagram envelope generated by methods other than those specified and submitted in accordance with this Section.

b) After 2,000,000 cycles: Exhibit no evidence of failure by bending of bonded insulated joint.

c) Deflection exhibited by bonded insulated joint: Not further than 0.065 inch.

c. Electrical resistance test: If specimen satisfies mechanical acceptance criteria of preceding tests, test specimen for electrical resistance; record results.

1) Preparation: Assemble bonded insulated joint complete, in accordance with manufacturer's instructions, on two pieces of 115 pound RE rail, one rail 24 inches long, the other 42 inches long. Support both rails on electrically nonconductive material.

2) Testing

a) Apply 500 volts DC to rail across bonded insulated joint for three minutes. During that time, measure and record, to nearest 0.1 ampere, current flow through joint.

b) Apply 50 volts AC to rail across joint for three minutes for each increment of measurement at frequencies of 20 hertz to 10 kilohertz in increments of 20 hertz to 100 hertz, 200 hertz to 1,000 hertz, and two kilohertz to 10 kilohertz. After three minutes, measure and record impedance within accuracy of plus or minus two percent.

3) Acceptance criteria

a) Resistance for 500 volts DC: Not less than 10 megohms.

b) Impedance for all frequencies between 20 hertz and 10 kilohertz with 50 volts AC not less than 10 megohms.

1.2 PRODUCTS

A. Insulated Joint

1. Joint bar: 36 inches long; quenched and tempered carbon steel; fabricated in accordance with AREA MRE Chapter 4, Part 1, Table 1, for 115-pound RE rail; have six, 1-1/4-inch diameter holes spaced in accordance with AREA MRE Chapter 4, Part 1, Table 1; have a length tolerance of 1/8 inch; have a straightness tolerance of 1/32 inch on 36 inches along contact surface; and have no marking on contact surface. Modify bar for rail restrained by direct-fixation fasteners.

2. Adhesive: Allegheny Drop Forge Co.'s "Temprange" or accepted equivalent.

3. Mesh: Fiberglass; Allegheny Drop Forge Co., or accepted equivalent.

4. Pin bolts and insulation for bonded insulated joint

a. Bolt: 9-1/8-inch by 1-1/8-inch diameter pin-type; ASTM A 325; Huck Corp's C50LR-BR-36-68, or accepted equivalent.

c. Collar: 1-1/8-inch diameter; ASTM A 325; Huck Corp.'s LC-2R36, or accepted equivalent.

d. Bushing: Fiberglass conforming to NEMA LI-1, Grade G10.

e. Post: High-pressure laminate conforming to NEMA LI-1, Grade CE.

5. Pin-bolts for unbonded insulated joints

b. Washer: ASTM A 325, spring steel, 1/8 inch thick, 2-1/4-inch O.D.

B. Buffer: Friction type having head modified for the Owner anti-climber; Godwin Warren Engineering Inc.'s Type 12/4, or accepted equivalent.

1. Type A: Capable of controlling the stopping of an eight-car train under the following conditions:

a. Impact force: Not more than 130,000 pounds;

b. Impact speed: 15 mph;

c. Weight per car: 81,000 pounds;
d. Rotational inertial weight per car: 7,800 pounds; and
e. 98 feet of track available for buffer installation.

2. Type B: Capable of controlling the stopping of a two-car train in the yard when that train, decelerating at a rate of not more than 0.3 g's, strikes the buffer at 15 mph; and capable of controlling the stopping of a four-car train under the following conditions:
 a. Impact force: Not more than 130,000 pounds;
 b. Impact speed: 15 mph;
 c. Weight per car: 81,000 pounds;
 d. Rotational inertial weight per car: 7,800 pounds; and
 e. 38 feet of track available for buffer installation.

3. Paint for structural steel surfaces not facing transit vehicle
 a. Primer: Either Pratt and Lambert Co.'s Rust-Inhibiting Effecto Enamel, PPG Corp.'s No. 6-208, Porter Paint Co.'s No. 297, Sherwin-Williams Co.'s Kem Kromik, or Tnemec Co.'s No. 10-99, or accepted equivalent.
 b. Enamel: Color international orange; either Pratt and Lambert Co.'s Effecto Enamel, PPG Corp.'s No. 6-252, Porter Paint Co.'s No. 400, Sherwin-Williams Co.'s Industrial Enamel B54 Series, or Tnemec Co.'s Series 2H, or accepted equivalent.

4. Paint for structural steel surfaces facing transit vehicle: Reflective type; Ferro Corp., Cataphote Division's Alert- Reflective Yellow, 3M Co.'s Scotchlite Brand Reflective Liquid, or accepted equivalent.

C. Bumper: Capable of controlling the stopping of a two-car train under the following conditions.
 1. Impact force: Not more than 150,000 pounds.
 2. Impact speed: 10 mph
 3. Weight per car: 81,000 pounds.
 4. Rotational inertial weight per car: 7,800 pounds.
 5. Striking block
 a. Adapter plate: Mild steel.
 b. Rubber block: 70 to 80 shore hardness, and adhered to adapter plate.
 6. Shock absorber: Hydraulic type having 31-1/2-inch stroke; Gantrex Corp.'s Type 15 Oleo, or accepted equivalent.
 7. Post
 a. Structural steel plates, shapes, and bars: Carbon steel; ASTM A36.
 b. Welding electrodes: AWS D1.1; E70XX.
 c. Anchor bolts: 5/8 inch and 3/4 inch diameter; ASTM A 325.
 d. Concrete forms: CONCRETE FORMWORK
 e. Concrete: PORTLAND CEMENT CONCRETE.
 f. Reinforcing bars: CONCRETE REINFORCEMENT.
 8. Paint
 a. Primer: Either Pratt and Lambert Co.'s Rust-Inhibiting Effecto Enamel, PPG Corp.'s No. 6-208, Porter Paint Co.'s No. 297, Sherwin-Williams Co.'s Kem Kromik, or Tnemec Co.'s No. 10-99, or accepted equivalent.
 b. Enamel: Color international orange; either Pratt and Lambert Co.'s Effecto Enamel, PPG Corp.'s No. 6-252, Porter Paint Co.'s No. 400, Sherwin-Williams Co.'s Industrial Enamel B54 Series, or Tnemec Co.'s Series 2H, or accepted equivalent.

D. Rail Lubricator: Moore and Steele Corp.'s Model No. DR-4 (561), or accepted equivalent.

E. Car Stop: L. B. Foster Co.'s Figure X, or accepted equivalent.

1.3 EXECUTION

A. Insulated Joints
1. Preparation: If rail brand exists where joint bar will touch CWR, remove rail brand. Calibrate bolt-tightening and -swaging tool by testing three typical bolts in a device capable of indicating actual bolt tension.

2. Installation
 a. Drilling: Position holes in accordance with AREA MRE Chapter 4, Part 1, Table 1. Drill 1-3/8-inch diameter holes; use template as a drilling guide.
 b. Install joint bar, adhesive, fasteners, and insulating materials in accordance with manufacturer's printed recommendations except install no adhesive at joints at Stations.
 1) Bonded insulated joint: Drive pin bolts with tool capable of swaging collars to the extent that bolts may be adjusted. Set tool to produce not less than 56,000 pounds tension in pin bolts, to swage collars into annular locking grooves, to form collar, and to ensure that bolts will conform to grip range limits recommended by bolt manufacturer.
 2) Unbonded insulated joint: Tighten each track bolt to 25,000 pounds, starting from middle of joint and working to the ends.
 c. Ensure that joint products and rail fasteners do not touch each other.
 d. Center insulated joints not less than five inches from edge of tie and rail fastener.
 e. Attach grounding cable, to base of each CWR, immediately adjacent to joint at Stations.
 f. Tolerances from design dimensions.
 1) Bonded insulated joint bar
 a) Finishing height: 1/64 inch.
 b) Length: 1/8 inch.
 c) Straightness, as determined by use of a 36-inch straightedge: 1/32 inch.
 2) Bonded insulated joint end post
 a) Thickness: Plus 1/16 inch, minus zero inch.
 b) Projection below base of rail: 1/16 inch.

4. Remove clamps, flexible ground cables, fasteners, and joint bars from joints at Stations; deliver those products to the Owner’s Yard.

B. Buffers: Install buffers in accordance with manufacturer's printed instructions, and with four sets of trailing shoes set at a torque of 100-foot pounds, except that friction buffer at Station shall be installed with two sets of trailing shoes set at a torque of 150-foot pounds. Installed buffers shall be inspected by manufacturer's representative and, if approved by that representative, commissioned by that representative.
 1. Dismantle buffer at Stations, and temporarily install buffer at Station.
 2. Install new buffers at Stations.
 3. Install friction buffer at Station.
 4. Cleaning and painting
 a. Clean surfaces to be painted; wash surfaces with mineral spirits, and dry. Open drain holes in structural framework. Wire brush or blast unpainted ferrous surfaces to white metal.
 b. Apply paint with clean and operable equipment and tools as soon as practicable after surfaces have been prepared; wet film shall cure to specified dry film thickness.

C. Bumper
 1. Weld in accordance with AWS D1.1.
 2. Form concrete in accordance with CONCRETE FORMWORK. Place concrete reinforcement and concrete in accordance with CONCRETE REINFORCEMENT, and CAST-IN-PLACE CONCRETE, respectively. Finish exposed concrete in accordance with UNFORMED-CONCRETE FINISHES.
 3. Cleaning and painting: Clean and paint posts and framework as specified.
D. Rail Lubricator: Install lubricator in accordance with manufacturer’s printed instructions.

E. Car Stops: Install stops in accordance with stop manufacturer’s printed installation instructions. Install one stop three feet from end of shorter rail behind each buffer, and install one stop directly opposite that stop.

END OF SECTION 34 11 93 00a
SECTION 34 11 93 00b - RAILROAD TRACK AND ACCESSORIES

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of railroad track and accessories. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals: Submit the following.
1. Shop Drawings
 a. Turnouts
 b. Road crossings
 c. Car bumper
 d. Railroad crossings
 e. Layout drawings
2. Product Data
 a. Rails
 b. Wood ties
 c. Precast concrete ties
 d. Tie plates
 e. Tie pads
 f. Track bolts, nuts, and spring washers
 g. Standard, compromise, and insulated joint bars
 h. Rail anchors
 i. Rail clips and fasteners
 j. Track spikes
 k. Turnouts
 l. Pre-manufactured road crossings crossing surfaces
 m. Car bumper
 n. Wheel stops
 o. Derails
 p. Gage rods
 q. Switch point protectors
 r. Switch stands
 s. Geotextile fabric
3. Test Reports
 a. Ties preservative treatment
 b. Ballast tests
4. Certificates
 a. Rail welding procedures
5. Operation and Maintenance Data
 a. Rails
 b. Accessories
 c. Pre-manufactured road crossings
 d. Turnouts

C. Temporary Work: During construction, provide suitable roads and crossing with necessary lights, signs, drainage, and other appurtenances required for safe public and local travel. Erect and maintain suitable temporary fences where required to prevent trespass upon work or damage to adjoining property. Maintain drainage and prevent accumulation of water that might affect roadbed stability.
D. Quality Assurance

1. Layout Drawings: Submit for approval by the Owner before work is started. Do not prepare layout drawings until field surveys and measurements are completed. Do not order materials until layout drawings are approved. Include on layout drawings locations of turnouts, various sizes of rail, compromise joints, and locations of rail accessories.

2. Ties Preservative Treatment: Ties shall be marked in accordance with American Wood-Preservers’ Association (AWPA) M6 and inspected in accordance with AWPA M2, for conformance with the specified AWPA Standards, by an independent inspection agency approved by the Owner. The agency’s report of inspection shall accompany delivery of the ties, and shall be provided to the Owner’s representative.

1.2 PRODUCTS

A. Ballast, Subballast and Geotextile

1. Ballast: Crushed stone Size No. 3, 4, 4A, 5, or 57 conforming to American Railway Engineering Association (AREA) 1-2 for quality, soundness and gradation. Ballast materials shall meet the property requirements shown in Table I.

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Max. Value</th>
<th>Min. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Passing (No. 200) Sieve</td>
<td>ASTM C 136</td>
<td>1.0 percent</td>
<td></td>
</tr>
<tr>
<td>Bulk Specific Gravity - Rock</td>
<td>ASTM C 127</td>
<td></td>
<td>2.60</td>
</tr>
<tr>
<td>Absorption - Rock</td>
<td>ASTM C 127</td>
<td></td>
<td>2.0 percent</td>
</tr>
<tr>
<td>Clay Lumps and Friable Particles</td>
<td>ASTM C 142</td>
<td>0.5 percent</td>
<td></td>
</tr>
<tr>
<td>Degradation</td>
<td>ASTM C 131</td>
<td>35 percent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM C 535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soundness</td>
<td>ASTM C 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Sulfate - 5 Cycles</td>
<td></td>
<td>10 percent</td>
<td></td>
</tr>
</tbody>
</table>

2. Subballast: Consists of aggregate-soil mixtures conforming to an ASTM D 1241 Type I, Gradation A OR B, OR C, OR D, as directed, mixture as approved.

3. Geotextile Fabric: Consists of a needle-punched nonwoven material that provides a permeable layer, planar flow, and tensile reinforcement, while retaining the soil matrix. Fabric shall be inert to commonly encountered chemicals, mildew, rot, insects, rodents and shall be treated to resist degradation caused by exposure to sunlight. Fabric will conform to the properties in Table II.
TABLE II - MINIMUM PROPERTY REQUIREMENTS - GEOTEXTILE FABRIC

<table>
<thead>
<tr>
<th>Fabric Property</th>
<th>Test Method</th>
<th>Minimum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab Tensile Strength, (lbs)</td>
<td>ASTM D 4632</td>
<td>175</td>
</tr>
<tr>
<td>Grab Tensile Elongation, percent</td>
<td>ASTM D 4632</td>
<td>20</td>
</tr>
<tr>
<td>Coefficient of Water Permeability, (cm/sec)</td>
<td>ASTM D 4491</td>
<td>0.10</td>
</tr>
<tr>
<td>Puncture Strength, (lbs)</td>
<td>ASTM D 3787*</td>
<td>110</td>
</tr>
<tr>
<td>Mullens Burst Strength, (psi)</td>
<td>ASTM D 3786</td>
<td>400</td>
</tr>
<tr>
<td>Apparent Opening Size (AOS) (U.S. Standard Sieve)</td>
<td>COE CW 02215</td>
<td>70</td>
</tr>
</tbody>
</table>

*Tension testing machine with ring clamp; steel ball replaced with a 5/16-inch diameter solid steel cylinder, with flat tip and beveled edges, centered within the ring clamp.

B. Rails: New, minimum 115 pound RE section conforming to AREA 4-2. Provide in 39 OR 78, as directed, foot lengths. Provide no closure pieces less than 13 feet. Bend in shop curved rail to proper radii, where degree of curvature exceeds 18 degrees.

1. Relayer Rail: Ninety pounds or heavier up to 136 pounds. Characteristics shall conform to requirements of MIL-R-3911 as modified in Table III:

TABLE III - RELAY RAIL CHARACTERISTICS

Minimum Weight per Yard (original (lbs)):	(90 to 136)
Wear: Max. top wear (in.):	(3/16)
Wear: Max. side wear (in.):	(1/8)
Length: As ordered but not less than (13 feet).	
Defects permitted: None	
Max. Lip (in.): (1/16)	

2. Relayer rail shall be of the same section and drilling pattern throughout the project, except that the drilling pattern for bolt holes at turnouts shall be as indicated. No mingling of new and relayer rail will be permitted, and all relayer rail of the same section and drilling pattern shall be kept together in one area.

C. Wood Ties: Except as otherwise noted, ties shall be in accordance with FS MM-T-371, Types II cross ties and III switch ties, treated in accordance with AWPA C6. Species shall be as listed in FS MM-T-371 except that species shall not be mixed in a charge or bundle. Each treated piece shall be permanently marked or branded, by the producer, in accordance with AWPA M6. All ties except Southern, red, and ponderosa pine shall be incised prior to treatment. Splits shall not be longer than 4 inches nor wider than 1/4 inch at either end. Splits longer than 4 inches but not longer than the width of the face in which the split appears shall be acceptable if anti-splitting devices are installed with splits compressed. S-irons, dowels, and end plates are acceptable anti-splitting devices. Treatment shall be verified by an approved independent inspection agency report. Note: When the Owner inspections result in product rejection, the Contractor shall promptly segregate and remove rejected material from the premises. the Owner may also charge the Contractor additional cost of inspection or test when prior rejection makes reinspection or retest necessary.

2. Switch Ties: Size: 7 inches thick by 9 inches wide. Length and quantities as indicated.
3. Tie Plugs: Conform to AREA 3-1. Treat plugs with creosote-coal-tar solution of 8 pounds per cubic foot in accordance with AWPA C6. Provide plugs to fit holes from which spikes are drawn.

D. Precast Concrete Ties: Provide in the dimensions indicated, designed and manufactured in accordance with AREA 10. Provided by manufacturers regularly engaged in the manufacture of precast concrete ties and essentially duplicate items that have been in satisfactory use at least 2 years prior to bid opening.
1. **Tie Plates:** Provide new or used tie plates in good condition conforming to AREA 5-1. Provide plates of the dimensions and punching pattern to fit the rail. Relayer (used) tied plates provided shall have no deformities or cracks, a minimum amount of surface rust, no pitting in excess of 1/16 inch deep, no cutters (bottom ribs), 1:40 cant on rail seat area, a maximum of 1/8 inch wear on seat section and physical dimensions in accordance with AREA 5-1. The relayer tie plates may be repunched to accept base of existing rails but no slotting shall be accepted. New holes must have one inch clearance from closest existing hole and no hole shall be punched on the shoulder side of tie plate. Relayer tie plates shall be approved on individual basis by the Owner.

E. **Tie Pads:** Conform to AREA 10 for use with precast concrete ties.

F. **Track Bolts, Nuts, And Spring Washers:** Provide new throughout the project. Provide oval-neck, heat-treated, carbon-steel track nuts and carbon-steel track bolts conforming to AREA 4-2. Spring washers shall conform to AREA 4-2 and shall be of the size to fit the bolt and nut used and a minimum of 1/2 inch thick.

G. **Joint Bars:** Provide new or used joint bars in good condition conforming to AREA 4-2. For new construction, provide bars of the "toeless" head free type, of the size, shape, and punching pattern to fit the rail. Joint bars shall be 24 inches OR 36 inches, as directed, long and have four OR six, as directed, bolt holes. For repair work, provide head-contact joint bars. Contractor shall verify the punching pattern of existing rail before ordering joint bars.

H. **Compromise Joint Bars:** Provide new, conforming to AREA 4-2, for changes in rail size or where rail drilling differs. Compromise joints shall be angle bar type of forged or cast steel accurately machined to properly align the combination of rail sections indicated. Steel shall have physical properties equal to or exceeding AREA specifications for those of standard rolled steel joints. Joints shall be manufactured by an established track appliance manufacturer.

I. **Track Spikes:** AREA 5-2 for track spikes, size 6 by 5/8 OR 5 1/2 by 9/16, as directed, inches. Provide new spikes throughout the project.

J. **Rail Clips And Fasteners:** Provide single tight fit clips with fillers as necessary to fit rail section furnished. Clip or fastener design shall anchor rail against longitudinal movement.

K. **Accessories**
 1. **Rail Anchors:** Standard manufacture as approved and of the size to fit the rail section. Where special installation tools are required, furnish a minimum of one tool for each 2,000 anchors.
 2. **Gage Rods:** Provide Type A gage rods of 1 1/4 inch round steel rods with double adjustable clamps at both ends, suitably sized for use with the standard rail section furnished. Provide Type B gage rods of 1 1/4 inch round steel rods with a hook at one end and a single adjustable clamp at the other end, suitably sized for use with the standard rail section furnished. Use the product of a manufacturer who is regularly engaged in the manufacture of steel gage rods.
 3. **Switch Point Guard-Rail Type Protectors:** Guard-rail type, standard manufacturer's product of heat-treated rail OR manganese steel, as directed, and of size to fit rail section furnished. Protectors shall be bolted to rails.
 4. **Flangeway Guard:** Flangeway guard assembly shall include steel casting blocks, hook bolts, set bolts, and steel angle. The steel casting blocks and hook bolts shall be sized and provided to fit the rail section furnished and shall be a standard manufacturer's product, designed and constructed for use as a flangeway guard in railroad applications in pavement. Provide and secure steel angles to the steel casting blocks by the set bolts as indicated; other steel shapes shall not be substituted for steel angles shown. Prior to paving, the flangeway guard shall be coated with two coats of an asphalt varnish applied to a dry-film thickness of at least two mils total thickness.
5. Wheel Stops: Cast steel of double wedge design, and of standard commercial manufacture for the purpose.

6. Derails: Conform to MIL-D-11302 and satisfactory for use with the weight rail specified. Provide derails at locations and in numbers indicated or specified. Complete unit shall weigh not less than 100 pounds.

7. Car Bumper Post: Standard product of a commercial manufacturer of railroad accessories. Post shall be made from structural steel sections arranged for attachments to the rails by bolting, and located so that the thrust will be transmitted through the cross ties to ballast and earth. Post shall consist of a head to accept horizontal thrust of the car couple and transmit it to tension members and compression members having at least a moment of inertia not less than 17.1. Complete unit shall weigh not less than 800 pounds.

L. Oil: Oil for rail and other track materials, except joints, shall conform to the following:
 1. Flash point: minimum 130 degrees F, ASTM D 1310.
 2. Asphalt: 100 penetration, minimum 45 percent.

M. Electrodes: Provide AWS low-hydrogen, high-tensile 140-16 (extrapolation) or 25-20 electrode, Grade 310-16 and 310-15 stainless steel rod welding electrodes. Provide electrodes of the smallest practical diameter worked at the lowest compatible current. Coating on low-hydrogen type electrodes shall be thoroughly dry when the electrode is provided. Use electrodes taken from hermetically sealed packages within one hour of the time the package is opened. Electrodes not used within this one-hour period and electrodes taken from non-hermetically sealed packages shall be dried for at least one hour between 700 and 800 degrees F. Electrodes so dried may be stored at temperatures between 225 and 400 degrees F until used, or, if not stored and not used within one hour after this drying is completed, shall be re-dried before use. Do not use electrodes which have been wet.

N. Turnouts: Component parts of the turnouts to be furnished shall be the products of manufacturers regularly engaged in the manufacture of such products, and shall essentially duplicate items that have been in satisfactory use at least 2 years prior to bid opening. The parts need not all be made by the same manufacturer, but each turnout shall be the product of a single firm. Provide complete, including all track materials and switch ties in accordance with appropriate area trackwork plan. Switch assemblies, stands, rigid bolted frogs, and guard-rail assemblies shall conform to AREA PTWP (Portfolio of Trackwork Plans). One switch point in each turnout shall be manganese tipped in accordance with AREA PTWP Plan 220-52-E-82, installed on the side opposite the turnout side of the switch. Rail used in turnout shall be new end hardened, minimum 115 pound RE section, drilled for four OR six, as directed, holes. Bend in stock rail shall be in accordance with AREA.
 1. Turn Out Plates: Provide plates and rail braces in strict accordance with the current AREA trackwork plan governing the turnout with respect to the number of the turnout. Provide turnout plate system complete with slide plates, heel plates, guard rail tie plates, hook twin tie plates, including those for the frog, rail braces, standard tie plates or other accessories required to complete the installation. Hook twin tie plates shall be in accordance with AREA PTWP, Plan 241-85. Gage plates shall be solid. Rail braces shall be either fixed or adjustable type of standard manufacture.
 2. Switch Stands: Low-stand type, adjustable from top with shims through a moveable cover and a replaceable double crank of malleable iron, complete with reflectorized red and white aluminum target minimum thickness 14 gage, self-locking connecting rod, reversible target tip arm crank, parallel throwing latch and interchangeable parts. Each stand shall be equipped with one of the following switch lamps as indicated:
 a. Reflecting type: Approved reflecting switch lamps fitted with standard commercial-type double red and white reflecting lenses but without day signal targets.
 b. Reflecting type with daylight disk: Approved reflecting switch lamps fitted with standard commercial-type double red and white reflecting lenses, and with approved day signal targets.
c. Illuminated type: Approved illuminated lamps with primary battery, battery housing, and cable.

O. Road Crossings
1. Bituminous, Wood or Treated Timber Crossings: Wood and treated timber material for road crossing shall conform to AWPA C6. Bituminous crossings shall conform to Division 2 Section "Hot-Mix Asphalt Paving."
2. Rubber Railroad Crossings: Manufacturers standard product for a rubber railroad crossing consisting of manufactured panels of full depth rubber or partial depth panels of rubber and steel conforming to the following requirements:
 a. Partial depth panels shall be reinforced with steel plates, arches, or post tensioned cable fully encased in the rubber. Post tensioned cables shall be encased with a polycarbon material before rubber encasement.
 b. Rubber hardness of 55 to 80 (tested in accordance with ASTM D 2240, Durometer A).
 c. Rubber tensile strength of 1000 psi to 2500 psi (tested in accordance with ASTM D 412).
 d. Rubber elongation of 100 to 400 percent (tested in accordance with ASTM D 412).
 e. Headers shall be manufacturer's standard rubber header.
 f. Shims shall be hardwood, treated with creosote in accordance with AREA 3-1, for lumber and timber in ground contact.
 g. Materials for securing the crossing shall be as recommended by the rubber crossing manufacturer.
 h. Provide components pertinent to each manufacturer's system to provide each rubber railroad system complete and ready for use.

1.3 EXECUTION
A. General Trackwork: Perform track construction not covered specifically herein in accordance with AREA MRE (Manual for Railway Engineering (Fixed Properties) recommended practices.

B. Subgrade Preparation: Obtain approval of roadbed surface, grade, and drainage prior to distribution of construction material. Provide equipment that will not form ruts or water pockets when distributing material over the finished road bed. Where subgrade or road bed surface is damaged, perform repairs including regrading and recompaction in accordance with Division 2 Section "Earthwork."

C. Ties
1. Wood Ties: Space cross ties 24 to the 39 foot rail for mainlines, access tracks or other tracks where the movement may be classified as heavy. Space cross ties 20 to the 39 foot rail for body tracks in yards, sidings, running tracks and access tracks where the movement is not classified as heavy. Space switch ties and bridge ties as indicated. Use oak cross ties in road crossings. All curved track should have oak ties installed. All curved track should have as a minimum 6 oak ties spaced uniformly among the number of ties required. Lay ties normal to the centerline of the track with the wide heartwood face down. Provide the best ties at rail joints. Do not move or place ties with picks, shovels, mauls, sledges, or spiking hammers. Make ends of ties on one side of the track parallel to the rail so that center of tie will be on the approximate centerline of the track. Align the ends on the inside of curves and continue on that side until reaching a curve in the opposite direction. On double tracks, align the ties on the outside ends. Provide full bearing for tie plates. Restrict adzing to that necessary to provide a sound true bearing for the tie plate. Where necessary to adz, dap or drill holes in the timber tie. Saturate cut surface with creosote or other approved preservatives.
2. Precast Concrete Ties: Provide ties in accordance with AREA 10.

D. Tie Plates: Place tie plates with full bearing on the tie. Tie plates shall be free of dirt and other foreign material when installed. Set tie plates at right angles to the rail with the outside shoulder against the
base of the rail, and centered on the tie. Place tie plates so that the rails will have full bearing on the plate and the plate will have full bearing on the tie.

E. Tie Pads: Place pad on concrete tie so that rail will have full bearing on tie pad.

F. Rails: Clean base of rail and tie plate prior to laying. Lay rails without bumping or striking to standard gage 4 feet 8 1/2 inches on tangents and on curves up to 12 degrees. Widen gage on curves greater than 12 degrees, 1/8 inch for each additional increment of 2 degrees above 12 degrees to a maximum gage of 4 feet 9 inches. Gage the track normal to the rails at joints, centers, and quarters as spikes are being driven. Stagger joints in opposite rails not less than 13 feet apart, except closer joints may be required at turnouts or insulated joints. Rails of less than standard length may be used, but no less than 13 feet, to space the joints on curves. No joint shall be less than 6 feet from the ends of open-deck bridges, or less than 3 feet from switch points. Do not install joints within 20 feet of a road crossing, outer perimeter of structure, or location which restricts access to the joint. Where joints are required in these areas, the joints shall be welded. Provide allowance for thermal expansion at bolted rail joints by using rail-expansion shims of wood, fiber, or metal. Remove shims to within 12 rails of the laying. Provide shims of the thickness, based upon rail temperature during construction, as shown in Table IV. Determine the temperature of the rail by use of a thermometer placed on the base of the rail in the shade. Use rail saws to cut rail. Drill new holes. Holes cut with a torch will not be acceptable. Adjacent relayer rails shall be matched to prevent lipped or uneven joints, and any mismatched rail ends shall be ground or built-up welded.
TABLE IV - SHIM THICKNESS

<table>
<thead>
<tr>
<th>Rail Temperature, Degrees F</th>
<th>Rail Shim Thickness, Inches</th>
<th>Rail Temperature, Degrees F</th>
<th>Rail Shim Thickness, Inches</th>
<th>Rail Temperature, Degrees F</th>
<th>Rail Shim Thickness, Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below -10</td>
<td>5/16</td>
<td>Below 6</td>
<td>5/16</td>
<td>Below 35</td>
<td>5/16</td>
</tr>
<tr>
<td>10 to 14</td>
<td>1/4</td>
<td>6 to 25</td>
<td>1/4</td>
<td>35 to 47</td>
<td>1/4</td>
</tr>
<tr>
<td>15 to 34</td>
<td>3/16</td>
<td>26 to 45</td>
<td>3/16</td>
<td>48 to 60</td>
<td>3/16</td>
</tr>
<tr>
<td>35 to 59</td>
<td>1/8</td>
<td>46 to 65</td>
<td>1/8</td>
<td>61 to 73</td>
<td>1/8</td>
</tr>
<tr>
<td>60 to 85</td>
<td>1/16</td>
<td>66 to 85</td>
<td>1/16</td>
<td>74 to 85</td>
<td>1/16</td>
</tr>
<tr>
<td>Over 85</td>
<td>None</td>
<td>Over 85</td>
<td>None</td>
<td>Over 85</td>
<td>None</td>
</tr>
</tbody>
</table>

G. Joint Bars: Coat clean joint bars with petroleum or petroleum based compound with a corrosion inhibitor. Rail joints shall be installed so that the bars are not cocked between the base and head of the rail. Base shall be properly seated in the rail and the full number of correct-size bolts, nuts, and spring washers installed. Apply corrosion resistant grease to the bolt threads prior to application of nuts. Place bolts with nuts alternately on inside and outside of rail and draw tight before spiking. Bolts shall be tightened at the center of the joint and working both ways to the ends of the joint. At initial tightening, make bolt tension 20,000 to 30,000 lbs/bolt. After track has been in service and before acceptance of the work, check all bolts and tighten. Allow two threads of all bolt lengths to protrude from the nut after tightening. Connect rails of different sections by properly fitting compromise joint bars. The mismatch for compromise joints for either tread surface or gage side alignment shall not exceed 1/16 inch.

H. Welding Joints
1. Welded Rail Joints: Properly clean rails of foreign substances such as dirt, grease, loose oxide, and slag, prior to welding. Rail ends shall be properly aligned with the provisions for proper joint gap, and lateral and vertical positioning of the rail ends. Proper joint gap and positioning of rail ends shall be in accordance with the recommendations and specifications of the manufacturer and supplier of the particular welding process used, all subject to prior approval by the Owner. Weld rail in an approved manner and by workmen familiar with the welding method used. Do not weld when the rail temperature is lower than that recommended for the welding method used. Welding together of rails which have been drilled for bolted joints will not be permitted. Rail joints except those joints at fittings shall be welded. Use the thermite self-preheat method OR manual shielded-arc welding method, as directed.
 a. Thermite Self-Preheat Method: See Division 34 Section "Welding Crane And Railroad Rail-thermite Method" for specifications.
 b. Manual Shielded-Arc Welding Method: Use this process in accordance with applicable provisions of the AWS WHB-2 CH 2 and the following instructions:
 1) Rail end preparation: Bevel the ends of the rails at approximately 35 degrees full bevel on the head, 35 degrees double bevel on the web, and 35 degrees full bevel on the upper side of the base. Retain a narrow "nose", approximately 1/16 inch, of the original rail-end face across the base and up the web following the beveling operation, to permit proper alignment of rail ends. When beveling with a torch, first preheat each rail end to 500 degrees F. After torch cutting, grind off scale and oxides. Grind level faces only after preheating. Use proper grinding wheel and speed to avoid grinding "burns" or formation of "hard spots" from localized overheating.
 2) Alignment of rails: Align the beveled rail ends, allowing approximately 1/8-inch root clearance, and place a copper shim under the joint opening. Clamp the rails during the welding with up to 1/4-inch vertical camber (ends high) in four feet, centered over the joint to compensate for contractional distortion.
3) Preheating joints: Preheat the joint area to approximately 500 degrees F for a distance of 6 to 8 inches on each side of the joint, using a suitable heat source such as an oxy-acetylene or propane torch.

4) Arc welding: Initiate welding of the joint immediately after preheating in the following sequence: base, web and head. Weld alternately on both sides of the base and web. Do not entrap foreign material, such as slag, in the weld. Ground, chip, or arc-air the root of the initial weld to sound metal before welding is started from the second side. Maintain a 500 degrees F to moderately higher interpass temperature. Proceed with welding until the joint is completed and sufficient metal has been deposited to permit grinding to finish contour in the head area. Provide slight reinforcement of the web and top of base areas.

5) Postheating of welds: Postheat the joint area to approximately 700 degrees F immediately after the welding operation, using the same technique for preheating. After postheating, protect the weld area against rain and snow and cool as slowly as possible by covering with an insulating blanket.

6) Grinding of welds: Remove the excess deposited weld metal from the sides and top of the rail head using a heavy-duty grinder. Grind the area smooth, finishing closely as practical to the original contour. Use proper grinding wheel, speed, and rate of metal removal to avoid grinding "burns" or formation of "hard spots" from localized overheating. Exercise care to prevent grinding cracks.

7) Temperatures: Measure the temperatures as indicated herein by temperature pencils.

c. Electric Flash-Butt Method: Welding process shall conform to applicable provisions of AREA 4-2.

I. Spiking Wood Ties: Spike rail promptly after laying. Do not remove gage until spikes are driven. Start and drive spikes vertically and square with the rail and allow about 1/8 inch space between spike head and rail base. Provide four rail-holding spikes on each tie on tangent track and on curved track up to 6 degrees of curvature; spikes being staggered with outside spikes in each tie near the same edge, and inside spikes near opposite edge of tie with position of spikes the same on ties requiring four spikes. Provide six rail-holding spikes on each tie on curves of larger than 6 degrees of curvature, one on outside and two on inside of each rail. Provide eight rail-holding spikes on each tie through road crossings. At joints, hold rail in place by reversing the normal position of the spike when it is driven.

1. Plate Holding Spikes: Plate holding spikes shall have pilot holes predrilled in accordance with AREA 3-1. Swab field-drilled pilot holes with creosote prior to spiking.

2. Tie Plugs: If spikes are withdrawn, swab the holes with creosote and plug with creosoted tie plugs of proper size to fit the hole. If spikes are withdrawn and spikes are to be re-inserted in existing spike holes, the holes shall be swabbed with creosote and plugged with creosoted tie plugs prior to re-driving the spike.

J. Fastening Concrete Ties: Install fastenings for concrete ties in accordance with manufacturer's recommendations. Protect exposed portions of fasteners from corrosion.

K. Turnouts And Crossovers: Locate turnouts and crossovers as indicated. Frog, switch, and guard-rail assemblies shall be complete. Accurately bend stock rails. A switch point protector shall be provided at each switch, on the rail as required to meet project requirements. Place headblocks at right angles to the main track and securely spike. Except where directed otherwise, set switch stands on the closed-point side when the switch is in normal position. Adjust switches properly. Swab turnout fixtures with oil. Changes in rail section will not be permitted within the limits of switch ties.

L. Accessories

1. Rail Anchors: Locate as indicated. Apply 16 anchors per 39 feet of rail in the pattern indicated in accordance with AREA recommendations for "Light Density Lines" in AREA 5. Distribute anchors uniformly along rail without application on joint ties. Install rail anchors on gage side of rail against same tie face on opposite rails. Rail anchors shall grip the base of the rail firmly and shall
have full bearing against face of tie. Rail anchors shall not be removed by driving them along the rail. Rail anchors shall not be applied to track on an open-deck bridge. Where anchors are applied on track approaching an open-deck bridge, every third tie shall be box anchored for at least two rail lengths off each end of the bridge.

2. Guard Rails: Install guard rails on curves, bridges and trestles in accordance with AREA PTWP. Bridge guard rails shall be approximately 11 inches from gage side of track rails, and shall extend a minimum of 30 feet beyond the structure. Ends shall be curved inward and beveled. Fully bolt guard rails. Guard rails shall not be higher than the running rails, and shall not be more than one inch lower than the running rail. Each guard rail shall be spiked with two spikes to each tie, but shall not be tie-plated. Unfit track rail in short lengths can be used for guard rails. Relay rail of the same size as the running rail may be used if it meets the requirements of MIL-R-3911.

3. Derails: Install derails where indicated. Place derails so that derailed equipment will not foul other tracks.

4. Bumpers and Wheel Stops: Install bumpers and wheel stops where indicated.

M. Ballast Distribution
1. Subballast shall be installed if required and as required to meet project requirements.
2. Geotextile fabric shall be installed if required and as required to meet project requirements.
3. Ballast shall not be distributed until area where ballast is to be installed has been approved by the Owner. No ballast shall be distributed without the Owner's approval. Ballast distribution shall be to depth indicated and may be from either trucks or railroad cars. Take care when distributing ballast from automotive equipment to prevent forming of ruts that would impair proper roadway drainage. Ruts formed that would impair drainage shall be leveled and graded to drain. Excess ballast shall be picked up and redistributed at the Contractor's expense. If additional ballast is required for dressing, it shall be added by the Contractor at no increase in price. No ballast cars shall be released until they have been inspected by the Owner. Cars may be weighed by the Owner at no cost to the Contractor.

4. Install Size No. 3, 4, or 4A for mainline ballast and Size No. 5 or 57 for yard and house tracks. Depth shall be as required to meet project requirements.

N. Surfacing
1. Superelevation: Superelevate curves as shown unless otherwise as required to meet project requirements. Obtain superelevation by raising outside rail of curve. Maintain inside rail at grade. Maximum superelevation shall be 6 inches. Full superelevation shall be carried throughout each curve, unless otherwise directed or shown. Superelevation runoff shall be at a uniform rate, and shall extend at least the full length of the spirals. The normal rate of superelevation runoff will be 1/2 inch in 31 feet; however, this may be increased to one inch in 31 feet with prior approval of the Owner.

2. Preliminary Surfacing: Perform preliminary alignment and surfacing after unloading of ballast. After preliminary alignment, bring the track to grade and surface in lifts not exceeding 6 inches each. After each lift, tamp the ballast. Place jacks close enough together to prevent undue bending of rail or stress of rail and joint. Raise both rails uniformly except where superelevation is required. Power tamp ballast under both sides of cross ties from each end to a point 15 inches inside each rail. Fill the center with ballast, but do not tamp the center between the above stated limits. Tamp both ends of the cross ties simultaneously, including tamping inside and outside of the rail. Regardless of the kind of ballast or the kind of power tamper used, work tamping tools opposite each other on the same tie. Tamp ballast under switch ties for the entire length of each switch tie. After tamping has been completed and jacks removed, re-spike loose ties securely in proper position with full bearing on tie plates.

3. Final Surfacing: After preliminary surfacing has been completed, or for track being repaired, where preliminary surfacing is not required, check line and grade stakes, operate engine and equipment over track, and align track. Bring track to grade and re-tamp ballast in the manner described for preliminary surfacing. Decrease tamping distance inside rail on cross ties from 15
to 13 inches. Give track a final lining conforming to established track centers. Dress ballast to section indicated and bring subgrade shoulders to line and surface.

4. Final Adjustments: Sixty calendar days after track has been accepted and put in operation, the Contractor shall perform necessary resurfacing adjustments without cost, to leave the track in alignment and on grade.

O. Tolerance: Completed track shall meet the following tolerances. Repair track not meeting the tolerances specified below to meet the requirements at no additional cost to the Owner.

1. Alignment: Shall not deviate from uniformity more than the following prescribed amounts:
 a. Tangent Track: Change between any adjacent 31 foot stations measured at the mid offset from a 62 foot line may not be more than 1/2 inch from the gage line. (The gage line shall be defined as the line on the gage side of the line rail, 5/8 inch below the top of the centerline of the railhead. Either rail may be used as the line rail; however, the same rail must be used for the full length of the tangential segment of track.)
 b. Curved Track: Change between any adjacent 31 foot stations measured at the mid-ordinate from a 62 foot chord may not be more than 3/8 inch for 36 degree curves and flatter. For curves greater than 36 degrees, change between any adjacent 15 1/2 foot stations measured at the mid-ordinate from a 31 foot chord may not be more than 1/2 inch. (The ends of the chord must be at points on the gage side of the outer rail, 5/8 inch below the top of the railhead.)

2. Track Surface: May not deviate from uniformity more than the amount prescribed below:
 a. Runoff in any 31 foot of rail at the end of a raise may not be more than 1/2 inch.
 b. Deviation from uniform profile on either rail at the mid-ordinate of a 62 foot chord may not be more than 1/2 inch.
 c. Deviation from designated elevations on a spiral may not be more than 1/2 inch.
 d. Deviation in cross level in spirals in any 31 foot may not be more than 1/2 inch.
 e. Deviation from zero cross level at any point on tangent or from designated elevation on curves between spirals may not be more than 1/2 inch.
 f. Difference in cross level between any two points less than 62 foot apart on tangents and curves between spirals may not be more than 5/8 inch.

3. Gage
 a. Track Gage: Within plus 1/4 inch of standard gage in tangent track and curves less than 12 degrees.
 b. Curved Track: For curves larger than 12 degrees, lay rail to within plus 1/4 inch or minus 1/8 inch of required gage.
 c. Guard Face Gage: Distance between guard lines measured across the track at right angles to gage line, and is measured at the point of frog on both sides of the turnout. Design value for guard face gage is 52-3/4 inches. Guard face gage shall be within plus or minus 1/4-inch of design value.
 d. Guard Check Gage: Distance between gage line of a frog and guard line of its guard rail, or guarding face, measured across the track at right angles to the gage line. The design value for guard check gage is 54-5/8 inches. Guard check gage shall be within plus or minus 1/8-inch of design value.

P. Railroad Crossing: Install bituminous, wood plank, prefabricated sectional treated timbers, or rubber crossing as indicated, and in accordance with manufacturer's recommendations and specifications.

Q. Bonding And Grounding Track: Track shall be bonded and grounded as indicated. Where track is designated for bonding and grounding, rails shall be bonded electrically continuous and effectively grounded. The grounding system shall consist of ground conductors and ground rods. Make connections by the exothermic weld process in accordance with manufacturer's instructions. Maximum resistance to ground from grounded rail or structure shall not exceed 10 ohms. When work, in addition to that indicated or specified, is directed in order to obtain the specified ground resistance, the provision of the contract covering "changes" shall apply.
1. **Rail Joint Bond:** Bond rail joints on both rails of each track. Bond rails together with not less than No. 1/0 AWG 3/8-inch diameter bare stranded soft drawn copper conductor. Track to be bonded and grounded shall be electrically isolated from the remaining track.

2. **Rail Cross-Bond and Ground:** Rail cross-bond and ground shall be as indicated. Make connections between grounding system or ground rods and rails with a minimum No. 1/0 AWG bare stranded soft drawn copper cable, installed at least 12 inches below the bottom of the ties. Ground rods shall be 3/4-inch diameter copper-clad steel rods. Rods shall have a hard, clean, smooth, continuous copper surface and the portion of copper shall be uniform throughout the length of the rod. The copper shall have a minimum wall thickness of 0.013 inch at any point in the rod. Each ground rod shall be die-stamped near the top with the name or trademark of the manufacturer and the length of rod in feet. Connection of conductors to the ground rods shall be by all bronze, U bolt type ground clamp. Ground rods shall be a minimum of 10 feet long and shall be driven vertically full length. Provide one cross-bond and ground for each section of bonded and grounded track.

R. **Supplementary Installations:** Furnish and install permanent signs and signals such as crossing, clearance, derail and other safeguards in accordance with recommended practice of the AREA.

S. **Field Quality Control**

1. **Inspection of Rail Welds**
 a. **Visual Inspection:** Inspect new rail fittings thoroughly. Pay particular attention to any defect that might hinder satisfactory operation. Inspect bolted joints for loose bolts and smooth transitions between rails of different sections. Inspect each welded joint thoroughly after removal of mold and grinding of excess metal. Pay particular attention to surface cracking, slag inclusion, gas pockets, and lack of fusion. Correct or replace parts of welds found defective. Method of correction shall be as approved by the Owner.
 b. **Ultrasonic Inspection of Welded Rail Joints:** Inspect each weld ultrasonically following the visual inspection. The Owner will test each weld ultrasonically following the visual inspection. Inspect and test in accordance with MIL-STD-1699. Clean rails at testing locations as directed by the Owner. The Contractor is responsible for the correction or replacement of defective parts or welds. The method of correction shall be as approved by the Owner.

2. **Inspection of Track:** Perform tests to verify gage, alignment, cross level and grade at least once every 100 feet or less of track centerline length. Measure gage between points on inside of rails, 5/8-inch below top of railhead.

END OF SECTION 34 11 93 00b
SECTION 34 41 13 00 - ELECTRICAL TRAFFIC CONTROL SIGNALS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of electrical traffic control signals. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

1.2 PRODUCT

A. General: Replacement equipment items shall be regularly manufactured products.

B. Concrete Poles: Cement ASTM C 150; aggregate ASTM C 33; minimum compressive strength 6,000 psi when tested in compliance with AASHTO T22. Tensioning steel shall comply with ASTM A 603. Strands shall not be tensioned above 70 percent of the rated ultimate strength. Epoxy compound for sealing hollow cores shall comply with ASTM D 1763.

C. Galvanized Conduit Nipples: UL 514B.

D. Ground Wire: Cast-in-concrete pole, No. 6 stranded bare wire, ASTM A 603.

E. Wood Poles: ANSI 05.1, waterborne preservative-treated in compliance with AWPA C3, Retention Zone 1.

F. Structural Steel: ASTM A 36.

G. Steel Pipe: ASTM A 53.

H. Steel Bars: ASTM A 576.

I. Wire Strand: ASTM A 475.

J. Zinc Coatings: Members, ASTM A 123; fasteners, ASTM A 153.

L. Concrete for Pull Boxes: ASTM C 94, 3,000 psi.

N. Signal Lens: Manufactured in compliance with Article 5 and 6, ITE Technical Report Number 1.

O. Loop Wire for Vehicle Detectors: No. 14 AWG or No. 12 AWG, stranded copper wire, type TTHN, THWN, or THW, ASTM B3.

P. Grout: One part cement complying with ASTM C 150 and two parts sand complying with ASTM C 33.

Q. Conduit: Polyvinyl chloride, UL 651, Schedule 40 or galvanized rigid metal, ASTM B 3.

S. Electrical Work: NFPA No. 70.

1.3 EXECUTION

A. Scheduling and Coordination: The Contractor shall ensure that required notices have been given and that power interruptions have been scheduled and approved.

B. Traffic: Provide temporary traffic signs at and around work area. Signs and locations shall be as approved by the Owner.

C. Vehicle Detector Assemblies, Loop Type: Saw out existing loops to be replaced to their full depth. Install and seal loop wire. Splice and solder loop wire and lead-in cable and wrap a minimum of two wraps with silicone tape and heavy-duty electrical tape. Install sealant in compliance with the manufacturer's recommendations. Excavate and remove existing lead-in cable to be replaced, and install new lead-in cable in place and connect to cabinet ground.

END OF SECTION 34 41 13 00
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 41 13 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>34 41 16 00</td>
<td>34 41 13 00</td>
<td>Electrical Traffic Control Signals</td>
</tr>
</tbody>
</table>

July 2012

County of Santa Clara Roads and Airports Department,
RAD-2012-01
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 34 71 13 13 - BEAM-TYPE GUARDRAIL

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for beam-type guardrail. Products shall match existing materials and/or shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer’s recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Product Data: For each type of product indicated.
2. Shop drawings shall be submitted for approval.

1.2 PRODUCTS

A. Rail Elements, End Sections, and Fasteners
1. ARTBA technical bulletin No. 268-B.
2. Provide galvanized steel W-beam in accordance with AASHTO M-180, class A, type 1.
3. Shop curve rail elements when required radius of installation on horizontal curve is 150 ft (46 m) or less. Provide W-beam rail (ARTBA RE-3) with a flared end section (ARTBA RE-5), rounded end section (ARTBA RE-6) at each end of installations.
4. Provide standard back-up plates behind rail elements at all intermediate, non-splice posts when steel posts and blocks are used.
5. Galvanize the rail sections, including end sections, in accordance with ASTM A 525, coating G-210.

B. Posts
1. Wood: Provide wood posts with blocks, size as required by State DOT. Rough sawn or S4S timber of Douglas Fir or any other locally approved species that is either No. 1 grade or Select Structural grade when graded in accordance with the requirements for Timber and Posts as set forth in WWPA-01 may be used. Give all wood posts and blocks a preservative treatment in accordance with the requirements of AASHTO M-133. Cut to length and bore posts and blocks for bolt holes before treatment.
2. Steel: Provide steel posts with blocks. Fabricate posts and blocks from W6X9 structural steel shapes complying with the requirements of ASTM A 36. Fabricate in the shop, grind smooth all corners and edges, galvanize posts and blocks after fabrication in accordance with ASTM A 123.

C. Bolts, Nuts, and Washers
1. Provide galvanized bolts, nuts, and washers that meet common ARTBA standards, designed to develop the required joint strength. Provide bolts with rounded heads to provide minimum obstruction.
2. Provide galvanized steel bolts conforming to the requirements of ASTM A 307, nuts conforming to the requirements of ASTM A 563, Grade A or better and galvanized steel washers, all galvanized in accordance with the requirements of ASTM A 153. Provide high strength bolts conforming to the requirements of ASTM A 325 where needed.

D. Reflectors: Provide guardrail reflectors as indicated. Place the galvanized steel tabs with reflective sheeting at every post except no reflectors are to be placed along the guardrail end flares.

E. Breakaway Cable Terminal (BCT) Assemblies: Provide BCT assemblies in accordance with the ARTBA details and standards referenced on the details.
F. Concrete and Reinforcement for the Post Footings: In accordance with applicable sections of Division 03 Section "Cast-in-place Concrete".

1.3 EXECUTION

A. Guardrail: Erect steel beam-type guardrail in locations and to lines and grades as directed and in accordance with details indicated.

B. Erection
 1. Firmly set posts spaced at 6 ft. 3 in. (1.9 m) centers to the required depth. Set posts by placing in hand or mechanically dug holes or by driving, with or without pilot holes. Backfill gaps around posts with approved material that is moistened and thoroughly compacted. Repair damaged roadway surfacing where pavement is disturbed.
 2. Position the top of W-beam rail at 27 in. (0.69 m) above the finished roadway surface. Align rail both vertically and horizontally within 1/4-in. (6 mm) from the theoretical alignments. Lap the rail sections at posts, in the direction of traffic in the adjacent lane, and lap end sections on the face of the rail.
 3. Exercise care to avoid damage to treated wood and galvanized steel parts. Repair or replace damaged parts at the Contractor's expense. Securely tighten all bolts in the finished guardrail. Toenail the wood blocks to wood posts with two 16 penny galvanized nails, one on each side of the top of the block.

END OF SECTION 34 71 13 13
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 71 13 13</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
</tbody>
</table>
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 34 71 13 16 - ACTIVE VEHICLE BARRIERS

1.1 GENERAL

A. Description Of Work
1. This specification covers the furnishing and installation of materials for active vehicle barriers. Products shall be as follows or as directed by the Owner. Installation procedures shall be in accordance with the product manufacturer's recommendations. Demolition and removal of materials shall be as required to support the work.

B. Submittals
1. Shop Drawings: Installation, Equipment, and Electrical Work
 a. Detail drawings containing complete wiring and schematic diagrams, and any other details required to demonstrate that the system has been coordinated and will properly function as a unit. Drawings shall show proposed layout and anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including foundation and clearances for maintenance and operation. For Federal work, detail drawings shall include a copy of the Department of State certificate of barrier performance.

2. Product Data:
 a. Vehicle Barriers: A complete list of equipment, materials, including industrial standards used and how they apply to the applicable component and manufacturer's descriptive data and technical literature, catalog cuts, and installation instructions. Information necessary to document a minimum 1-year successful field operation performance history for each type of vehicle barrier installed.
 b. Spare Parts: Spare parts data for each different item of material and equipment used, after approval of the detail drawings. The data shall include a complete list of parts and supplies, with current unit prices and source of supply.

3. Test Reports
 a. Field Testing: Test reports in booklet form showing all field tests, including component adjustments and demonstration of compliance with the specified performance criteria, upon completion and testing of the installed system. Each test report shall indicate the final position of controls.

4. Operation and Maintenance Data
 a. Vehicle Barriers: Operating and Maintenance Instructions
 1) Six copies of operation and maintenance manuals, a minimum of 2 weeks prior to field training. One complete set prior to performance testing and the remainder upon acceptance. Manuals shall be approved prior to acceptance. Operation manuals shall outline the step-by-step procedures required for system startup, operation, and shutdown. The manuals shall include the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and their basic operating features. Maintenance manuals shall include routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guide. The manuals shall include piping layout, equipment layout, and simplified wiring and control diagrams of the system as installed. The manuals shall also include synthetic biodegradable hydraulic oil types to be used for ambient temperature ranges of minus 30 degrees F (minus 34 degrees C) to 150 degrees F (plus 66 degrees C) to cover winter operation, summer operation, and ambient temperature ranges in between.

C. General Requirements
1. Performance levels shall be based on the following:
 a. The Department of State (DOS) publication SDT-02.01 Specification for Vehicle Crash Testing of Perimeter Barriers and Gates (April 1985) in which:
1) Impact Conditions:

<table>
<thead>
<tr>
<th>Condition Designation</th>
<th>Vehicle Weight</th>
<th>Impact Speed</th>
<th>Kinetic Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>K4</td>
<td>15,000 lb (6,800 kg)</td>
<td>30 mph (48 km/h)</td>
<td>450,000 ft-lb (610 kJ)</td>
</tr>
<tr>
<td>K8</td>
<td>15,000 lb (6,800 kg)</td>
<td>40 mph (65 km/h)</td>
<td>800,000 ft-lb (1084 kJ)</td>
</tr>
<tr>
<td>K12</td>
<td>15,000 lb (6,800 kg)</td>
<td>50 mph (80 km/h)</td>
<td>1,250,000 ft-lb (1695 kJ)</td>
</tr>
</tbody>
</table>

2) Performance Levels:

a) L 3.0 Vehicle and cargo are to be stopped although vehicle partial penetration and/or barrier deflection of up to 3 feet (1 m) permitted.

b) L 2.0 Vehicle and cargo are to be stopped although vehicle partial penetration and/or barrier deflection of up to 20 feet (6 m) is permitted.

c) L 1.0 Vehicle is disabled and does not travel more than 50 feet (15 m) after impact.

2. Vehicle Barriers furnished shall in all respects be identical to the unit tested and certified except for the width of the vehicle barrier, which is as indicated and except for bollards which have a diameter based on a required crash rating. Crash test shall be performed and data compiled by an approved independent testing agency. Test vehicle shall not vault or penetrate the barrier during the test. The design and structural materials of the vehicle barrier furnished shall be the same as those used in the crash tested barrier.

D. Nameplates

1. Nameplate data shall be permanently attached to each vehicle barrier. The data shall be legibly marked on corrosion-resistant metal plates and shall consist of at least the following:
 a. Manufacturer's name.
 b. Model number.
 c. Serial number.
 d. Date of manufacture.

E. Delivery And Storage

1. Components placed in storage shall be protected from the weather, humidity, and temperature variation, dirt and dust, or other contaminants. Structural materials shall be stored on sleepers or pallets and shall be protected from rust and objectionable materials such as dirt, grease, or oil.

F. Spare Parts

1. A manufacturer's standard recommended spare parts package, with current unit prices and source of supply complete with detailed manuals on parts replacement, shall be provided with each barrier to facilitate 1 year of normal operation. Particular consideration shall be given to system components which are not readily available from local or commercial sources and which are critical to the operation of the system.

G. Manufacturer's Services

1. Services of a manufacturer's representative who is experienced in the installation, adjustment, and operation of the equipment supplied shall be available. The representative shall supervise the installation, adjustment, and testing of the equipment.

1.2 PRODUCT

A. Retractable Barriers: When in the raised position, the total retractable barrier heights shall be no less than 28 inches (711 mm) above the roadway surface and shall be 144 inches (3.66 m) wide. When in the lowered position, the retractable barrier shall extend no more than 5/8 inch (16 mm) above the roadway surface. Retractable barriers in the lowered position shall be capable of supporting a 32,000 pound (142 kN) axle load or a 16,000 (71 kN) wheel load. Design for this load shall be in accordance with AASHTO HB-17.
1. Powered Retractable Barrier: The retractable barrier shall be capable of 300 complete up/down cycles per hour. The retractable barrier motion shall be instantly reversible and shall be capable of raising the barrier from the lowered position to the raised position within 8 seconds during normal use, and within 2 seconds during an emergency. Also, the barrier shall be capable of being lowered from the raised position to the lowered position in not more than 3 seconds. Retractable barrier shall withstand a K4 OR K8 OR K12, as directed, impact condition with Performance Level of L1.0 OR L2.0 OR L3.0, as directed.
 a. Failure Modes of Operation: The system shall be designed to remain in the last commanded position in the event of hydraulic, electrical, or mechanical failure. A manual pump, or other system, shall be included for operation of hydraulic barriers without power.
 b. Electric Motors: Unless otherwise indicated, electric motors shall have drip-proof OR totally enclosed OR totally enclosed fan cooled, as directed, enclosures. All couplings, motor shafts, gears, and other moving parts shall be fully guarded in accordance with 29 CFR 1910 Subpart O. Guards shall be removable without disassembling the guarded unit. For multiple barriers operated from a single hydraulic unit it is highly recommended that the electric motor be 3-phase.
 c. System: The system shall be designed to maintain the barriers in the raised position, without inspection, for periods of time of up to 1 week. If a hydraulic system is used, it shall be equipped with pressure relief valves to prevent overpressure. The system shall not require continuous running of the motor to stay in the raised position, excluding the use of manual pinning to do so.
 d. Hydraulic Power Unit: The hydraulic power unit shall contain synthetic biodegradable hydraulic fluid which maintains its viscosity operating range, even at constant heaviest use rate, for an ambient temperature range of 20 to 150 degrees F (minus 7 to plus 66 degrees C). A hydraulic fluid heater shall be provided so that the viscosity remains within its operating range if ambient temperatures below 20 degrees F (minus 7 degrees C) are expected. Buried hydraulic lines for the connection of the hydraulic power unit to the barrier shall be flexible or carbon steel pipe, or a combination of flexible and carbon steel pipe. Flexible and rigid hydraulic line working pressures shall exceed the maximum system relief pressure. PVC pipe and fittings for burial of hydraulic lines shall be in accordance with ASTM D 3034 Type PS 46 with minimum pipe stiffness of 46.
 1) Flexible hydraulic lines shall be in accordance with SAE J517.
 2) Rigid hydraulic lines shall be seamless carbon steel pipe in accordance with ASTM A 106.
 e. Hydraulic Power Unit Enclosure: A NEMA Type 3R enclosure as specified in NEMA 250 shall be provided to enclose the hydraulic power unit. The enclosure shall be designed for easy removal of the hydraulic power unit and other accessories without complete removal of the enclosure. An access door with hinges and an inside and outside operable/lockable (exterior) door latch shall be provided. Equipment within the enclosure shall be placed and configured so that all periodic maintenance can be performed through the access door without removal of the equipment. The enclosure shall be equipped with weatherproof louver vents appropriately sized and located to dissipate internal heat generation.

2. Manual Retractable Barriers: The manual barrier shall be capable of being raised and lowered by manual means such as levers or hydraulics requiring a maximum 60 pounds (267 N) of force. The manual mechanism shall contain a locking pin which accepts a padlock for securing the barrier when it is in the "UP" position. Retractable barrier shall withstand a K4 OR K8 OR K12, as directed, impact condition with Performance Level of L1.0 OR L2.0 OR L3.0, as directed. Barrier should be capable of being locked in the down position.

B. Retractable Bollards: The total bollard height when in the raised position shall be no less than 30 inches (750 mm) above the roadway surface and shall have an outside diameter of no less than 8 inches (200 mm). A bollard system shall consist of a minimum of 3 bollards spaced no more than 36 inches (915 mm) from centerline to centerline of bollards across a 10 foot (3.0 m) roadway. Bollards in the lowered position shall be capable of supporting a 16,000 pound (71 kN) wheel load each. Design for this load...
shall be in accordance with AASHTO HB-17. Retractable bollards shall withstand a K4 OR K8 OR K12, as directed, Impact Condition with Performance Level of L1.0 OR L2.0 OR L3.0, as directed.

1. Powered Retractable Bollards: The retractable bollard shall be capable of 300 complete up/down cycles per hour. Bollards shall be capable of being raised or lowered within a 3 to 15-second range during normal use and within 2.5 seconds for emergency operations.
 a. Failure Modes of Operation: The system shall be designed to prevent lowering of the barrier in the event of hydraulic, electrical, or mechanical failure. A manual pump, or other system, shall be included for operation of hydraulic and/or mechanical barriers without power.
 b. Electric Motors: Unless otherwise indicated, electric motors shall have drip-proof OR totally enclosed, as directed, enclosures. For multiple barriers being operated from a hydraulic power unit it is highly recommended that the electric motor be 3-phase.
 c. System: The system shall be designed to maintain the barriers in the raised position, without inspection, for period of time of up to 1 week. If a hydraulic system is used, it shall be equipped with pressure relief valves to prevent overpressure.
 d. Hydraulic Power Unit: The hydraulic power unit shall contain synthetic biodegradable hydraulic fluid which maintains its viscosity operating range, even at constant heaviest use rate, for an ambient temperature range of 20 to 150 degrees F (minus 7 to plus 66 degrees C). A hydraulic fluid heater shall be provided so that the viscosity remains within its operating range, if ambient temperatures below 20 degrees F (minus 7 degrees C) are expected. Buried hydraulic lines for the connection of the hydraulic power unit to the barrier shall be flexible or carbon steel pipe, or a combination of flexible and carbon steel pipe. Flexible and rigid hydraulic line working pressures shall exceed the maximum system relief pressure. PVC pipe and fittings for burial of hydraulic lines shall be in accordance with ASTM D 3034 Type PS 46 with minimum pipe stiffness of 46.
 1) Flexible hydraulic lines shall be in accordance with SAE J517.
 2) Rigid hydraulic lines shall be seamless carbon steel pipe in accordance with ASTM A 106.
 e. Hydraulic Power Unit Enclosure: A NEMA Type 3R enclosure as specified in NEMA 250 shall be provided to enclose the hydraulic power unit. The enclosure shall be designed for easy removal of the hydraulic power unit and other accessories without complete removal of the enclosure. An access door with hinges and an inside and outside operable/lockable (exterior) door latch shall be provided. Equipment within the enclosure shall be placed and configured so that all periodic maintenance can be performed through the access door without removal of the equipment. The enclosure shall be equipped with weatherproof louver vents appropriately sized and located to dissipate internal heat generation.

2. Manual Retractable Bollards: Manual bollards shall be capable of being raised and lowered utilizing a recessed handle on the top surface of the bollard or a manual hydraulic pump, either requiring a maximum 60 pounds (267 N) of force. A mechanism, that is lockable, shall be provided to secure the bollard in either the full "UP" or full "DOWN" position.

C. Crash Gate: The crash gate shall consist of steel buttresses anchored into the ground and an above grade assembly consisting of a heavy steel structure or a combination of heavy steel and structural aluminum capable of being opened and closed. The height of the gate shall be a minimum of 84 inches (2.1 m) from the road surface to the top of the gate frame. The length shall close and protect a minimum 120 inch (3.0 m) clear opening. The maximum clear opening between the gate frame and end posts, between the bottom of the gate and finished grade, and between any grill work shall be 3 inches (75 mm).

1. Powered Crash Gate: The gate movement shall be controlled by an electro-mechanical gate operator OR a hydraulic gate operator, as directed, consisting of an operator unit with required control circuits and operator station. The control and operating voltage shall be 24 vac (nominal) or, as an option 24 vdc. A remote control master station shall be capable of driving the gate at minimum 48 fpm (14.6 m per minute) for a slide gate or 6 degrees per second for a swing gate. Unless otherwise indicated, motors shall have drip-proof OR totally enclosed, as directed,
enclosures. Crash gate shall withstand a 15,000 pound (6804 kg) vehicle at impact speed of 30 OR 40 OR 50, as directed, mph (48 OR 64 OR 80, as directed, km/hour), with maximum barrier deflection or vehicle penetration of 3 feet (1 m).

a. Failure Mode of Operation: The system shall be designed to prevent opening of the crash gate in the event of electrical or mechanical failure. A disconnect system for the gate drive shall be provided to allow manual operation of the barrier in the event of a power outage.

b. Hydraulic Power Unit: The hydraulic power unit shall contain synthetic biodegradable hydraulic fluid which maintains its viscosity within its operating range, even at constant heaviest use rate, for an ambient temperature range of 20 to 150 degrees F (minus 7 to plus 66 degrees C). A hydraulic fluid heater shall be provided so that the viscosity remains within its operating range if ambient temperatures below 20 degrees F (minus 7 degrees C) are expected. Buried hydraulic lines for the connection of the hydraulic power unit to the barrier shall be flexible or carbon steel pipe, or a combination of flexible and carbon steel. Flexible and rigid hydraulic line working pressures shall exceed the maximum system relief pressure. PVC pipe and fittings for burial of hydraulic lines shall be in accordance with ASTM D 3034 Type PS 46 with minimum pipe stiffness of 46.

1) Flexible hydraulic lines shall be in accordance with SAE J517.

2) Rigid hydraulic lines shall be seamless carbon steel pipe in accordance with ASTM A 106.

c. Hydraulic Power Unit Enclosure: A NEMA Type 3R enclosure as specified in NEMA 250 shall be provided to enclose the hydraulic power unit. The enclosure shall be designed for easy removal of the hydraulic power unit and other accessories without complete removal of the enclosure. An access door with hinges and an inside and outside operable/lockable (exterior) door latch shall be provided. Equipment within the enclosure shall be placed and configured so that all periodic maintenance can be performed through the access door without removal of the equipment. The enclosure shall be equipped with weatherproof louver vents appropriately sized and located to dissipate internal heat generation.

2. Manual Crash Gate: The manual crash gate shall be capable of being hinged from either side. Hinge points of both buttresses shall each contain a locking pin with padlock acceptance for securing the crash gate in the closed position. The crash gate shall withstand a 10,000 pound (4535 kg) vehicle at impact speed of 50 mph (80 km/hour), with maximum gate deflection or vehicle penetration of 10 feet (3 m) 15,000 pound (6804 kg) vehicle traveling at impact speed of 30 OR 40 OR 50, as directed, mph (48 OR 64 OR 80, as directed, km/hour), with a maximum gate deflection or vehicle penetration of up to 3 feet (1 m).

D. Crash Beam: The crash beam shall be an above-grade assembly that, in the "DOWN" position, shall present a visible obstacle to approaching vehicles. The height of the barrier shall be a minimum of 30 inches (750 mm) as measured from the roadway surface to the centerline of the crash beam. The crash beam shall be capable of blocking a minimum road width of 120 inches (3.0 m). The crash beam end shall contain a locking pin with padlock acceptance for securing the crash beam when it is in the "DOWN" position. Crash beam shall withstand a 15,000 pound (6804 kg) vehicle traveling at 30 OR 40 OR 50, as directed, mph (48 OR 64 OR 80, as directed, km/hour), with maximum vehicle penetration of 20 feet (6 m) 10,000 pound (4535 kg) vehicle at impact speed of 15 mph (24 km/hour), with a maximum vehicle penetration of 10 feet (3 m).

1. Powered Crash Beam: The crash beam shall be operated by means of a hydraulic power system. The crash beam shall be capable of being raised or lowered within an 8 to 15 second time range.

a. Failure Mode of Operation: A disconnect system for the crash beam shall be provided to allow manual operation of the barrier in the event of an electrical or mechanical failure.

b. Hydraulic Power Unit: The hydraulic power unit shall contain synthetic biodegradable hydraulic fluid which maintains its viscosity operating range, even at constant heaviest use rate, for an ambient temperature range of 20 to 150 degrees F (minus 7 to plus 66 degrees C). A hydraulic fluid heater shall be provided so that the viscosity remains within its operating range if ambient temperatures below 20 degrees F (minus 7 degrees C) are expected. Buried hydraulic lines for the connection of the hydraulic power unit to the
barrier shall be flexible or carbon steel pipe or a combination of flexible and carbon steel pipe. Flexible and rigid hydraulic line working pressures shall exceed the maximum system relief pressure. PVC pipe and fittings for burial of hydraulic lines shall be in accordance with ASTM D 3034 Type PS 46 with minimum pipe stiffness of 46.

1) Flexible hydraulic lines shall be in accordance with SAE J517.
2) Rigid hydraulic lines shall be seamless carbon steel pipe in accordance with ASTM A 106.

c. Hydraulic Power Unit Enclosure: A NEMA Type 3R enclosure as specified in NEMA 250 shall be provided to enclose the hydraulic power unit. The enclosure shall be designed for easy removal of the hydraulic power unit components and other accessories without complete removal of the enclosure. An access door with hinges and an inside and outside operable/lockable exterior door latch shall be provided. Equipment within the enclosure shall be placed and configured so that all periodic maintenance can be performed through the access door without removal of the equipment. The enclosure shall be equipped with weatherproof louver vents appropriately sized and located to dissipate internal heat generation.

2. Manual Crash Beam: The crash beam shall be manually raised and lowered with the aid of a counterbalanced end requiring approximately 60 pounds (267 N) of force.

E. Portable Retractable Barrier: The portable retractable barrier shall be transportable and capable of manual and/or electro-mechanical operation. When in the raised position, the total barrier heights shall be no less than 28 inches (711 mm) above the roadway surface and shall be up to 144 inches (3.66 m wide). The barrier shall be equipped with entrance/exit ramps when the barrier extends more than 5/8 inch (16 mm) above the roadway surface. Retractable barriers in the lowered position shall be capable of supporting a 32,000 pound (142 kN) axle load or a 16,000 (71 kN) pound wheel load. Design for this load shall be accordance with AASHTO HB-17.

1. Powered Portable Retractable Barrier: The portable retractable barrier shall be capable of 300 complete up/down cycles per hour. The retractable barrier motion shall be instantly reversible and shall be capable of raising the barrier from the lowered position to the raised position within 8 seconds during normal use, and within 2 seconds during an emergency. Also, the barrier shall be capable of being closed from the raised position to the lowered position in not more than 3 seconds. Retractable barrier shall withstand a K4 OR K8 OR K12, as directed, impact condition with Performance Level of L1.0 OR L2.0 OR L3.0, as directed. Portable retractable barrier, when impacted by a 15,000 pound (6,800 kg) vehicle at impact speed of 50 mph (80 km/hour) shall disable the vehicle and allow it to travel no more than 50 feet (15.2 m) after impact. Portable power assisted retractable barriers shall be equipped with on and off ramps for smooth transition between surfaces when the barrier extends more than 5/8 inch (16 mm) above the roadway surface.

a. Failure Modes of Operation: The system shall be designed to prevent lowering of the barrier in the event of hydraulic, electric, or mechanical failure. A manual pump shall be included for operation of hydraulic and/or mechanical barriers without power.

b. Electric Motors: Unless otherwise indicated, electric motors shall have drip-proof OR totally enclosed, as directed, enclosures.

c. System: The system shall be designed to maintain the barriers in the raised position, without inspection, for periods of time of up to 1 week. If a hydraulic system is used, it shall be equipped with pressure relief valves to prevent overpressure.

d. Hydraulic Power Unit: The hydraulic power unit shall contain synthetic biodegradable hydraulic fluid which maintains its viscosity operating range, even at constant heaviest use rate, for an ambient temperature range of 20 to 150 degrees F (minus 7 to plus 66 degrees C). A hydraulic fluid heater shall be provided so that the viscosity remains within its operating range if ambient temperatures below 20 degrees F (minus 7 degrees C) are expected. Flexible hydraulic lines shall be used for the connection of the hydraulic power unit to the barrier. Flexible hydraulic line working pressures shall exceed the maximum system relief pressure; flexible hydraulic lines shall be in accordance with SAE J517.
2. Manual Retractable Portable Barriers: The manual barrier shall be capable of being raised and lowered by manual means such as levers or hydraulics requiring a maximum 60 pounds (267 N) of force. The manual mechanism shall contain a locking pin which accepts a padlock for securing the barrier when it is in the "UP" position and shall also be capable of being locked in the "DOWN" position. Retractable barrier shall withstand a K4 OR K8 OR K12, as directed, impact condition with Performance Level of L1.0 OR L2.0 OR L3.0, as directed.

F. Portable Crash Beam: The portable crash beam shall be an above-grade assembly that, in the "DOWN" position, shall present a visible obstacle to approaching vehicles. The height of the barrier shall be a minimum of 30 inches (750 mm) as measured from the roadway surface to the centerline of the crash beam. The crash beam shall be capable of blocking a minimum road width of 120 inches (3.0 m). The crash beam end shall contain a locking pin with padlock acceptance for securing the crash beam when it is in the "DOWN" position. Crash beam shall withstand a 15,000 pound (6804 kg) vehicle traveling at 30 mph (48 km/hour), with maximum vehicle penetration and/or barrier deflection of 20 feet (6 m).

1. Powered Portable Crash Beam: The portable crash beam shall be operated by means of a hydraulic power system. The crash beam shall be capable of being raised or lowered within an 8 to 15 second time range.
 a. Failure Mode of Operation: A disconnect system for the portable crash beam shall be provided to allow manual operation of the barrier in the event of an electrical or mechanical failure.
 b. Hydraulic Power Unit: The hydraulic power unit shall contain synthetic biodegradable hydraulic fluid which maintains its viscosity operating range, even at constant heaviest use rate, for an ambient temperature range of 20 to 150 degrees F (minus 7 to plus 66 degrees C). A hydraulic fluid heater shall be provided so that the viscosity remains within its operating range if ambient temperatures below 20 degrees F (minus 7 degrees C) are expected. Flexible hydraulic lines shall be used for the connection of the hydraulic power unit to the barrier. Flexible hydraulic line working pressures shall exceed the maximum system relief pressure; flexible hydraulic lines shall be in accordance with SAE J517.
 c. Hydraulic Power Unit Enclosure: A weather resistant enclosure shall be provided to enclose the hydraulic power unit. The enclosure shall be designed for easy removal of the hydraulic power unit components and other accessories without complete removal of the enclosure. An access door with hinges and an inside and outside operable lockable (exterior) door latch shall be provided. Equipment within the enclosure shall be placed and configured so that all periodic maintenance can be performed through the access door without removal of the equipment. The enclosure shall be equipped with weatherproof louver vents appropriately sized and located to dissipate internal heat generation.

2. Manual Portable Crash Beam: The crash beam shall be manually operated by means of a counter balanced system requiring approximately 60 pounds (267 N) of force.

G. Electrical Work: Motors, manual or automatic motor control equipment except where installed in motor control centers and protective or signal devices required for the operation specified herein shall be provided in accordance with Division 22. All field wiring for loop detectors, communication lines, and power circuits shall have surge protection. Any wiring required for the operation specified herein, but not shown on the electrical plans, shall be provided under this section in accordance with Division 22.

H. Control Panel: A control panel and control circuit shall be provided to interface between all barrier control stations and the power unit. A control panel shall be provided for the inbound lanes and a separate one for the outbound lanes where the barriers are located. The control station is defined as the main control panel and the remote control panel as shown. The control circuit shall contain all relays, timers, and other devices or an industrial programmable controller programmed as necessary for the barrier operation. The control panel shall allow direct interface with auxiliary equipment such as card readers, remote switches, loop detectors, infrared sensors, and sliding OR swinging, as directed, gate limit switches. Loop controllers shall not cause an automatic barrier raise following power loss or
restoration. The enclosure shall be as indicated on the drawings. All device interconnect lines shall be run to terminal strips.

1. Voltage: The control circuit shall operate from a 120 volt 60 OR 50, as directed, Hz supply. The control circuit voltage shall be 12 OR 24, as directed, ac OR dc, as directed, for all external control panels.

2. Main Control Panel: A main control panel shall be supplied to control barrier function. This panel shall have a key-lockable main switch with main power "ON" and panel "ON" lights. Buttons to raise and lower each barrier OR set of barriers, as directed, shall be provided. Barrier "UP" and "DOWN" indicator lights shall be included for each barrier OR set of barriers, as directed. An emergency fast operate circuit (EFO) shall be operated from a push button larger than the normal controls and have a flip safety cover installed over the push button or toggle switch. The EFO shall also be furnished with an EFO-active light and reset button. The main control panel shall have a key lockable switch to arm or disable the remote control panel. An indicator light shall show if the remote control panel is enabled.

3. Remote Control Panel: A remote control panel, one panel for the inbound lane(s) and a separate panel for the outbound lane(s), shall have a panel "ON" light that is lit when enabled by a key lockable switch on the main control panel. Buttons to raise and lower each barrier shall be provided. Barrier "UP" and "DOWN" indicator lights shall be included for each barrier. The EFO shall be operated from a push button larger than the normal controls and have a flip safety cover installed over the push button or toggle switch. Activation of either EFO will operate all barriers. The EFO shall be interconnected with an EFO-active light. When the remote control panel EFO is pushed, operation of the barrier will not be possible from this panel until reset at the main control panel.

I. Miscellaneous Equipment

1. Safety Equipment
 a. Barrier Systems Sensors: The sensors shall be compatible with the barrier controller and shall function as part of a complete barrier control system. The barrier system sensors shall consist of the following:
 1) Suppression Loops - Two inductive loops whose outputs shall be used to prevent barriers raising when a vehicle is within a prescribed distance of the barrier. The output of the loops shall override all barrier rise signals until one second after a vehicle clears the suppression loop.
 2) Speed Loops - Two inductive loops whose output shall be used to signal the barrier controller of a vehicle approaching at a speed greater than the posted speed (25 mph (11.2 m/sec) or less (recommended)). The speed loops shall cause the barrier control panel to annunciate a warning sound alerting the guard to make a decision as to whether the barrier should be raised or not.
 3) Wrong Way Loops - Two inductive loops whose output shall be used to signal the barrier control panel to annunciate a warning sound if a vehicle is attempting to enter the facility through the exit lane. The warning sound will alert the guard to make a decision as to whether the barrier should be raised or not.
 b. Traffic Lights: Red/yellow 8 inch (200 mm) traffic lights shall be supplied for each entrance and exit to alert motorists of the barrier position. Traffic lights are not required for manual barriers. The yellow flashing light shall indicate that the barrier is fully open. All other positions shall cause the light to show red. Brackets shall be supplied to allow the light to be mounted a minimum 4.5 feet (1.4 m) above the roadway pavement on a 3.5 inch (90 mm) outside diameter metal post or mounted directly on the crash gate.

2. Warning Annunciator: Provide a warning annunciator built into the barrier control panel that produces a pulsing audible sound when the speed loop detects a vehicle entering the facility with excess speed. Provide a warning annunciator built into the barrier control panel that produces a continuous sound whenever a wrong way loop detects a vehicle entering from the exit. The warning annunciator shall sound until a warning annunciator silence reset button is pressed.
3. Heater: A waterproof barrier heater with a thermostat control and NEMA 4 junction box connection point shall be provided for de-icing and snow melting. The heater shall provide barrier operation to an ambient temperature of minus 40 degrees F (minus 40 degrees C). For retractable bollards, a 250-watt heater shall be provided for each bollard.

4. Signage: Signage shall read "Axle Weight Limit 9 Tons" and shall conform to FHWA SA-89-006 sign (R12.2).

5. Vertical Arm Gates (Traffic Arms): Vertical arm gates shall have an opening and closing time of less than or equal to 5 seconds. The gates shall be capable of 500 duty cycles per hour as a minimum. Gate shall operate the arm through 90 degrees. Gate operators shall be supplied with single phase 120 volt motors. Each entry lane shall be provided with a vertical arm gate. Each gate shall be capable of being operated from a remote open-close push button station in each guard booth and the gatehouse for the respective entry lane. Gates shall have a hand-crank, or other means, which will allow manual operation during power failures. Gate arms shall be constructed out of wood, steel, fiberglass, or aluminum, as specified by the manufacturer for the given lengths as shown on the drawings. Gate arms shall be covered with 16 inch (406 mm) wide reflectorized red and white sheeting. Each gate shall be furnished with a spare gate arm. Gate operator cabinets shall be constructed of galvanized steel, or aluminum and shall be painted manufacturers standard color as approved. Each gate operator shall be provided with an obstruction detector that will automatically reverse the gate motor when an obstruction is detected. The obstruction detector shall be any of the following 3 types: An electronic loop vehicle detector buried in the road, a photocell electric eye mounted on the gate operator, or a safety strip mounted on the lower edge of the arm. The detector system shall be automatically deactivated when the arm reaches the fully lowered position. Slab size and anchorage for gate operator shall be per manufacturer requirements.

6. Vehicle Barrier Vertical Arm Gate (Traffic Arm): A traffic arm, as a separate piece of equipment, will be included with each non-portable active vehicle barrier as part of the barrier safety operating system. This traffic arm shall automatically deploy (close) when the emergency up button is activated and open when the vehicle barrier is reset. This traffic arm will not be equipped with an automatic obstruction detector.

J. Finish: Surfaces shall be painted in accordance with requirements of Division 09 Section(s) "Exterior Painting" OR "Interior Painting", as applicable. The roadway plate shall have a nonskid surface painted white with reflective red 4 OR 6, as directed, inch (100 OR 150, as directed, mm) wide red reflective stripes 4 inches (100 mm) apart. The barrier front shall be painted white and have 4 OR 6, as directed, inch (100 OR 150, as directed, mm) wide reflective red stripes 4 inches (100 mm) apart. The diagonal striping should point down and outward from the center of the device. Bollards shall be painted white with 2 OR 3, as directed, inch (50 OR 75, as directed, mm) wide reflective red diagonal stripes. The barrier crash gate shall be painted as specified by purchaser and the crash beam shall be painted white with 3 inch (75 mm) wide reflective red diagonal stripes.

K. Concrete: The concrete shall conform to Division 03 Section "Cast-in-place Concrete".

L. Welding: Welding shall be in accordance with AWS D1.1/D1.1M.

M. Pavement: After placement of the vehicle barrier, the pavement sections shall be replaced to match the section and depth of the surrounding pavement. Pavement shall be warped to match the elevations of existing pavement. Positive surface drainage, away from the vehicle barrier, shall be provided by pavement slope.

1.3 EXECUTION

A. Installation: Installation shall be in accordance with manufacturer’s instructions and in the presence of a representative of the manufacturer. Manufacturer's representative shall be experienced in the
installation, adjustment, and operation of the equipment provided. The representative shall also be present during adjustment and testing of the equipment.

B. Hydraulic Lines: Buried hydraulic lines shall be placed in polyvinyl chloride (PVC) sleeves. Positive drainage shall be provided from the hydraulic power unit to the barrier for drainage of condensation within the PVC sleeve.

C. Pit Drainage: A drain connection and oil/water separator, as directed, shall be provided in each barrier that requires pit/vault type construction. Hookups between the storm drains shall be made. The self-priming sump pump shall have the capacity to remove minimum 150 gallons per minute (34 cubic meters per hour).

D. Electrical: All control power wiring requiring compression terminals shall use ring-style terminals. Terminals and compression tools shall conform to UL 486A. Roundhead screws and lockwashers shall be used to provide vibration-resistant connections. Connections between any printed circuit cards and the chassis shall be made with screw connections or other locking means to prevent shock or vibration separation of the card from its chassis. The electrical power supply breaker for the hydraulic power unit shall be capable of being locked in the power on and power off positions.

E. Field Testing: Upon completion of construction, a field test shall be performed for each vehicle barrier. The test shall include raising and lowering the barrier, both electrically and manually, through its complete range of operation. Each vehicle barrier shall then be continuously cycled for not less than 30 minutes to test for heat build-up in the hydraulic system. The Owner shall be notified at least 7 days prior to the beginning of the field test. The Contractor shall furnish all equipment and make all necessary corrections and adjustments prior to tests witnessed by the Owner. Any conditions that interfere with the proper operation of the barrier disclosed by the test shall be corrected at no additional cost to the Owner. Adjustments and repairs shall be done by the Contractor under the direction of the Owner. After adjustments are made to assure correct functioning of components, applicable tests shall be completed.

F. Field Training: A field training course shall be provided for designated operating staff members. Training shall be provided for a total period of not less than 8 hours (for electrical/hydraulic operated units) or 1 hour (for manually operated units) of normal working time and shall start after the system is functionally complete but prior to final acceptance tests. Field training shall cover all of the items contained in the operating and maintenance instructions.

END OF SECTION 34 71 13 16
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification</th>
<th>Specification Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 71 13 26</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>34 71 13 26</td>
<td>34 71 13 13</td>
<td>Beam-Type Guardrail</td>
</tr>
<tr>
<td>34 71 16 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>34 71 16 00</td>
<td>34 71 13 16</td>
<td>Active Vehicle Barriers</td>
</tr>
<tr>
<td>34 71 16 00</td>
<td>34 71 13 13</td>
<td>Beam-Type Guardrail</td>
</tr>
<tr>
<td>34 71 19 16</td>
<td>32 17 13 19</td>
<td>Parking Control Equipment</td>
</tr>
<tr>
<td>34 71 19 16</td>
<td>32 17 13 19a</td>
<td>Prefabricated Control Booths</td>
</tr>
<tr>
<td>34 82 23 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>34 82 26 00</td>
<td>01 22 16 00</td>
<td>No Specification Required</td>
</tr>
<tr>
<td>Task</td>
<td>Specification(s)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>01 22 16 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 22 20 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 22 23 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 51 13 00</td>
<td>01 51 13 00, 01 51 13 00a</td>
<td></td>
</tr>
<tr>
<td>01 52 19 00</td>
<td>01 52 19 00, 01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 55 26 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 56 16 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 56 26 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 56 29 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 56 33 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 58 13 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 71 13 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 74 16 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>01 74 19 00</td>
<td>01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>02 32 13 00</td>
<td>02 32 13 00</td>
<td></td>
</tr>
<tr>
<td>02 41 13 13</td>
<td>02 41 13 13, 02 41 13 13a</td>
<td></td>
</tr>
<tr>
<td>02 41 19 13</td>
<td>02 41 13 13</td>
<td></td>
</tr>
<tr>
<td>02 41 19 16</td>
<td>02 41 13 13</td>
<td></td>
</tr>
<tr>
<td>02 61 00 00</td>
<td>02 61 00 00</td>
<td></td>
</tr>
<tr>
<td>02 61 13 00</td>
<td>02 61 13 00, 02 41 13 13, 02 61 00 00, 02 61 13 00</td>
<td></td>
</tr>
<tr>
<td>02 65 00 00</td>
<td>02 41 13 13, 02 61 00 00, 02 61 13 00</td>
<td></td>
</tr>
<tr>
<td>03 01 30 71</td>
<td>03 01 30 71, 01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>03 11 13 00</td>
<td>03 11 13 00, 01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>03 15 16 00</td>
<td>03 11 13 00</td>
<td></td>
</tr>
<tr>
<td>03 21 11 00</td>
<td>03 11 13 00</td>
<td></td>
</tr>
<tr>
<td>03 22 11 00</td>
<td>03 11 13 00</td>
<td></td>
</tr>
<tr>
<td>03 31 13 00</td>
<td>03 11 13 00</td>
<td></td>
</tr>
<tr>
<td>03 39 33 00</td>
<td>03 11 13 00</td>
<td></td>
</tr>
<tr>
<td>03 62 13 00</td>
<td>03 62 13 00, 03 62 13 00a</td>
<td></td>
</tr>
<tr>
<td>03 62 16 00</td>
<td>03 62 13 00, 03 62 13 00a</td>
<td></td>
</tr>
<tr>
<td>05 50 10 00</td>
<td>05 50 10 00</td>
<td></td>
</tr>
<tr>
<td>05 50 40 00</td>
<td>05 50 10 00</td>
<td></td>
</tr>
<tr>
<td>09 91 13 00</td>
<td>09 91 13 00</td>
<td></td>
</tr>
<tr>
<td>10 14 53 00</td>
<td>10 14 53 00</td>
<td></td>
</tr>
<tr>
<td>26 01 20 00</td>
<td>01 51 13 00</td>
<td></td>
</tr>
<tr>
<td>26 05 19 16</td>
<td>26 05 19 16, 26 05 19 16a, 26 05 19 16b, 01 51 13 00</td>
<td></td>
</tr>
<tr>
<td>26 05 26 00</td>
<td>26 05 26 00, 26 05 26 00a, 26 05 26 00b, 01 22 16 00</td>
<td></td>
</tr>
<tr>
<td>26 05 33 13</td>
<td>26 05 33 13, 26 05 33 13a, 26 05 33 13b, 26 05 33 13c, 26 05 33 13d, 26 05 33 13e,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 05 33 13f, 01 51 13 00, 26 05 19 16</td>
<td></td>
</tr>
<tr>
<td>26 05 46 00</td>
<td>26 05 26 00b</td>
<td></td>
</tr>
<tr>
<td>26 05 53 00</td>
<td>26 05 53 00, 01 51 13 00</td>
<td></td>
</tr>
<tr>
<td>26 27 13 00</td>
<td>26 05 26 00b</td>
<td></td>
</tr>
<tr>
<td>26 27 16 00</td>
<td>26 27 16 00</td>
<td></td>
</tr>
<tr>
<td>26 41 13 00</td>
<td>26 05 26 00</td>
<td></td>
</tr>
<tr>
<td>26 56 13 00</td>
<td>26 56 13 00, 01 22 16 00, 26 05 26 00b</td>
<td></td>
</tr>
<tr>
<td>26 56 19 00</td>
<td>26 56 13 00</td>
<td></td>
</tr>
<tr>
<td>27 14 13 13</td>
<td>26 05 19 16, 26 05 19 16a, 26 05 19 16b</td>
<td></td>
</tr>
<tr>
<td>27 14 13 16</td>
<td>26 05 19 16, 26 05 19 16a, 26 05 19 16b</td>
<td></td>
</tr>
<tr>
<td>27 14 33 16</td>
<td>26 05 19 16</td>
<td></td>
</tr>
<tr>
<td>31 05 13 00</td>
<td>31 05 13 00, 31 05 13 00a</td>
<td></td>
</tr>
<tr>
<td>31 05 16 00</td>
<td>31 05 13 00, 31 05 13 00a</td>
<td></td>
</tr>
<tr>
<td>31 11 00 00</td>
<td>31 11 00 00</td>
<td></td>
</tr>
<tr>
<td>31 23 16 13</td>
<td>31 23 16 13, 31 05 13 00</td>
<td></td>
</tr>
</tbody>
</table>

July 2012

County of Santa Clara Roads and Airports Department,

RAD-2012-01
<table>
<thead>
<tr>
<th>Task</th>
<th>Specification(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 23 16 33</td>
<td>31 05 13 00</td>
</tr>
<tr>
<td>31 23 16 36</td>
<td>31 23 16 13, 31 05 13 00</td>
</tr>
<tr>
<td>31 23 19 00</td>
<td>31 23 19 00, 31 23 19 00a</td>
</tr>
<tr>
<td>31 23 23 23</td>
<td>31 05 13 00</td>
</tr>
<tr>
<td>31 24 13 00</td>
<td>31 24 13 00, 31 24 13 00a, 31 05 13 00</td>
</tr>
<tr>
<td>31 25 14 13</td>
<td>31 25 14 13, 31 25 14 13a, 31 25 14 13b</td>
</tr>
<tr>
<td>31 25 14 16</td>
<td>01 22 16 00, 31 25 14 13, 31 25 14 13a, 31 25 14 13b</td>
</tr>
<tr>
<td>31 25 14 23</td>
<td>31 25 14 13, 31 25 14 13a, 31 25 14 13b</td>
</tr>
<tr>
<td>31 25 14 26</td>
<td>31 25 14 26, 31 25 14 13, 31 25 14 13b</td>
</tr>
<tr>
<td>31 32 13 16</td>
<td>31 32 13 16</td>
</tr>
<tr>
<td>31 32 13 19</td>
<td>31 32 13 16</td>
</tr>
<tr>
<td>31 32 13 29</td>
<td>31 32 13 16</td>
</tr>
<tr>
<td>31 32 19 13</td>
<td>31 32 13 16, 31 25 14 13a</td>
</tr>
<tr>
<td>31 32 19 16</td>
<td>31 32 19 16, 31 32 19 16a, 31 23 19 00, 31 32 13 16, 31 25 14 13a</td>
</tr>
<tr>
<td>31 36 00 00</td>
<td>31 36 00 00</td>
</tr>
<tr>
<td>31 37 00 00</td>
<td>31 37 00 00, 31 32 19 16</td>
</tr>
<tr>
<td>31 41 13 00</td>
<td>31 41 13 00</td>
</tr>
<tr>
<td>31 41 16 13</td>
<td>31 23 16 13, 31 41 13 00</td>
</tr>
<tr>
<td>31 62 23 13</td>
<td>31 62 23 13</td>
</tr>
<tr>
<td>32 01 11 53</td>
<td>32 01 11 53, 32 01 11 53a, 32 01 11 53b</td>
</tr>
<tr>
<td>32 01 16 71</td>
<td>32 01 16 71, 32 01 11 53</td>
</tr>
<tr>
<td>32 01 16 73</td>
<td>32 01 11 53, 32 01 16 71</td>
</tr>
<tr>
<td>32 01 17 61</td>
<td>32 01 17 61, 32 01 17 61a, 32 01 11 53</td>
</tr>
<tr>
<td>32 01 17 63</td>
<td>32 01 11 53</td>
</tr>
<tr>
<td>32 01 26 71</td>
<td>32 01 26 71</td>
</tr>
<tr>
<td>32 11 16 00</td>
<td>32 11 16 00, 32 11 16 00a, 32 11 16 00b, 32 11 16 00c, 32 11 16 00d</td>
</tr>
<tr>
<td>32 12 13 13</td>
<td>32 12 13 13, 32 01 11 53, 32 11 16 00c</td>
</tr>
<tr>
<td>32 12 13 19</td>
<td>32 01 11 53, 32 11 16 00c, 32 12 13 13</td>
</tr>
<tr>
<td>32 12 16 13</td>
<td>32 01 11 53, 32 11 16 00c, 32 11 16 00d, 32 12 13 13</td>
</tr>
<tr>
<td>32 12 16 39</td>
<td>32 11 16 00c, 32 12 13 13</td>
</tr>
<tr>
<td>32 12 16 43</td>
<td>32 01 11 53, 32 01 17 61, 32 01 17 61a</td>
</tr>
<tr>
<td>32 12 33 00</td>
<td>32 01 11 53, 32 11 16 00c, 32 12 13 13</td>
</tr>
<tr>
<td>32 12 36 00</td>
<td>32 01 11 53, 32 01 17 61, 32 01 17 61a</td>
</tr>
<tr>
<td>32 12 73 00</td>
<td>32 01 11 53a</td>
</tr>
<tr>
<td>32 13 13 00</td>
<td>32 13 13 00, 32 13 13 00a, 32 13 13 00b, 32 13 13 00c, 32 13 13 00d, 32 01 11 53a</td>
</tr>
<tr>
<td>32 13 16 13</td>
<td>32 01 11 53a</td>
</tr>
<tr>
<td>32 13 43 00</td>
<td>32 01 11 53a</td>
</tr>
<tr>
<td>32 13 73 00</td>
<td>32 01 11 53, 32 01 17 61a</td>
</tr>
<tr>
<td>32 14 40 00</td>
<td>01 22 16 00</td>
</tr>
<tr>
<td>32 15 40 00</td>
<td>32 11 16 00a</td>
</tr>
<tr>
<td>32 16 13 13</td>
<td>32 16 13 13, 01 22 16 00, 32 01 11 53a</td>
</tr>
<tr>
<td>32 16 13 14</td>
<td>32 01 11 53a, 32 16 13 13</td>
</tr>
<tr>
<td>32 16 13 16</td>
<td>32 16 13 13</td>
</tr>
<tr>
<td>32 16 13 19</td>
<td>32 01 11 53a</td>
</tr>
<tr>
<td>32 16 13 43</td>
<td>32 16 13 43</td>
</tr>
<tr>
<td>32 16 23 00</td>
<td>32 16 23 00, 32 01 11 53a</td>
</tr>
<tr>
<td>32 17 13 19</td>
<td>32 17 13 19, 32 17 13 19a</td>
</tr>
<tr>
<td>32 17 13 23</td>
<td>32 17 13 19, 32 17 13 19a</td>
</tr>
<tr>
<td>32 17 13 26</td>
<td>32 17 13 19, 32 17 13 19a</td>
</tr>
<tr>
<td>32 17 16 00</td>
<td>32 01 11 53</td>
</tr>
<tr>
<td>32 17 23 13</td>
<td>32 01 11 53, 32 01 11 53a, 32 01 11 53b</td>
</tr>
<tr>
<td>32 17 23 23</td>
<td>32 01 11 53a, 32 01 11 53b</td>
</tr>
<tr>
<td>Task</td>
<td>Specification(s)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>32 17 23 33</td>
<td>32 01 11 53, 32 01 11 53a, 32 01 11 53b</td>
</tr>
<tr>
<td>32 17 26 00</td>
<td>32 17 26 00</td>
</tr>
<tr>
<td>32 31 11 00</td>
<td>32 31 11 00</td>
</tr>
<tr>
<td>32 31 13 00</td>
<td>32 31 13 00, 01 22 16 00, 32 31 11 00</td>
</tr>
<tr>
<td>32 31 29 00</td>
<td>32 31 29 00, 01 22 16 00</td>
</tr>
<tr>
<td>32 32 13 00</td>
<td>32 32 13 00, 32 32 13 00a</td>
</tr>
<tr>
<td>32 32 16 00</td>
<td>32 32 16 00, 03 62 13 00</td>
</tr>
<tr>
<td>32 32 23 13</td>
<td>32 32 13 00, 32 32 13 00a</td>
</tr>
<tr>
<td>32 32 29 00</td>
<td>32 32 13 00, 32 32 13 00a</td>
</tr>
<tr>
<td>32 32 53 00</td>
<td>32 32 13 00, 32 32 13 00a</td>
</tr>
<tr>
<td>32 35 16 00</td>
<td>32 35 16 00</td>
</tr>
<tr>
<td>32 39 16 00</td>
<td>32 39 16 00</td>
</tr>
<tr>
<td>32 84 13 00</td>
<td>32 84 13 00</td>
</tr>
<tr>
<td>32 84 23 00</td>
<td>32 84 13 00</td>
</tr>
<tr>
<td>32 92 19 13</td>
<td>32 92 19 13</td>
</tr>
<tr>
<td>33 01 30 16</td>
<td>01 22 16 00</td>
</tr>
<tr>
<td>33 01 30 51</td>
<td>33 01 30 51, 31 23 19 00</td>
</tr>
<tr>
<td>33 01 30 72</td>
<td>33 01 30 72, 01 22 16 00, 31 23 19 00</td>
</tr>
<tr>
<td>33 01 30 73</td>
<td>33 01 30 73, 33 01 30 73a, 33 01 30 73b, 33 01 30 73c, 33 01 30 73d, 01 22 16 00,</td>
</tr>
<tr>
<td></td>
<td>31 23 19 00, 31 32 19 16</td>
</tr>
<tr>
<td>33 05 16 13</td>
<td>33 01 30 73c</td>
</tr>
<tr>
<td>33 05 23 13</td>
<td>33 05 23 13, 01 22 16 00</td>
</tr>
<tr>
<td>33 05 23 16</td>
<td>01 22 16 00, 33 05 23 13</td>
</tr>
<tr>
<td>33 05 26 00</td>
<td>01 22 16 00</td>
</tr>
<tr>
<td>33 11 13 23</td>
<td>33 11 13 23, 33 11 13 23a, 33 11 13 23b, 33 11 13 23c, 33 11 13 23d, 33 11 13 23e,</td>
</tr>
<tr>
<td></td>
<td>01 22 16 00, 31 23 19 00, 33 01 30 73, 31 05 13 00a, 33 01 30 73d</td>
</tr>
<tr>
<td>33 11 13 43</td>
<td>33 01 30 73</td>
</tr>
<tr>
<td>33 11 13 53</td>
<td>01 22 16 00, 31 62 23 13, 33 11 13 23a</td>
</tr>
<tr>
<td>33 12 16 00</td>
<td>01 22 16 00, 31 23 19 00, 33 11 13 23a</td>
</tr>
<tr>
<td>33 12 19 09</td>
<td>31 23 19 00, 33 11 13 23a</td>
</tr>
<tr>
<td>33 26 00 00</td>
<td>31 23 19 00, 33 11 13 23</td>
</tr>
<tr>
<td>33 31 00 00</td>
<td>31 23 19 00, 33 11 13 23, 33 11 13 23a, 33 11 13 23b, 33 11 13 23c, 33 01 30 73,</td>
</tr>
<tr>
<td></td>
<td>33 11 13 23d, 33 11 13 23e, 31 05 13 00a, 33 01 30 73d</td>
</tr>
<tr>
<td>33 39 13 00</td>
<td>01 22 16 00, 31 23 19 00, 33 01 30 73, 33 01 30 73c, 33 01 30 73d, 31 32 19 16</td>
</tr>
<tr>
<td>33 41 13 00</td>
<td>33 41 13 00, 31 23 19 00, 33 11 13 23, 33 11 13 23a, 33 01 30 73, 31 05 13 00a, 33</td>
</tr>
<tr>
<td></td>
<td>01 30 73d</td>
</tr>
<tr>
<td>33 42 16 13</td>
<td>33 42 16 13, 01 22 16 00, 31 23 19 00, 33 01 30 73, 33 01 30 73d</td>
</tr>
<tr>
<td>33 44 13 13</td>
<td>31 23 19 00, 33 01 30 73d, 31 32 19 16</td>
</tr>
<tr>
<td>33 44 16 00</td>
<td>31 23 19 00, 33 01 30 73d, 31 32 19 16</td>
</tr>
<tr>
<td>33 46 16 00</td>
<td>31 23 19 00</td>
</tr>
<tr>
<td>33 51 13 00</td>
<td>31 23 19 00, 33 11 13 23a, 33 01 30 73, 33 41 13 00, 31 05 13 00a, 33 01 30 73d</td>
</tr>
<tr>
<td>34 11 93 00</td>
<td>34 11 93 00, 34 11 93 00a, 34 11 93 00b</td>
</tr>
<tr>
<td>34 41 13 00</td>
<td>34 41 13 00, 01 22 16 00</td>
</tr>
<tr>
<td>34 41 16 00</td>
<td>34 41 13 00</td>
</tr>
<tr>
<td>34 71 13 13</td>
<td>34 71 13 13, 01 22 16 00</td>
</tr>
<tr>
<td>34 71 13 16</td>
<td>34 71 13 16</td>
</tr>
<tr>
<td>34 71 13 26</td>
<td>01 22 16 00, 34 71 13 13</td>
</tr>
<tr>
<td>34 71 16 00</td>
<td>01 22 16 00, 34 71 13 16, 34 71 13 13</td>
</tr>
<tr>
<td>34 71 19 16</td>
<td>32 17 13 19, 32 17 13 19a</td>
</tr>
<tr>
<td>34 82 23 00</td>
<td>01 22 16 00</td>
</tr>
<tr>
<td>34 82 26 00</td>
<td>01 22 16 00</td>
</tr>
</tbody>
</table>
The Gordian Group was established in June of 1990 by the inventor of Job Order Contracting, Harry H. Mellon, for the sole purpose of providing the consulting services, software and documents necessary to develop, implement and support Job Order Contracting (JOC) programs for public owners.

The Gordian Group is the only full service JOC consulting firm in the nation, and the only firm that can provide single point responsibility for all of the products and services necessary for a JOC program.

The Gordian Group develops and supports, with in-house staff, the Contract Documents, Construction Task Catalog, Technical Specifications and JOC Management Information System necessary for a successful JOC.

The Gordian Group is The Standard For Job Order Contracting® and we are dedicated, full-time, to improving the documents, software and procedures necessary to raise the standard and make our clients' JOC programs better.

877-GORDIAN
877.467.3426
www.gordian-group.com